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ABSTRACT Image matting is an important problem in computer vision with significant theoretical interest
and diverse practical applications, including image/video editing, target tracking, and object recognition.
Pixel-pair-optimization-based image matting approaches have been shown very successful in estimating
the opacity of the foreground by searching for the best pair of foreground and background pixels for each
unknown pixel. However, extant approaches encounter difficulties in adapting to the changes of available
computing resources, which limits the application of image matting. This drawback has motivated the present
study, as a part of which a multi-scale evolutionary pixel pair optimization framework named pyramid
matting framework (PMF) was developed. In this framework, the large-scale pixel pair optimization problem
is transformed to multiple pixel pair optimization problems of different scales using image pyramid. The
resulting problems are solved level by level, starting from the problem at the small scale. Pixel pair heuristic
information obtained from solving low-scale problems are iteratively propagated to the spatially-related
pixel pairs in the larger-scale problem. PMF can adapt to changes in available computing resources due to
its capability of transforming a small-scale problem solution to the large-scale problem solution through the
heuristic information propagation. Experimental results show that the PMF-based image matting approach
not only provides high-quality alpha mattes with sufficient computing resources, but also works well when

computing resources are scarce.

INDEX TERMS Image matting, pixel pair optimization, multi-scale optimization, evolutionary

optimization.

I. INTRODUCTION
Natural image matting aims to accurately extract foreground
objects from a color image with a natural background. The
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extraction is implemented through the estimation of alpha
matte (foreground opacity) based on user-defined informa-
tion (typically provided in the form of trimap). The natural
image matting model can be mathematically described as:

I, =a,F, + (1 — ) B )
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where the observed color (/) of a pixel p is denoted as a con-
vex combination of a foreground color (F),) and a background
color (Bp); ap is the weight of the color composition (i.e.
the opacity of the foreground) at pixel p. Hence, a), ranges
from O to 1, whereby 1 denotes definite foreground pixels
and 0 represents definite background pixels. A trimap sepa-
rates an image into three non-overlapping regions, denoted
as: unknown, known foreground and known background
regions. The aim of natural image matting is to determine
the alpha values of pixels in unknown regions, while those
in known foreground and known background regions are
denoted as 1 and 0, respectively.

Natural image matting has been applied not only to
mid-level vision tasks such as image fusion [1], automatic
foreground extraction [2], [3], semantic segmentation [4],
medical image processing [5] and target tracking [6], but
also to high-level vision tasks, such as pedestrian classi-
fication [7], object recognition [2], virtual reality [8], and
street view augmented reality [9]. As the range of image
matting applications broadened, the image matting approach
is required to provide satisfactory alpha mattes within a given
amount of computing resources. However, the amount of
available computing resources changes with the time sen-
sitivity of the image matting task in the applications men-
tioned above. For example, an image matting approach may
be required to provide an alpha matte within seconds in
a time-sensitive task, while it can be run for hours in a
time-insensitive task.

The pixel-pair-optimization-based approach is one of the
competitive image matting approaches that have distinct
advantages in parallelization [10] and in handling a mis-
labeled trimap [7] or spatially disconnected foreground
[11]-[13]. In this approach, natural image matting problem
is modeled as a pixel pair optimization (PPO) problem that
can be written as:

min g,(xp) s.t.xp = (x(F) (B))T

peEU, xl(,F)e]-', xl(,B)eB )

where g,(xp) is a pixel pair evaluation function for an
unknown pixel p; U, F and B are pixel sets in unknown,
known foreground and known background regions, respec-
tively; x, is the pixel pair decision vector for pixel p; and

(F) P é)denoteaplxel in known foreground and background
reglons respectively. Once the foregroud and background
colors are given by solving the PPO problem, the alpha value
@), for pixel p can be estimated by applying the following
expression:

& = (Ip_Bp)'(Fp_Bp)
b ||y — Byl

3

where || * ||* denotes Euclidean norm of vector *.

The PPO problem remains a significant research topic
because of three major difficulties. (1) the pixel pair objective
function is non-convex and has lots of local optima, as shown
in Fig. 1; (2) substantial optimization problems need to be
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FIGURE 1. Pixel pair fitness regarding a small pixel pair decision
subspace of the PPO problem pertain to an unknown pixel in an image
named GT25. The fitness is obtained by a pixel pair evaluation function
proposed in [14].

solved with limited computing resources (for example, hun-
dreds of thousands of optimization problems can be involved
in a 0.5 megapixel image); and (3) the PPO problem search
space is extensive. As all combinations of the pixels in known
foreground and known background regions constitute the set
of possible pixel pairs, the number of possible pixel pairs for
one unknown pixel in a 0.5 megapixel image could reach 108.

Considering the change of available computing resources
in image matting applications, the PPO problem is required to
be solved approximately with different amounts of available
computing resources. The amount of available comput-
ing resources can be quantitatively described by the num-
ber of available pixel pair evaluations per unknown pixel
(PPE/UP) [15]. The PPO-based approaches described in per-
tinent literature can be categorized into: sampling-based and
evolutionary-optimization-based approaches.

Sampling-based approaches reduce decision space with
sampling to approximately solve the PPO problem. In most
recent studies, alpha mattes are estimated by pixel sampling
and pixel pair optimization [14]. Two small sets of pixels
are collected from known foreground and known background
regions separately to reduce the PPO problem search space.
Subsequently, the best pixel pair for each unknown pixel
is chosen from the sample sets by optimizing a pixel pair
evaluation function.

