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ABSTRACT Although discrete-event simulation has been widely used in various engineering fields, its
efficiency remains an issue. Ranking and selection (R&S) procedures can solve this efficiency problem
by allocating a limited simulation budget intelligently. While the existing R&S procedures mostly aim to
find only the best simulation input design, practitioners sometimes require the worst design as well to
analyze systems requiring high reliability, such as military systems, municipal waste management, etc.
Motivated by these practical needs, we propose a simulation budget allocation procedure for selecting both
extreme designs simultaneously in the presence of large stochastic noise. To maximize the accuracy of
the selections under a limited budget, the proposed procedure sequentially allocates a small budget and
updates the simulation results such that they can be used as significant evidence for the correct selections.
Our experimental results on benchmark and practical problems demonstrate improved efficiency compared
to previous works. It is expected that the proposed procedure will be effectively utilized in the fields of
the fourth industrial revolution, such as digital twins that demand quickly finding both extreme designs to
maintain synchronization with the corresponding real systems.

INDEX TERMS Discrete-event simulation, stochastic system, ranking and selection, extreme designs
selection, simulation-based optimization.

I. INTRODUCTION
Discrete-event simulation is widely used to analyze mod-
ern industrial complex systems, such as manufacturing [1],
military [2], smart grid [3], telecommunications [4], and
transportation [5]. The most significant advantage of the sim-
ulation is that, with just a few assumptions, it can accurately
analyze complex systems that cannot be described using
closed-form analytic models [6]. However, the efficiency of
discrete-event simulation is still a concern. Typical simulation
models have random variables or processes to represent the
uncertainty of the real world, resulting in stochastic noise
in the simulation output. Thus, the expected value of the
output for a simulation input design (e.g., a particular con-
figuration of decision variables) can only be estimated as
the average of output samples obtained from independently
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repeated simulations (i.e., simulation replications). As the
noise increases, a greater number of replications are required
per design to obtain an accurate estimate, and the total com-
putational costsmay be prohibitively expensive as the number
of inputs increases. Moreover, with the higher complexity of
recent industrial systems, the increasing cost per simulation
run intensifies the efficiency problem. Consequently, how to
allocate a simulation budget (i.e., a limited number of simu-
lation replications) efficiently to find the desired input design
has drawn considerable attention in the field of simulation [7].

If the objective is to select the best simulation input
designs from a finite set of alternatives, ranking and selection
(R&S), a well-established branch of statistics, can be an effi-
cient solution [8]–[10]. The best design here is to minimize
(or maximize in some cases) the expected value of the
simulation output. Based on the ordinal optimization,
R&S intelligently allocates a limited number of simulation
replications to correctly find the best design depending on
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the statistical comparisons and inferences for the designs’
simulation results. Thus far, many efficient R&S procedures
have been developed. Based on the sequential allocation
procedure, these procedures iterate the following two steps
to find the best design correctly: 1) allocate a few replica-
tions depending on the statistical inference for the designs’
simulation results, then 2) update the results via additional
simulations. R&S procedures’ distinctive feature lies in the
allocation step; that is, how to allocate those few further repli-
cations to maximize the statistical evidence for the correct
selection of the best design [11].

The two-stage indifference-zone (IZ) procedure [12]
focuses on frequentist evidence to achieve a predefined
lower bound guarantee of the probability of correct selection
P{CS}. It allocates further replications to the IZ designs that
have simulation results similar to the current best design.
Unlike the IZ procedure, the optimal simulation budget allo-
cation (OCBA) procedure [13] applies Bayesian posterior
distribution to describe the evidence of the correct selection.
The OCBA procedure allocates further replications using
the derived optimal allocation rules to asymptotically max-
imize an approximated lower bound of P{CS}. Although it
is typically more efficient than the IZ procedure [11], due to
the nature of the allocation rules that use the sample mean
and variance values, the OCBA procedure may be inefficient
in the presence of large stochastic noise, where the sample
mean has an inaccurate value [14]. Recently, the uncertainty
evaluation (UE) procedure has been proposed to efficiently
solve practical problems that have large noise [15]. To max-
imize P{CS}, the UE procedure allocates further replica-
tions heuristically depending on the uncertainty defined with
p-values in the statistical hypothesis test. Compared to the
OCBA procedure, it has high robustness against noise by
considering the precision of the sample mean additionally.