Researchers primarily focused on designing pixel sampling
strategies based on spatial relationships in earlier studies on
sampling-based approaches. Wang and Cohen [16] assumed
that the known foreground or background pixels in close
proximity to the unknown pixel may constitute the best pixel
pair. In the approach proposed by Gastal and Oliveira [17],
rays are emitted from the unknown pixel in different direc-
tions and the pixels that are not only on the ray paths but also
on the boundary of known regions are collected as samples.
On the other hand, He et al. [14] improved image matte qual-
ity by collecting a greater number of pixel samples. In their
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approaches, all pixels on the boundary of known regions are
collected and a randomized search algorithm, rather than the
brute force algorithm, is adopted to handle the large number
of samples in pixel pair optimization. The sampling strategies
mentioned above are known as local sampling strategies,
as only the pixels on the boundary of known regions can be
collected as samples. The approaches based on local sampling
require a small amount of computing resources (most of them
require hundreds to thousands PPE/UP [14], [17]). However,
local sampling strategies may miss the true sample when the
best pair of pixels is not located on the boundary, degrading
the alpha matte quality significantly [15], [18]-[22].

Global sampling strategies were developed to alleviate
missing true sample problem. Shahrian and Rajan [18],
Shahrian et al. Shahrian2013 extended local sampling to
global sampling by hierarchically clustering the pixels and
selecting both the cluster centers and the pixels on the
boundaries of known regions as samples. Feng et al. [20]
used a pixel pair sampling objective function to select
good pixel pairs from a candidate set obtained by k-means
clustering. Distinct from previous sampling approaches,
Johnson et al. [21] suggested that the unknown pixel color
comprised of a set of unpaired pixel colors, and modeled
natural image matting as a sparse coding problem of pixel
features. Karacan er al. [22] considered pixel sampling as
a sparse subset selection problem to increase the diversity
of pixel samples. In their work, Kullback-Leibler divergence
was employed to measure the feature distance among the
cluster centers obtained by a superpixel approach, which
provided a quantitative measurement of pixel sample dissim-
ilarity. Huang et al. [15] cautioned that true sample may be
missed due to: (1) conflicts among sampling criteria adopted;
and (2) an incomplete sample space coused by using pixel
clustering approaches. Thus they modeled pixel sampling
for each unknown pixel as a multi-objective optimization
problem and selected the Pareto optimal pixels as samples.
In the multi-objective sampling, the pixel (rather than the
superpixel) was used as the sampling unit. Global sampling
strategies improve the diversity of pixel samples by expand-
ing the sample space and designing sophisticated sampling
strategy, while more computing resources are required (thou-
sands to tens of thousands PPE/UP [15]) as the complexity of
sampling strategy increases.

The main weakness of the sampling-based approach is
its failure to adapt to the changes of available comput-
ing resources, because it uses a fixed amount of com-
puting resources. Specifically, when the available comput-
ing resources are inadequate, the sampling-based approach
cannot provide alpha mattes. On the other hand, it can-
not utilize all of available computing resources when the
computing resources are sufficient. Moreover, the issue of
missing true sample cannot be completely eliminated in
sampling-based approaches due to the complexity of pixel
pair optimization [10].

Recently, several researchers [10], [23]-[25] demonstrated
that pixel pairs can be optimized without sampling by
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using the evolutionary algorithm (a population-based meta-
heuristic optimization algorithm [26]), which can make use
of all available computing resources by adjusting the iter-
ation number of the evolutionary algorithm, and would in
theory eliminate the risk of true sample omission. In these
approaches (which are known as evolutionary-optimization-
based approaches), all PPO problems involved in an image
are solved simultaneously by combining them into one
large-scale PPO problem, as illustrated in Eq. (4).

N
minG(X) s.r. GX) =Y gk(w).
k=1

X = (x1,x2,- -, xN),

5= (40 )",
k=1,2,...,N

er P en “)

where G(X) is the fitness function for the large-scale PPO
problem; gx(xx) and x; denote the pixel pair evaluation func-
tion and the pixel pair for the k-th unknown pixel, respec-
tively; N is the number of unknown pixels; and x,EF),xIEB)
denote the foreground-background pixel pair for the k-th
unknown pixel.

The evolutionary-optimization-based approach improves
the performance of image matting by performing a
global search with an evolutionary algorithm. How-
ever, the evolutionary-optimization-based approach requires
extensive computing resources (hundreds of thousands
PPE/UP [23]) to provide a high-quality alpha matte. There-
fore, some attempts have been made to improve the search
capability of evolutionary-optimization-based approaches.
Cai et al. [23] suggested that correlations of unknown pixel
colors can be used to improve the search capability of
evolutionary-optimization-based approaches. In their work,
a cooperative coevolution operator was embedded into dif-
ferential evolution algorithm to group unknown pixels with
similar colors and optimize the groups separately. In our
previous study [10], we pointed out that each of the eval-
uation criteria involved in pixel pair evaluation can pro-
vide heuristic information for PPO. In our previous work,
the heuristic information was used to support the optimization
by transforming PPO problem into a multi-objective problem
and solving it via a multi-objective evolutionary algorithm.
Moreover, local smoothness prior was incorporated into the
neighborhood grouping strategy such that pixel pairs can
be optimized collaboratively, which significantly reduces
demand for computing resources. Specifically, the pixel pairs
regarding unknown pixels within a 9 x 9 region are considered
as a group in the neighborhood grouping strategy. Half of
pixel pairs in a group were selected and optimized, while the
remaining pixel pairs adopted the optimization results shared
by the selected pixel pairs. Our previous study demonstrated
that the evolutionary-optimization-based approach can pro-
vide high-quality alpha mattes within thousands PPE/UP.
However, evolutionary-optimization-based approaches still
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suffer from a major drawback that they cannot provide
high-quality alpha mattes when computing resources are
scarce (e.g. the available computing resources can only
perform dozens PPE/UP).

Neither  sampling-based  approaches nor extant
evolutionary-optimization-based approaches can provide sat-
isfactory alpha mattes with different amounts of computing
resources. There has been little discussion about adapting to
the change of available computing resources in image matting
tasks.

This issue motivated the present study, as a part of which
we designed a multi-scale evolutionary pixel pair optimiza-
tion framework named pyramid matting framework (PMF).
PMF transforms the large-scale PPO problem into multi-
ple PPO problems of different scales by image pyramid
(a multi-scale image representation approach [27]), and
solves them sequentially from small to large scales. The
heuristic information found in a small-scale problem is prop-
agated iteratively to the larger-scale one. The propagation
generates a solution for the large-scale PPO problem using
the heuristic information obtained in small-scale problems.
Specifically, a pixel pair pertain to an unknown pixel obtained
by solving a small-scale PPO problem is propagated to mul-
tiple spatial-related pixel pairs pertain to the unknown pixels
within a local region in a larger-scale PPO problem. The
heuristic information propagation provides the capability of
computing resource adaptation for PMF, because it can not
only generate alpha mattes according to a solution of the PPO
problem at a small scale, but also make use of heuristic infor-
mation obtained from solving small-scale PPO problems.

The remainder of this paper is structured as follows:
Section II details the process of the proposed pyramid matting
framework, while the experimental results are presented in
Section III and Section VI concludes the paper.

Il. PYRAMID MATTING FRAMEWORK
This section describes a computing-resource-adaptive
multi-scale evolutionary pixel pair optimization framework
named pyramid matting framework. Fig. 2 provides a graph-
ical illustration of the proposed pyramid matting framework.
The core PMF principle is based on searching for pixel
pairs at different image scales and propagating the heuristic
information from small to large scales. Local smoothness
prior is utilized during heuristic information propagation.
The heuristic information of each pixel pair in a small-scale
image is propagated to multiple pixel pairs regarding the
unknown pixels within a local region of a larger-scale image,
as shown in Fig. 2. Moreover, with the heuristic information
propagation, the PPO problem solution at the large scale can
be generated according to the solution at any smaller scale,
which provides the capability of adapting to the changes of
available computing resources.

Algorithm 1 provides the pseudo-code of PMF, while the
definitions of symbols used in PMF are shown in Table 1.
PMF comprises two steps: (1) image matting pyramid
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TABLE 1. Definitions of symbols used in the pyramid matting framework.

Symbol Definition

T the input image

T the input trimap

Xbpest the best-known pixel pair decision vector
forZ and T

Pyramid(Z,T) construct an image matting pyramid for 7
and 7

P the image matting pyramid

Ny the level number of P

P(n) the image and trimap at the n-th level of P

On a subset of pixel pairs at the n-th level of
the image matting pyramid

Xn decision vector of n-th level of the pyramid

O(P(n)) optimize pixel pairs at the n-th level of the

image matting pyramid P by using an

evolutionary optimizer O
M(P(n+1),Xn+1,P(n)) transform the decision vector of pixel pairs
from the n + 1-th level to the n-th level of
the image matting pyramid P.
optimize the pixel pair that belongs to ©,
at the n-th level of the image matting
pyramid by an evolutionary optimizer O
with the initial decision vector X &

O(P(n)v @nv X}’Lﬂ/n)

Pz(n) the image at the n-th level of the pyramid
Pr(n) the trimap at the n-th level of the pyramid
8%() the scale down operator for the image
using Gaussian blur and downsampling.
S%L—() the scale down operator for the trimap.
Xinit the initial decision vector of the PPO
problem at the n-th level of the pyramid.
Xn41 the decision vector of the PPO problem
at the n + 1-th level of the pyramid.
Xn+1(p) the pixel pair corresponding to the unknown
pixel pin X,,11;
x1 the foreground pixels of X, 1(p)
T2 the background pixels of X, 1(p)
N () the neighbor set of pixel *;
z] the pixel randomly selected from N (z1).
xh the pixel randomly selected from N (z2).
Xinit(q) the pixel pair corresponding to the unknown

pixel g in X "

construction; and (2) multi-scale pixel pair search with
heuristic information propagation.

The details of image matting pyramid construction are
provided in Subsection II-A, and the process adopted when
searching for pixel pairs with heuristic information propaga-
tion is presented in Subsection II-B.

A. IMAGE MATTING PYRAMID CONSTRUCTION

The fist step in the PMF involves building multi-scale
representation for both the image and the trimap (which
we denote as image matting pyramid). Image pyramid [27]
was adopted in PMF for two reasons. (1) The images at
two adjacent levels of the image pyramid are highly similar.
Considering the similarity, searching for pixel pairs in the
small-scale image may provide heuristic information for the
search of larger-scale images. (2) The difficulty in solving
image matting problem decreases with the image scale. When
an image and the corresponding trimap are scaled down, both
the decision vector dimension and the search space reduce
significantly in the corresponding PPO problem.