Most previous R&S procedures aim to find only the best
input design or subset. However, practitioners in engineer-
ing sometimes require the worst design as well as the best
design. In other words, both extreme designs are desired.
For example, when analyzing a battleship’s decoy system
for torpedo avoidance, various scenarios that the battleship
may encounter should be considered. The survival rate of
the battleship for each scenario design can be estimated
over many simulation replications of the anti-torpedo combat
simulator [16]. Given k scenario designs, practitioners are
interested in not only the best design, but also theworst design
that minimizes the survival rate: even if the survival rate for
the best scenario is very high, the decoy system should be
reconsidered if its worst-case scenario occurs frequently in
practice. In another example, when investigating the layout
of a municipal sewage treatment plant in a city [17], practi-
tioners demanded to find the best and worst layout designs
simultaneously to make reliable and suitable layout plans.

In addition to these examples, selecting both extreme
designs simultaneously is useful for multiple-criteria
decision-making (MCDM) problems, which are commonly
encountered in practice. This is because the selected extreme

designs for each criterion can be used to construct the ideal
and nadir points, providing insight to decision-makers. These
designs are also of worth in best-worst scaling, a famous
discrete-choice model that requires picking the highest- and
lowest-utility items [18]. Several population-based optimiza-
tion algorithms, such as the ant colony algorithm, genetic
algorithm, and particle swarm optimization, require finding
the best and worst designs among the population to increase
its quality [19], [20]. For example, one of the selection
schemes in a genetic algorithm is to push the elite design
directly into the next population and eliminate the worst
design. In summary, the philosophy of finding both extreme
designs has tremendous potential.

However, little research exists on selecting the best and
worst designs. Zhang et al. [21] proposed the OCBAbw
procedure based on the OCBA procedure, and Xiao et al. [22]
developed the OCBAmn procedure for selecting the best and
worst subsets by extending the OCBAbw procedure. In addi-
tion, Zhang et al. [23] generalized the problem of OCBAbw
and suggested the OCBAsr procedure to select n ranked
subsets. As mentioned previously, these OCBA-based proce-
dures may be inefficient when large stochastic noise exists,
such as simulation models for modern industrial systems.
Meanwhile, without loss of generality, finding the worst
design is mathematically the same as finding the best one;
thus, we can select both extreme designs at the same time by
using the existing R&S procedures (such as the UE proce-
dure) twice. For example, dividing a given simulation budget
in half, half can be used to find the best design and the
other half to find the worst design. This method can be
effective in specific cases where the budgetary need to find
both designs is similar; otherwise, it is inefficient (see the
experimental results of the hOCBA and hUE procedures in
Table 2). In addition, because prior information for the sim-
ulation output of given designs is typically unknown before
conducting the simulation, it can be difficult to decide how
best to divide a budget.

In this paper, we propose an R&S procedure for selecting
both extreme designs simultaneously. The objective of the
proposed procedure is to maximize P{CS} for both extremes
under a constraint of simulation budget. To efficiently resolve
practical problems that have typically large stochastic noise,
we developed a procedure utilizing the UE approach with
high robustness against noise. We characterize the uncer-
tainty of each design based on statistical hypothesis test and
p-value, and present a sequential procedure that gradually
allocates a few further replications according to the evaluated
uncertainty. Various experimental results on both numerical
benchmark and practical problems demonstrate the necessity
of the proposed procedure compared to previous methods,
such as the OCBAbw procedure.

The remainder of this paper is organized as follows:
Section II defines the problem, and Section III proposes the
simulation budget allocation procedure. Section IV exhibits
the experimental results. Finally, the conclusion is given in
Section V.
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II. PROBLEM DEFINITION
This paper uses the following basic notations:

T : total number of simulation replications (i.e., the
given simulation budget);

k : number of simulation input designs;
xi : simulation input design, where subscript i

represents the design index (i.e., i ∈ {1, . . . , k});
2 : set of input designs, 2 = {x1, . . . , xk};
Yij : simulation output sample of xi in the jth replication,

Yij ∼ N
(
µi, σ

2
i

)
;

µi : expected value of Yij (i.e., the mean of Yij),
µi = E

[
Yij
]
;

σ 2
i : variance of Yij, σ 2

i = Var
[
Yij
]
;

Ni : number of collected output samples of xi (i.e.,
number of actually allocated replications at xi);

µ̄i : sample average of Ni output samples of xi,
µ̄i = 1

/
Ni ·

∑Ni
j=1 Yij ∼ N

(
µi, σ

2
i

/
Ni
)
;

s2i : sample variance of Ni output samples of xi,

s2i =
∑Ni

j=1

(
Yij − µ̄i

)2/
(Ni − 1).