VOLUME 8, 2020
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FIGURE 2. Schematic diagram of the pyramid matting framework.

(a) Animage at original size (800x497)

FIGURE 3. A comparison of images at different scales.

(b) the image obtained by scaling (a) to 100x63 (c) the image obtained by scaling (a) to 25x16

Algorithm 1 Pyramid Matting Framework
Input: Z and 7.
Output: Xp.s
: // Build the image matting pyramid.:
: {P, Ny} < Pyramid(Z,T)
: // Search pixel pairs at multiple scales:
n < N,
: X, < O(P(n))
:forn=N,—1toldo
// Propagate heuristic information from the
small-scale to the larger-scale PPO problems:

8 XM — M(P(n+ 1), Xys1, P(n))

9: if stop criterion is not met then

10:  //Search pixel pairs at the larger-scale PPO problem:

11: Select a subset of pixel pairs ®,, to be optimized
on the n-th level of pyramids by using a selection crite-
rion.

12: X, < O(P(n), ©,, X/n)

13: else X, = X

14: end if

15: end for

16: Xpesr = Xy

17: return Xpe;

Algorithm 2 describes an implementation of image matting
pyramid construction. Notice that nearest-neighbor interpo-
lation was adopted in the scale down operator for trimaps
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Algorithm 2 Image Matting Pyramid Construction (i.e.
Pyramid(Z, T))
Input: Z and 7.
Output: P and N,
tn<«1
: Pn) <~ {Z, T}
: do

1
2
3
4 Prn+1) < SHPr()
s Prin+1) < SHPr(n)
6:  Pm+1) < {Pz(n), Pr(n)}
7 n=n+1

8: while pyramid construction stop criterion is not met
9: Np < n

10: return P, N,

(i.e. S7¢—()) to ensure that trimaps take appropriate values.
The aim of image matting pyramid is to provide multi-scale
representation for image matting. However, scaling images
to a very small size may reduce level of detail considerably,
as shown in Fig. 3(c). Thus, to avoid inclusion of overly
small images into the image matting pyramid, the pyramid
construction stop criteria were established. In the current
implementation, the down-sampling loop terminates when
one of the dimensions declines below 100 pixels. The image
size set in the stop criterion is not a sensitive parameter,
because downsample operator halves both the width and
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Algorithm 3 Heuristic Information Propagation (i.e.
M(Pn+ 1), Xny1, P(n))
Input: P(n+ 1), X,+1 and P(n).
Output: X"
1: for each pixel p in unknown regions of the n + 1-th level
of the pyramid (i.e. P(n + 1)) do
2 (x1,x2) < Xu+1(p)
3 for each pixel g € MV (p) do
4: x| <select a pixel from N (x;) randomly
5
6
7

xy <select a pixel from N (x2) randomly
X"(q) < (x1,x3)
end for
8: end for
9: return X!

length of the images in each iteration. Other stop criteria can
be used in image matting pyramid construction.

B. MULTI-SCALE PIXEL PAIR SEARCH WITH HEURISTIC
INFORMATION PROPAGATION

Multi-scale pixel pair search plays an important role in PMF,
as searches are conducted for all pixel pairs at each level
of the image matting pyramid and the heuristic information
is propagated across different-scale images. In multi-scale
pixel pair search, the pixel pair search is performed level by
level from top to bottom of the image matting pyramid, and
heuristic information propagation and single-scale searching
are performed alternately, as described in the iteration shown
in Algorithm 1, lines 6-15. Notice that the PPO problem
pertaining to the top level of the pyramid is optimized by the
evolutionary optimizer before the iterative search (as shown
in Algorithm 1, lines 5), which provides initial pixel pairs for
heuristic information propagation.

Heuristic information propagation aims to propagate the
heuristic information obtained by searching at the previous
level of pyramid to the current level. However, the PPO prob-
lems corresponding to adjacent levels of the image pyramid
change significantly in terms of decision vectors and decision
space, although the corresponding images look highly simi-
lar. This poses the question of where the heuristic information
should be propagated. The heuristic information propaga-
tion addresses this issue by determining correlations of pixel
pairs among PPO problems at different scales. Algorithm 3
presents an implementation of heuristic information propa-
gation. In heuristic information propagation, the neighbors of
pixel pairs at the adjacent levels of the pyramid are defined
using image matting pyramid. Here, unknown pixels will be
used as an example to illustrate the definition of neighboring
pixel. Those unknown pixels at current level of the pyramid
used to calculate the average color of an unknown pixel
in the previous level are defined as the neighbors of the
unknown pixel. The neighborhood relations of pixels at dif-
ferent scales can be extended to pixel pairs, since each pixel
pair corresponds to a pixel in unknown regions. Definitions of
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neighbors of a foreground or background pixel can be given
by analogy.

Decision vector transformation and decision space trans-
formation are involved in heuristic information propagation.
Decision vector transformation utilizes local smoothness
prior in unknown regions. The pixel pair decision vector at
the previous level of the pyramid is transformed to that at
the current level (which corresponds to a larger-scale PPO
problem) according to pixel pair neighborhood relations in
the decision vector transformation process. However, pixel
pairs obtained from decision vector transformation cannot
be used directly at the current level of the pyramid due to
the change in the decision space. Search space transforma-
tion was thus designed to transform foreground pixels and
background pixels from a small-scale PPO problem to a
larger-scale PPO problem. Either the foreground pixel or the
background pixel of a pixel pair obtained by decision vector
transformation may correspond to more than one neighboring
pixels in the current level of the pyramid. One foreground
pixel and one background pixel were determined for each
pixel pair in a larger-scale PPO problem by applying random
selection on neighbors separately.

Single-scale search is performed after heuristic infor-
mation propagation for each iteration (as described in
Algorithm 1, lines 10-12), in which heuristic information that
has been propagated from the previous level of the pyramid is
used through pixel pair selection and pixel pair evolutionary
optimization. Some of the pixel pairs in the initial decision
vector obtained by heuristic information propagation are of
high quality and can provide accurate alpha value estimation
due to the local smoothness prior. It is not necessary to apply
evolutionary optimization on high-quality pixel pairs. Conse-
quently, only half of pixel pairs with low fitness are selected
from the initial decision vector to be optimized in pixel pair
selection process (which implements the selection criterion in
Algorithm 1, line 11). The pixel pair selection avoid redun-
dant search and can therefore improve the search efficiency.
Pixel pair evolutionary optimization is subsequently applied
to each selected pixel pair. The pixel pair in the initial decision
vector is provided as an initial individual to the evolutionary
optimizer to use the heuristic information propagated from
the small-scale PPO problems.

Ill. EXPERIMENTAL RESULTS

In this section, findings yielded by three experiments are
reported to evaluate the presented pyramid matting frame-
work with different amounts of computing resources.

A. EXPERIMENTAL DESIGN

Three representative cases were considered in the experi-
ments, which correspond to the cases where image matting
approaches can be run for hours, minutes and seconds in a
workstation computer, respectively. In case one, the maxi-
mum number of PPE/UP was set to 5000 (which is consistent
with the setting in [10]) to evaluate the performance of PMF
with sufficient computing resources. The maximum number

VOLUME 8, 2020
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of PPE/UP was set to 50 in case two, which corresponds to the
case where image matting approaches are required to provide
an alpha matte within minutes on a workstation computer.
The maximum number of PPE/UP was further reduced to
five in case three to demonstrate the performance of involved
approaches with very few computing resources. The first
experiment was conducted to verify the PMF effectiveness
with sufficient computing resources by comparing the perfor-
mance of evolutionary-optimization-based approaches with
and without PMF in case one. The second experiment shows
the performance of PMF-based approach in case two and case
three where limited computing resources are available. In the
last experiment, a visual comparison was performed among
the alpha mattes obtained by the PMF-based approach and
that yielded by the state-of-the-art image matting approaches
based on pixel pair optimization.

All three experiments were carried out on a popular image
matting benchmark dataset [28], which provides 27 color
images with their ground-truth alpha mattes. Two types of
trimaps, including the trimaps with small unknown regions
and that with large unknown regions, were used in the exper-
iments. The ground-truth alpha mattes were used to evaluate
the performance of the involved approaches. Notice that all
involved approaches were performed without pre-processing
and post-processing processes in the experiments to provide
a fair comparison, because these processes may affect the
quality of alpha mattes [29]. The pixel pair evaluation func-
tion presented in the literature [10] was used in the pixel
pair optimization for all involved evolutionary-optimization-
based approaches. A widely used performance metric named
mean square error (MSE) was used to measure the error
between an estimated alpha matte and the ground-truth matte
quantitatively, which can be written as:

€= ZP @y — &)*/N 5)

where ¢ denotes the MSE of an estimated alpha matte.
@p and &, denote the alpha values at pixel p in the esti-
mated and the ground-truth alpha matte, respectively. A small
observed value of MSE indicates a high-quality alpha matte.
All experiments were conducted on a workstation computer
with an Intel Core i7 3.6-GHz CPU and 32 GB of memory.
The involved approaches were implemented in MATLAB.

B. IMAGE MATTING WITH SUFFICIENT COMPUTING
RESOURCES

The aim of the first experiment was to ascertain whether
PMF can provide high-quality alpha mattes when computing
resources are sufficient. A comparison between evolutionary-
optimization-based approaches with and without PMF was
conducted using the setting of case one in this experiment.
Two image matting approaches were implemented within
PMF by taking a state-of-the-art evolutionary-optimization-
based approach named multiobjective evolutionary algo-
rithm based on multicriteria decomposition (MOEAMCD)
[10] and a popular large-scale evolutionary optimizer named
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competitive swarm optimization (CSO) [30] as evolutionary
optimizers, respectively. The parameters involved in the evo-
lutionary optimizers were adopted from pertinent literature
[10], [30], respectively. The resulting PMF-based approaches
are called MEOAMCD-PMF and CSO-PMF, respectively.
Consequently, the original MOEAMCD and CSO were used
as a baseline in the comparison. All involved approaches were
run 30 times on each image separately to allow for statistical
analysis of their performance.