Based on common assumptions used in the R&S literature,
a simulation output sample is supposed to follow independent
and identically distributed normal distribution with unknown
µi and σ 2

i for every replication of the same xi. That is,
the simulation model has a Gaussian noise with zero mean
in its output. This normality assumption can be reasonable
in simulation fields as Yij is typically obtained as an average
value or batch means, so the central limit theorem holds [8].
In addition, we assume that no prior knowledge of µi and σ 2

i
for each xi is given before conducting simulations.
Suppose there is only one extreme design on each side, and

denote that the design with the smallest µi is the best and
the inverse (i.e., greatest µi) is the worst. Then, based on the
obtained simulation results of the designs, the selected best
design xb and worst design xw are defined as follows:

xb = argmin
xi∈2

µ̄i and xw = argmax
xi∈2

µ̄i, (1)

For the selections of xb and xw to be correct, the unknown µb
should be smaller than the other designs’µi, and the unknown
µw should be larger than the other designs’ µi. Thus, similar
to [13], P{CS} for both selected extreme designs can be
defined as follows:

P {CS} = P {µb < ∀µi < µw, i ∈ {1, . . . , k} , i 6= b,w} .

(2)

Simply, P{CS} converges to 1 as T goes to infinity; however,
a simulation budget is typically a constraint in practical situ-
ations. To improve the efficiency of simulation, our objective
is to maximize P{CS} under a limited number of simulation
replications T by allocating T intelligently to each design,
which is defined as follows:

argmax
N1,...,Nk

P {CS} such that
∑k

i=1
Ni = T and ∀Ni ≥ 0. (3)

Here, the constraint
∑k

i=1 Ni = T implicitly supposes that the
simulation cost of each replication across designs is similar.
Otherwise, this can be roughly considered in (3) by reflecting
the proportion of the increasing simulation cost for a replica-
tion of design in its variance [8].

III. PROPOSED PROCEDURE
A. UNCERTAINTY EVALUATION
For the selected best design xb, the following k − 1 relation-
ships between µb and µi depending on (2) should be verified
for the correct selection of xb:

(µb < µ1) ∧ · · · ∧ (µb < µi) ∧ · · · ∧ (µb < µw)

where i ∈ {1, . . . , k} and i 6= b. (4)

On the other hand, for the selected worst design xw, the
following k − 1 relationships between µw and µi depending
on (2) should be verified for the correct selection of xw:

(µ1 < µw) ∧ · · · ∧ (µi < µw) ∧ · · · ∧ (µb < µw)

where i ∈ {1, . . . , k} and i 6= w. (5)

For the remaining k − 2 designs, which are not selected as
xb and xw, the following two relationships depending on (2)
should be verified for the correct selection of each xi:

(µb < µi) ∧ (µi < µw) . (6)

As in the other R&S procedures, our proposed procedure
also allocates a few further replications based on the current
simulation results, such as µ̄i and s2i , to maximize P{CS}.
If the relationships for the correct selection of design can be
verified with the current simulation results, it is no longer
necessary to collect simulation output samples for that design.
Otherwise, if we cannot determine whether the selection for
design is correct based on the current results, it is necessary
to allocate further replications and collect more samples. The
concept of uncertainty in the UE approach suggests an alloca-
tion criterion based on a statistical hypothesis test and p-value
to accomplish this allocation strategy [15]. Utilizing the UE
approach, our proposed procedure defines the uncertainty of
each design and allocates further replications sequentially
depending on the uncertainty to maximize P{CS}.