Table 2 and Table 3 provide the average value and standard
deviation of MSE obtained by the evolutionary-optimization-
based approaches with and without PMF. Table 2 shows
the results yielded by using the trimap with small unknown
regions, while the results of using the trimap with large
unknown regions are shown in Table 3. The average values
of MSE obtained by PMF-based approaches are smaller than
those obtained by the original approaches in almost all the
cases, as shown in Table 2 and Table 3. MOEAMCD-PMF
outperforms MOEAMCD on 23 out of 27 images in terms
of average MSE in the comparison involving the trimap with
small unknown regions, as well as on 21 out of 27 images
in the comparison involving the trimap with large unknown
regions. Moreover, CSO-PMF provides alpha mattes with
lower average MSE than CSO on all 27 images in both
comparisons. These experimental results indicate that the
quality of alpha mattes obtained by the involved approaches
was improved by adopting PMF in the case with sufficient
computing resources. The observed decline in MSE can
be attributed to the search capability improvement through
heuristic information propagation, which provides useful
heuristic information across the multi-scale pixel pair search.
With the propagated heuristic information, the search capa-
bility of evolutionary-optimization-based approaches can be
improved when the computing resources are sufficient.

C. IMAGE MATTING WITH LIMITED COMPUTING
RESOURCES

The goal of the second experiment was to verify if PMF can
provide high-quality alpha mattes when computing resources
are limited. Case two and case three were considered in this
experiment. Two PMF-based approaches MOEAMCD-PMF
and CSO-PMF) were involved in this experiment, and the
approach with the closest performance to the PMF-based
method in the first experiment, MOEAMCD, was used as
a baseline. This experiment was conducted using the trimap
with small unknown regions in the dataset [28]. The involved
approaches were run 30 times to facilitate a statistical analysis
of their performance.

Table 4 shows the average MSE of 27 images obtained
by PMF-based approaches and MOEAMCD [10] in case
two and case three. Notice that PMF-based approach works
well in both cases, whereas MOEAMCD failed in case
three, since computational resource was insufficient for
MOEAMCD in this case. 40 PPE/UP were performed in the
neighborhood grouping strategy employed in MOEAMCD,
but only five PPE/UP could be evaluated in case three.
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TABLE 2. Image matting performance comparison between evolutionary-optimization-based approaches with and without pyramid matting framework in
terms of the average value and standard deviation of MSE for 27 images from the benchmark dataset [28] using trimap with small unknown regions. The
maximum number of pixel pair evaluations per unknown pixel was set to 5000. The bold numbers represent the better MSE in the comparison.

GTO1 GTO02 GTO03 GT04  GTO05  GTO6 GTO07 GTO08 GT09
Avg. 28.9 64.5 129.0 385.4 36.7 73.0 36.5 595.6 98.9

MOEAMCD-PMF

sd. 03 0.9 11 24 1.0 1.0 0.3 5.1 0.7

Ave. 94 670 1306 3944 366 752 370 6034 99

MOEAMCD [11] g4 04 0.7 15 2.1 12 13 0.4 3.0 1.0
Ave 394 1036 1782 4898 724 1327 573 732 1i53

CSO-PMF Sd. 03 13 1.0 3.1 37 14 05 5.0 12
50 B1] Avg. 4400 18472 8363 26614 6216 14145 35850 22076 17292

: S, 49 10 41 68 52 16 3.0 6.8 10.2

GT10 GT11 GT12 GT13  GT14  GTI15 GT16 GT17 GT18
Avg. 147.7 215.6 60.8 219.2 59.0 178.7 942.0 57.2 44.7

MOEAMCD-PMF

std 2.1 25 0.6 1.9 12 23 163 07 0.6
Ave. 1504 2133 606 2285 644 1817 9103 590 456
MOEAMCD 1] g q" 5 2.9 0.7 1.9 11 2.1 132 06 0.8
Avg. 1841 2509 758 3393 1505 2362 28926 1000 1187
CSO-PMF Sd. 24 34 1.9 24 33 47 95 33 2.0
g Avg 15128 23448 2103 37975 3934 12238 49399 T6L.1 15717
Sid. 106 92 1.0 161 51 36 115 44 77

GT19 GT20 GT21 GT22 GT23 GT24 GT25 GT26 GT27
Avg. 77.0 50.3 344.2 40.0 50.4 367.1 1244.0  986.5  1338.7

MOEAMCD-PMF

Sd. 13 11 41 0.5 0.6 48 6.5 5.3 9.8
Ave. 94 516 3693 405 513 3733 12477 10144 137338

MOEAMCD 1] giq" 3 038 44 0.6 0.8 48 8.0 49 10.5
Ave 1290 624 5390 641 878 4371 14020 11829 15256

CSO-PMF Sd. 22 05 7.0 1.0 14 55 73 5.5 14.7
50 B1] Ave. 8378 4997 30453 8311 8775 26424 31110 48532 47457

Sd. 58 26 108 3.1 s4 121 166 146 142

TABLE 3. Image matting performance comparison between evolutionary-optimization-based approaches with and without pyramid matting framework in
terms of the average value and standard deviation of MSE for 27 images from the benchmark dataset [28] using trimap with large unknown regions. The
maximum number of pixel pair evaluations per unknown pixel was set to 5000. The bold numbers represent the better MSE in the comparison.