The statistical hypothesis test is a frequentist method to
verify the single relationship between µi and µj based on
simulation results. For example, when verifying µi < µj,
this relationship is set to the alternative hypothesis HA, and
the opposite relationship is set to the null hypothesis H0,
as follows:

H0 : µi ≥ µj, HA : µi < µj. (7)

Then, the p-value of the test pi,j can be calculated as follows:

pi,j = Fv
[(
µ̄i − µ̄j

)/
si,j
]

where

si,j =

√
s2i
/
Ni + s2j

/
Nj and

v =
⌊
s4i,j
/[

s4i
/(

N 3
i − N

2
i

)
+s4j

/(
N 3
j − N

2
j

)]⌋
. (8)
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The function Fv is the cumulative distribution function of
the t-distribution with v degrees of freedom. (If σ 2

i and σ 2
j

are known, then the normal distribution can be used instead
of the t-distribution.) Mathematically, pi,j is the probability
of obtaining the current simulation results or more extreme
results (which are less likely to be obtained) when assuming
that H0 is true. However, in the framework of the hypothesis
test, it can be interpreted as the degree to which the cur-
rent results can be considered significant evidence to verify
µi < µj. The lower the value of pi,j, the less likely it is
that the current results will be obtained under the assumption
that H0 is true; however, the current results have been actu-
ally observed, so they can be significant evidence to verify
HA: µi < µj. On the other hand, as the value of pi,j increases,
obtaining the current results becomes more probable under
this assumption, so the obtained results cannot be significant
evidence. That is, it is uncertain thatHA will be verified based
on the current results (but, this does not mean that HA is
false). Although the possible range of pi,j is between 0 and 1,
the meaningful range in the hypothesis test framework is
between 0 and 0.5. This is because 1− pi,j is the same as pj,i,
which is the p-value for verifying the opposite of (7). Thus,
pi,j = pj,i = 0.5 indicates the most uncertain case in which it
is impossible to determine whetherµi < µj orµi > µj based
on the current simulation results [24].

If there is only one relationship (e.g., µi < µj) to be
verified for the correct selection of design xi, then pi,j can be
the allocation criterion for the mentioned allocation strategy.
That is, the higher value of pi,j, themore insufficient the simu-
lation results of xi, somore output samples of xi should be col-
lected by allocating further replications. However, as shown
in (4)-(6), several relationships should be verified simultane-
ously for the correct selection of each design in this problem.
In this case, the uncertainty of each design defined as the com-
bination of p-values for verifying each relationship can be the
allocation criterion. For the selected best design xb, each of
the k−1 relationships in (4) can be verified by the hypothesis
tests, and the p-value from each test is denoted by pb,i, where
i 6= b. Each value of pb,i can be used to assess the degree to
which the current simulation results of xb can be significant
evidence for each relationship in (4). If the results of xb are not
evidence for verifying even one relationship in (4), the results
cannot be evidence for the correct selection of xb, and the
selection becomes uncertain; thus, the uncertainty of xb, δb
can be defined as themaximum value among pb,is, as follows:

δb = max
[
pb,1, . . . , pb,i, . . . , pb,w

]
where i 6= b. (9)

As the value of δb decreases to zero, the current simulation
results of xb can be significant evidence for the selection of xb;
thus, it is no longer necessary to allocate further replications
to xb. However, as the value of δb increases to 0.5, at least
one relationship in (4) is uncertain. Accordingly, we cannot
determine whether the selection of xb is correct based on the
current results of xb. Therefore, it is necessary to allocate
further replications to xb and update the insufficient results.

Similarly, for the selected worst design xw, each of the
k − 1 relationships in (5) can be verified by the hypothesis
tests, and the p-value from each test is denoted by pi,w, where
i 6= w. In common with xb, the current simulation results of
xw should be significant evidence for verifying every relation-
ship in (5) for the correct selection of xw, so the uncertainty
of xw, δw can be defined as the maximum value among pi,ws,
as follows:

δw = max
[
p1,w, . . . , pi,w, . . . , pb,w

]
where i 6= w. (10)

For each xi (i 6= b and i 6= w) of the remaining k − 2
designs that are not selected as xb or xw, the two relationships
in (6) can be verified by hypothesis tests. p-values from both
tests are denoted as pb,i and pi,w. The current simulation
results of xi should be significant evidence verifying the two
relationships in (6) for the correct selection of xi. Therefore,
the uncertainty of xi, δi can be defined as the maximum value
between pb,i and pi,w, as follows:

δi = max
[
pb,i, pi,w

]
where i 6= b and i 6= w. (11)

Strictly speaking, the uncertainty of each design
in (9)-(11) includes the significance degree of not only this
design’s simulation results, but also another design’s results.
This is because the p-value in (8) is calculated using the
two designs’ results. However, if the estimated uncertainty
is not very large or has specific extreme cases, it does not
have a significant impact on allocation [25]. In addition,
our objective is to develop a simple and practical means
for allocating simulation budget to significantly improve the
efficiency of simulation, as demonstrated in the experimental
results later; thus, we neglect this problem in the proposed
procedure.

B. ALLOCATION POLICY
To maximize P{CS}, the simulation results of all designs
should be significant evidence verifying the relationships for
the correct selection of each design shown in (4)-(6). To this
end, more replications should be allocated to the designs of
which the uncertainty has a relatively high value depending
on the features of uncertainty. However, due to the type I error
included in the uncertainty, a low uncertainty value also needs
to be considered in the allocation. For example, suppose x1 is
the actual best design we must find, but unfortunately, after
collecting some samples, the current simulation results of x1
are very poor due to large stochastic noise. That is, x1 is
not selected as xb, and µ̄1 is far from both µ̄b and µ̄w (i.e.,
µ̄b � µ̄1 � µ̄w), so the uncertainty of x1, δ1 has low
value according to (11). Although x1 requires updating of its
poor simulation results more than any other design, it cannot
be allocated further replications due to its lower uncertainty.
This type I error results in a reduction in P{CS}. Since the
simulation results in type I error are typically very biased,
just one or two additional samples are sufficient to check
and eliminate the error. In other words, it is necessary to
allocate a few additional replications to the designs of which
the uncertainty has a relatively low value to increase P{CS}.
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FIGURE 1. Graphs (a)-(d) illustrates the estimated value of P{CS} versus T for the benchmark problems: (a) EV(L), (b) IV(L), (c) flat-case(L), and
(d) steep-case(L).

Accordingly, a heuristic allocation policy to accomplish the
mentioned allocation strategy based on uncertainty can be
defined as follows [15]:

ai
/
aj =

(
δi
/
δj
)C where i, j ∈ {1, . . . , k} and 1 =

∑k

i=1
ai.

(12)

Given the number of further assignable replications 1, ai
is the number of further allocated replications at xi depending
on its uncertainty δi. In the policy of (12), the coefficient C is
a parameter that can adjust allocation depending on uncer-
tainty, where the range of C is between zero and infinity.
As the value of C increases, the difference of uncertainty
is emphasized, so 1 is concentrated on a few designs that
have relatively higher uncertainty. On the other hand, as the
value of C decreases to zero, the difference of uncertainty
is thinned, so the designs with relatively low uncertainty
are more likely to be allocated a few further replications.
The optimal value of C that maximizes P{CS} is problem-
specific. A high value can be effective in small-noise envi-
ronments where a type I error is less likely to occur due to the
relatively precise simulation results. However, in large noise
environments where a type I error is more likely to occur due
to inaccurate simulation results, a low value can be better.

In this paper, the default value of C is recommended as
one. Although this value is not always optimal, it exhibits
sufficiently good efficiency compared to the other R&S pro-
cedures, as shown in Table 2 and Fig. 1. In addition, if we
consider selecting just a single extreme design such as the best
one, the defined uncertainty in (9) and (11) becomes identical
to that of the UE procedure finding the single best design.
The UE procedure utilizes the allocation policy of (12) with
C = 1 derived from the simulation-based optimizations;
thus, this consistency gives a basis for this recommendation.
In addition, the consistency can be a potential advantage of
the proposed procedure over the OCBAbw procedure, which
becomes identical to the OCBA procedure when considering
a single extreme design. This is because the UE procedure
has been proven empirically superior to the OCBA procedure
in the presence of large noise [15].