GTO1 GT02 GTO03 GT04 GTO5 GT06 GTO7 GTO08 GTO09
Avg. 57.6 139.7 197.2 649.8 91.0 139.3 54.4 748.5 119.2

MOEAMCD-PMF

Sd. 06 12 5.0 40 1.8 1.7 0.4 52 0.9
Ave. 579 1415 1917 6763 013 1451 553 7464  1i88

MOEAMCD [11]  g4" 75 13 37 37 13 22 0.6 6.0 11
Ave. 659 1903 2197 7248 1247 2804 SLI 9498 1634

CSO-PMF sd. 06 2.9 12 42 42 2.0 0.7 49 13
P Ave. 7712 35683 10735 33793 10983 23556 999.6 29180 24001

st 55 124 40 9.4 8.5 8.9 3.8 9.1 1.1

GT10 GTl11 GT12 GT13 GT14 GT15 GT16 GT17 GT18
Avg. 2475 392.7 102.2 462.8 109.0 298.7  2402.7 92.2 86.9

MOEAMCD-PMF

sid 3.1 39 0.6 29 13 38 233 12 12
Avg. 2487 3903 1015 4702 1160 3073 24454 935 919
MOEAMCD 1] qq" "33 3.0 0.6 33 13 36 17.7 0.9 1.4
Ave. 2942 3797 1378 5308 2205 3939 44802 1304 2439
CSO-PMF sd. 33 45 23 34 37 68 7.7 25 3.8
S0 B3] Ave. 24108 37794 3304 52646 9393 16723 35255 11984 25900
Std. 113 149 15 214 61 59 148 68 1.2

GT19 GT20 GT21 GT22 GT23 GT24 GT25 GT26 GT27
Avg. 213.5 111.0 802.2 72.9 86.0 636.3 1789.0 16574  2857.2

MOEAMCD-PMF

S, 31 0.8 5.6 12 0.8 6.5 9.4 11 125
Ave. 2000 1129 8200 741 890 6527 18041 16862 29163
MOEAMCD [11] - g4"  “535 1.1 58 11 0.9 75 92 9.2 18.1
CSOPME Ave 3144 1225 8902 1143 1422 6721 19564 18351 30135
Sid. 4l 0.8 10.9 1.4 27 72 102 96 202
50 B3] Ave. 16059 7672 48000 13489 13633 38328 44253 67373 69382
S 96 3.8 145 42 8.5 162 218 173 186

MOEAMCD-PMF provided alpha mattes with lower average in computing resources and provide alpha mattes with dif-
MSE than MOEAMCD on 15 out of 27 images in case one. ferent amounts of computing resources. This success can be
These results indicate that the PMF can adapt to the changes attributed to the multi-scale pixel pair search with heuristic
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TABLE 4. Average MSE on 27 images from the benchmark dataset [28] obtained by PMF-based approaches (MOEAMCD-PMF and CSO-PMF) and a

state-of-the-art evolutionary-optimization-based image matting approaches (MOEAMCD) [10] using trimap with small unknown regions. The maximum
number of PPE/UP was set to 50 and 5 in case one and case two, respectively. The bold numbers represent the best MSE in the comparison.

Case  Approach GT01  GTO02 GT03  GT04 GT05 GT06 GTO07 GTO08 GT09 GT10 GTI1 GT12 GT13 GT14
MOEAMCD [11] 66.4 185.0 209.1 1080.6 177.6 2912 145.6 790.7 185.7  322.2  687.7 102.7 986.2 396.1

2 MOEAMCD-PMF  78.8 857.3 199.3  775.0 1511 2457 1593 925.9 2349  367.8 530.5 64.4 11441  197.0
CSO-PMF 102.6  1075.1 2363 861.2 198.2 3044 1920 1046.8 2369 4172 6029 75.3 1288.0  268.9
MOEAMCD [11] N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 MOEAMCD-PMF 1223 12342 2658 993.9 3423 4116 3193 1199.2 2719 5599 726.1 83.7 14194 3423
CSO-PMF 1149 13283 279.6 10252 3414 5198 316.5 1217.4  273.1 5783  756.6 80.6 1611.9  368.4

Case  Approach GT15 GTI16 GT17 GTI18 GT19 GT20 GT21 GT22 GT23 GT24 GT25 GT26 GT27
MOEAMCD [11] 4354 2030.1 5319 319.0 263.2 1474  1231.8 2222 2441 7835 1879.2 23369 2378.0

2 MOEAMCD-PMF  402.5 39049 189.0 2784 304.6 810 11245 1535 147.5 6409 2563.8 29473 26752
CSO-PMF 5603 45627 222.0 4200 3551 888 1304.1  178.1 176.0  765.1  2613.7 3306.1  3071.9
MOEAMCD [11] N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3 MOEAMCD-PMF  748.1  3226.1 328.7 492.1 463.5 1540 1609.0  222.6 250.3 943.2 28455 37855 31127
CSO-PMF 703.2  4207.6 303.6 5524 4428 1223 15319 2278 268.0 959.1 2790.5 3828.0 3283.9

FIGURE 4. Visual comparison of alpha mattes obtained in case two by MOEAMCD [10], MOEAMCD-PMF, CSO-PMF. (a) Input image in which the
red line and the blue line denote the boundary of known foreground regions and background regions respectively. (b) Zoomed-in region.
(c) Ground-truth alpha matte. (d) Alpha matte obtained by MOEAMCD [10]. (e) Alpha matte obtained by MOEAMCD-PMF. (f) Alpha matte
obtained by CSO-PMF. Arrows indicate regions of low-quality mattes.