C. SEQUENTIAL PROCEDURE
Algorithm 1 represents the proposed procedure for select-
ing both extreme designs simultaneously using the defined
uncertainty of (9)-(11) and the allocation policy of (12).
Prior to the iterative allocation of 1, the proposed procedure
collects n0 output samples for each design to obtain minimal
simulation results to evaluate the uncertainty. Then, until the
given simulation budget T is exhausted, the procedure iterates
1) evaluating the uncertainty of each design, 2) allocating a
few further replications of 1 depending on the policy, and
3) updating the simulation results. As the allocation repeats,
the simulation results for each design are selectively and grad-
ually updated to become significant evidence for their correct
selections.Meanwhile, the first evaluations of δb and δw in the
seventh line of Algorithm 1 decrease the computational cost

Algorithm 1 Select Both Extreme Designs Simultaneously
Control parameters: T (≥ kn0) , n0,1, andC(default value
is 1)
Procedure:
1: simulate n0 times for each xi, i ∈ {1, . . . ,k}
2: updateµ̄i, si, and Ni for ∀i ∈ {1, . . . ,k}
3: select xb and xw with (2)
4: while

∑k
i=1 Ni < T do

5: set 1← min
(
T −

∑k
i=1 Ni,1

)
6: evaluate δb and δw for xb and xw with (9) and (10)
7: evaluate δi for ∀i ∈ {1, . . . ,k}, i 6=b, and i 6= w with (11)
8: calculate ai for ∀i ∈ {1, . . . ,k} with (12)
9a: simulate round(ai) times for each xi, i ∈ {1, . . . ,k}
10: updateµ̄i, si, and Ni for ∀i ∈ {1, . . . ,k}
11: select xb and xw with (2)
12: end while
13: return xb and xw

aDue to the robustness of the sequential procedure, any reasonable

method for converting a real number ai to an integer has not a significant

impact on P{CS}. In Algorithm 1, we used the round function and scattered

the rounding errors to several designs that have relatively larger ai.
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of the proposed procedure. This is because the uncertainty of
the remaining k−2 designs in the eighth line can be evaluated
at no extra cost using pb,i and pi,w calculated in the previous
line.

The sequential allocation procedure is controlled by two
parameters: n0 (the initial number of replications) and1 (the
number of further replications to be allocated per iteration).
An optimal setting of n0 and1 is problem-specific. However,
a recommended choice of n0 is between 5 and 20 [26].
The recommended 1 value is between 0.5k and 0.05T [15]
(see [15] for a detailed analysis of the UE approach according
to n0 and 1). Meanwhile, a larger setting of n0 and 1 than
recommended might be effective in the presence of large
stochastic noise. Increasing n0 can decrease the possibility
of type I errors by improving the initial simulation results.
Increasing 1 raises the likelihood that one or two further
replications will be allocated to designs with relatively low
uncertainty, thereby checking and reducing the errors.

IV. EXPERIMENTS
In this section, we describe the experimental results on both
numerical benchmark and practical problems that demon-
strate the necessity of the proposed procedure.

A. BENCHMARK PROBLEMS
Table 1 presents the benchmark problems, which have
been used to evaluate various R&S procedures, including
the OCBAbw procedure [8], [21]. All five problems have
10 designs with increasing µi according to the design index i,
of which x1 and x10 are both extreme designs that we have to
select. The designs in the equal variance (EV) problem have
the same variance, whereas in the increasing variance (IV)
and decreasing variance (DV) they have different variances
that increase or decrease linearly according to i. While µi
in these three problems increases linearly, µi in the flat-
and steep-case problems increases concavely and convexly,
respectively. Each problem has a large noise version denoted
by L, which has relatively larger variance than its original
version. Thus, the experimental results for the L version may
well indicate the effectiveness of the proposed procedure.

TABLE 1. Five numerical benchmark problems.

For these five benchmarks, we compared the efficiency
of the proposed procedure with other procedures: OCBAbw,
hOCBA, hUE, PTV, and the equal allocation procedures. The
hOCBA and hUE procedures are variants of the OCBA and
UE procedures that find only the best design. They use the
OCBA or UE procedures twice to find both extreme designs.

That is, in each iteration of the sequential procedure, half of
the given 1 is used to find the best design, and the other half
is used to find the worst one. Meanwhile, since the OCBAmn
procedure is reduced to the OCBAbw procedure when
m = n = 1, it was not considered in this experiment. For a fair
comparison, n0 and 1 in every procedure were set to 10 and
20 according to the typical settings of the five problems [8].
We estimated P{CS} for each procedure with 10,000 inde-
pendent repeated experiments while varying T . The several
results for the L version of the problems are shown in Fig. 1.
In addition, for numerical comparisons, the simulation bud-
get required to find both extreme designs correctly (i.e.,
to achieve P {CS} of 0.99) is measured in Table 2. Our
experimental results indicate the superior efficiency of the
proposed procedure over other procedures.

TABLE 2. Simulation budget T required to achieve P {CS} of 0.99 for
benchmark problems.

The results of the hUE and hOCBA procedures represent
why a procedure for selecting both extreme designs simulta-
neously is necessary. Except for the EV problem, the simu-
lation budget for selecting the best and worst designs is not
the same due to the inconsistent µi spacing (the flat- and
steep-case problems) or the different variance (the IV and DV
problems), which is a common case in practice. As shown
in Table 2, compared to the results of the EV problem,
the proposed procedure is more efficient than both procedures
in these practical cases. For example, in the EV problem,
the hUE and hOCBA procedures consumed 1.23 times and
1.30 times more replications than the proposed procedure,
respectively; however, in the IV problem, these numbers
increased significantly to 1.86 and 1.87, respectively.

In addition, the results of the OCBAbw procedure, espe-
cially in the L version of the problems, emphasize the
high robustness against noise of the proposed procedure.
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For example, in the flat case problem, while the OCBAbw
procedure consumed 1.09 times more replications than the
proposed procedure, the number increased to 1.17 in the ‘(L)’
version, as shown in Table 2. Similar trends were observed in
the other problems. Compared to the OCBAbw procedure,
the higher robustness of the proposed procedure is attributed
to considering additional information when allocating further
replications. Although both procedures take into account the
sample mean µ̄i and the sample variance s2i , the proposed
procedure considers the number of collected samples Ni as
well, as shown in (8). However, the OCBAbw procedure
uses only µ̄i and s2i as specified in its main allocation rule
below [21]:

N ∗i
N ∗j
=

s2i
/
min

(
(µ̄b − µ̄i)

2 , (µ̄i − µ̄w)
2)

s2j
/
min

((
µ̄b − µ̄j

)2
,
(
µ̄j − µ̄w

)2) . (13)

Here, N ∗i is the optimal number of replications that should
be assigned to xi to maximize a lower bound of P{CS}
based on the current simulation results. That is, N ∗i is dif-
ferent from Ni, the number of actually allocated replications
so far, and the further replications actually allocated to xi
is defined as max

(
0,N ∗i − Ni

)
in the OCBAbw procedure.

Simply put, while the proposed procedure takes into account
the precision of the sample mean si

/√
N i when allocat-

ing 1, the OCBAbw procedure cannot consider it (s2i itself
is not enough to indicate the precision of µ̄i). Accordingly,
the OCBAbw procedure is likely to make an inefficient allo-
cation due to an inaccurate µ̄i value, which often occurs in
the presence of large stochastic noise.

For example, in the EV problem, suppose the observed µ̄1
of the true best design x1 is unfortunately high (i.e., close
to 5). Then, the OCBAbw procedure cannot allocate further
replications to x1 due to the inaccurate value of µ̄1. Since µ̄1
cannot be updated, the situation in which no further replica-
tions are allocated to x1 continues. If T is infinite, x1 will
be allocated further replications depending on changes in the
simulation results of the other designs and will be selected as
xb eventually. However, numerous replications are wasted on
other marginal designs in the meantime. On the other hand,
our proposed procedure, which considers the precision of µ̄1,
can allocate further replications quickly to x1 because the
precision of µ̄1 that is not updated becomes relatively lower.
Thereby, it can select x1 as xb efficiently. Meanwhile, if the
noise level is small, considering Ni may reduce efficiency.
However, this reduction is insignificant since the required T
for the correct selection is small in this case. In addition, most
complex practical problems have large stochastic noise. Thus,
the proposed procedure can be effective, as shown in the next
subsection.