information propagation, which prioritizes small-scale PPO
problems and transforms a solution of a small-scale PPO
problem to the corresponding solution of the large-scale
PPO problem when computing resources are insufficient.
When the computing resources are inadequate for optimizing
all PPO problems of different scales, heuristic information
propagation generates alpha mattes by transforming the best
known solution for a small-scale PPO problem to the solu-
tion for the large-scale PPO problem. Heuristic information
obtained from the small-scale problem is effectively used
during the propagation, which ensures the quality of the
generated solution. Although MOEAMCD-PMF still outper-
forms MOEAMCD on 15 out of 27 images, its performance
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advantage of MOEAMCD-PMF over MOEAMCD declines
when restrictions are imposed on computing resources.
Similar findings were obtained in the comparison between
MOEAMCD-PMF and CSO-PMF in case three, as shown
in Table 4. These results can be explained by the imbalance
of computing resource between the pixel pair search and
the heuristic information propagation. When the available
computing resources are limited, the neighborhood grouping
strategy of MOEAMCD may take up most of the resources,
making pixel pair search challenging. Although PMF pro-
vides heuristic information across the multi-scale pixel pair
search, MOEAMCD-PMF exacerbates the imbalance reduc-
ing the quality of identified pixel pairs, because additional
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FIGURE 5. Visual comparison of alpha mattes obtained by MOEAMCD-PMF, MOEAMCD [10], KL divergence matting [22] PDMS matting [15] and CCDE
matting [23]. (a) Input image in which the red line and the blue line denote the boundary of known foreground regions and background regions
respectively. (b) Zoomed-in region. (c) Ground-truth alpha matte. (d) Alpha matte obtained by MOEAMCD-PMF. (e) Alpha matte obtained by
MOEAMCD [10]. (f) Alpha matte obtained by KL-divergence matting [22]. (g) Alpha matte obtained by PDMS matting [15]. (h) Alpha matte obtained by

CCDE matting [23]. Arrows indicate regions of low-quality mattes.

computing resources are required in PMF resulting that fewer
computing resources can be allocated to pixel pair search.
CSO-PMF does not involve neighborhood grouping strat-
egy, as a result, more computing resources are allocated to
pixel pair search redressing the computing resource imbal-
ance. Therefore, CSO-PMF outperforms MOEAMCD-PMF
in 10 out of 27 cases in case three.

Fig. 4 shows a visual comparison of alpha mattes obtained
by MOEAMCD [10], MOEAMCD-PMF and CSO-PMF in
case two. Both MOEAMCD-PMF and CSO-PMF provide
alpha mattes with sharp boundaries and less noise in case two.
The results confirms that PMF can adapt to the change of
available computing resources, and PMF-based approaches
provide acceptable alpha mattes even when the available
computing resources are scarce. However, the alpha mat-
tes obtained by PMF-based approaches with few computing
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resources degrade when the local smoothness assumption is
not satisfied (e.g. hole), as shown in the last row of Fig. 4.

D. VISUAL EVALUATION

The third experiment was conducted to provide a visual
comparison of alpha mattes among the PMF-based
approach and other state-of-the-art PPO-based approaches.
MOEAMCD-PMF, two state-of-the-art sampling-based
image matting approaches (pixel-level discrete multiobjec-
tive sampling (PDMS) matting [15] and KL-Divergence
matting [22]) and two recently proposed evolutionary-
optimization-based image matting approaches, including
MOEAMCD [10] and cooperative coevolution differential
evolution matting (CCDE) [23], were involved in this exper-
iment. The maximum number of PPE/UP for the involved
evolutionary algorithms was set to 5000 in this experiment,
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considering thousands PPE/UP were performed in the
involved sampling-based image matting approaches [15].

As shown in Fig. 5, the evolutionary approaches
based on local smoothness prior (MOEAMCD-PMF and
MOEAMCD) provide high-quality alpha mattes, while
the evolutionary approaches without local smoothness
prior (CCDE) do not. This finding indicates that the
local smoothness prior plays an important role in pixel
pair optimization. Moreover, the alpha matte obtained by
MOEAMCD-PMF is visually superior to that yielded by
MOEAMCD, which confirms that PMF improves the search
capability of evolutionary-optimization-based approaches
and provides a feasible multi-scale evolutionary pixel pair
optimization framework to efficiently solve PPO prob-
lem. MOEAMCD-PMF also outperforms the state-of-the-
art sampling-based approaches as the resulting alpha mattes
provide fine detail and generate less noise.

IV. CONCLUSION

This paper presents a multi-scale evolutionary pixel pair
optimization framework (pyramid matting framework) for
image matting. It provides a feasible way of adapting to
the change of available computing resources for the image
matting approaches based on evolutionary optimization. PMF
first transforms the large-scale PPO problem to multiple PPO
problems at different scales by constructing image pyramid
for the input image and trimap. The pixel pair search is
subsequently applied level by level, from the top to the bottom
of the image matting pyramid. PMF propagates the heuristic
information of pixel pairs found in the PPO problem at a
small scale to that at a higher scale. Each optimized pixel
pair in a small-scale image is propagated to multiple pixel
pairs regarding the unknown pixels within a local region of
a larger-scale image. A reasonable solution of the large-scale
PPO problem can be generated with the heuristic information
propagation according to the PPO problem solution at small
scales. We have shown that PMF can adapt to the change
of available computing resources and have demonstrated
that evolutionary-optimization-based approaches with PMF
not only provide high-quality alpha mattes when computing
resources are sufficient but also provide acceptable alpha
mattes even under computing resource limitations. How-
ever, PMF-based approaches cannot provide high-quality
alpha mattes when unsmooth regions are involved and com-
puting resources are scarce. Further work may include
adaptive computing resource allocation between the pixel
pair search and the heuristic information propagation and
scene-aware pixel pair optimization strategy for unsmooth
regions.
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