B. PRACTICAL PROBLEM: MUNICIPAL WASTE
MANAGEMENT IN A CITY
As urbanization intensifies in modern society, municipal
waste management in dense residential environments has
become a social problem. As it is directly related to the

satisfaction and hygiene of residents, many complaints are
generated in this regard, which wastes administrative power.
The government allocates garbage trucks depending on the
number of residents and periodically collects municipal
waste; however, various variables, such as regional character-
istics, residential patterns, local developments, etc., make it
difficult tomanage effectively. A studio apartment complex in
South Korea is a representative place where many complaints
against municipal waste management arise because inexpen-
sive rent often changes the residential patterns. To reduce
complaints, discrete-event simulations can be effectively used
for preliminary analysis of a given management policy [27].
Given 30 scenario designs that reflect the possible residential
patterns, practitioners are interested in not only the best
design, but also the worst design under which the number of
complaints is maximized. That is because even if the number
of complaints in the best-case scenario is very small, the eval-
uation of this policy should be reconsidered if its worst-case
scenario frequently occurs. Our proposed procedure can be
effectively applied to such an analysis of municipal waste
management policy based on the simulation.

As shown in Fig. 2, the relatively large σi compared to the
small difference inµi between both extreme designs and their
neighborhood designs acts as a large stochastic noise making
it difficult to find the extreme designs. To demonstrate the
necessity of the proposed procedure for such a practical prob-
lem, other procedures used in the benchmark experiments
were applied together, and Fig. 3 represents the results. While
the proposed procedure required only 5,880 replications to
correctly find the best and worst designs (i.e., to achieve
P{CS} of 0.99), the OCBAbw procedure required 8,760, and
the hUE and hOCBA procedures required 7,890 and 12,450,
respectively. With no R&S procedures applied, 50,700 repli-
cations were required. This simulation model is expensive
per simulation run (i.e., about 1 min.) due to the interactions
between many agents; thus, applying the proposed procedure
can greatly reduce the time needed to analyze the munici-
pal waste management policy by enhancing the simulation’s
efficiency.

FIGURE 2. The precisely estimated value of µi (i.e., the number of
complaints) and σi for 30 given designs using many repeated
simulations [27]. The two dark gray bars represent the results of both
extreme designs (i.e., x16 and x30) that we have to select.
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FIGURE 3. The estimated value of P{CS} versus T for the municipal waste
management problems in Fig. 2. The P{CS} was estimated over
1,000 independent repeated experiments.

Like this practical problem, the proposed procedure is
effective in problems where the simulation model has large
stochastic noise and high evaluation costs. A digital twin,
drawing attention in the era of the fourth industrial revolu-
tion, is an example that meets these conditions. The digital
twin is a simulation model in cyberspace corresponding to
a system in physical space. It is continuously updated to
maintain synchronization with the real system, and the best
and worst control settings should be found quickly based
on the updated model to optimize the system. In this case,
the superior efficiency of the proposed procedure can help
the use of digital twins, especially for systems that demand
high reliability.

V. CONCLUSION
Finding both extreme input designs has tremendous potential
in discrete-event simulation as well as in other areas. In this
paper, we proposed an efficient R&S procedure for selecting
the best and worst designs simultaneously from a finite set of
design alternatives under large stochastic noise. To maximize
P{CS} in the constraint of simulation budget, we described
evidence of correct selection using uncertainty based on the
statistical hypothesis test and p-values. Then, we proposed a
procedure that sequentially allocates a few further simulation
replications depending on the evaluated uncertainty, such that
the simulation results can provide significant evidence for
the correct selection. The proposed procedure is superior to
using basic R&S procedures (e.g., OCBA or UE procedures)
twice because it efficiently distributes the budget to both
extreme designs. Furthermore, since it additionally consid-
ers the number of allocated replications so far in alloca-
tion, it is more efficient than the OCBAbw procedure in the
presence of large stochastic noise. The experimental results
on benchmark problems demonstrate this, and the munici-
pal waste management problem emphasizes the necessity of
the proposed procedure for practical simulation problems.
As mentioned earlier, discrete-event simulation is used in a
variety of engineering fields, and the philosophy of selecting
both extreme designs simultaneously also has tremendous

potential for application. As a future study, we will apply
and customize the proposed procedure for improving the effi-
ciency of learning automata [28], network resource allocation
strategies [29], and digital twins.
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