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ABSTRACT In this paper, to get optimal scheduling of microgrids (MGs) in short-term, info-gap decision-
theory (IGDT) is applied to assess load uncertainty. In order to provide a comprehensive load uncertainty
study, best andworst possible conditions are evaluated using IGDT’s functions of opportunity and robustness,
respectively, in which risk-taker and risk-averse strategies are obtained while deterministic case study is
also carried-out under the risk-neutral strategy. Real-time pricing (RTP) and time-of-use pricing (TOU)
of demand response program (DRP) are applied to peak-load management. For each strategy, three cases
as without DRP, TOU-DRP, and RTP-DRP are investigated. According to the results in the risk-neutral
strategy, by applying TOU-DRP and RTP-DRP, operating cost is reduced about 2.5% and 6.6%, respectively.
In the risk-averse strategy, by considering MG operating cost equal to $6,000, the MG will robust against
load uncertainty up to 18.37%, 21.52%, and 24.82% for without DRP, TOU-DRP, and RTP-DRP cases,
respectively. In the risk-taker strategy, MG operating cost for 28% of load reduction, operating costs will
be equal to $3,698.12, $3,605.21, and $3,338.87 for without DRP, TOU-DRP, and RTP-DRP, respectively,
in comparison with the risk-neutral strategy.

INDEX TERMS Information gap decision theory, load uncertainty, heat and power micro-grid, flexible load
management, robustness and opportunity function.

I. INTRODUCTION
Today, due to depletion of fossil fuels and environmental
issues, power systems experience significant changes [1].
Demand response programs (DRPs) and high penetration of
renewable energy sources are most important experienced
changes [2]. Microgrids (MGs) can be considered as a key
part to supply load in the presence of mentioned changes.
MGs broadly are divided into AC, DC and hybrid MG
according to power frequency [3], [4] which can increase
penetration of renewable generation and provide reliable
and economic power supply [5]. Utilization of MGs faces
different issues because of managing multiple generating
resources and loads [6]. Maintaining the equilibrium between
loads and generation of theMG and power exchange between
the upstream grid and other MGs are the most challenging
issues [7]. As a result, efficient energy management is vital
to utilize multiple benefits of MGs [8].
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A. LITERATURE REVIEW
Based on their operating frequency, MGs can be broadly
categorized into three sub-section as DC, AC and hybrid
MGs. Optimal operation of MGs has addressed by
researchers [9]–[11]. In [12], optimal planning of MGs is
evaluated using a stochastic programming framework pre-
sented for 24-h period. Minimizing the total operation cost
a MG is investigated in [13]. In the presence of electric
vehicles (EVs), internal sources of a typical MG are surveyed
in [14]. MGs operation under high uncertainty of RESs is
evaluated in [15] through developing two-stage model of
stochastic programming method. A generalized formulation
for energy management of an MG which is combined with
Artificial intelligence techniques is proposed in [16]. By tak-
ing cost and emission into account, multi-objective functions
are defined to get optimal dispatch of MG’s generating
units [17], [18]. In order to get optimal solution for the MG’s
economic-dispatch problem (EDP), four different methods
containing particle swarm optimization, direct search method
(DSM), lambda logic and lambda iteration have been used
in [19].
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In order to increase economical and operational efficien-
cies of an MG, CHP resources which generates simultane-
ously power and heat energies, can be integrated into the
power systems [20]. EDP of CHP based MG, through taking
dependency of heat and power, is analyzed in [21], [22]. The
unit-commitment (UC) and EDP of MG’s units examined by
using improved mixed-integer linear-programming (MILP)
approach in [23]. Ref. [24] has studied energy management
of MG to decrease operation cost and reduce emissions while
the use of RESs is increased. The genetic algorithm is applied
to determine optimal discharging and charging of energy
storage unit in an MG in order to effectively deal with the
multi-objective functions in [25].

DRPs can also be used in MG scheduling problem as an
effective tool to decrease operating cost. US Department of
Energy has defined DRPs as changes in end-user clients’
electric consumption patterns to response the changes of
electricity price or to promote the consumers to reduce the
compensations under reliability problems of the system [26].
The operation strategy and pricing of an MG retailer in the
presence of DRP are studied in [27]. DRP’s contribution
to the optimal integration of RESs such as wind power
(WT), biomass, wind power, small hydro, CHP and photo-
voltaic (PV) plants is presented in [28].

B. NEW CONCEPTS AND CONTRIBUTIONS
In this paper, optimal operation of a CHP-based MG is
evaluated by considering load uncertainty under DRPs such
as RTP and TOU. To increase the MG efficiency, heat and
power dispatch is investigated simultaneously. Different gen-
eration unit as CHP, power-only unit, heat only unit and stor-
age is considered to satisfy power and heat demands. Also,
IGDT is proposed to consider load uncertainty. Modeling
of the various uncertainty statuses are considered by using
IGDT-technique’s functions of robustness and opportunity.
Deterministic results without considering load uncertainty
are presented as the risk-neutral strategy. Finally, robust and
opportunity results are investigated as the risk-averse and
risk-taker strategies, respectively.

C. PAPER ORGANIZATION
The reminder of this paper is organized as: MG and DRP
models are described in Section II. IGDT-technique is intro-
duced and applied to the model in sections III and IV, respec-
tively. The risk-neutral, risk-taker results, and risk-averse
results are presented in Section V. Lastly, this work is con-
cluded in Section VI.

II. PROBLEM FORMULATION
The MG model contains ESS, heat only (HO), power only
(PO) unit, heat buffer tank, and two CHP units. DRPs are
considered to flat the load profile and reduce demand at
high price times which will result reduction in operating
cost.

A. OBJECTIVE FUNCTION AND POWER BALANCE
The objective function of the system is developed based on
total operating cost of the MG, including purchased power
from the power market, heat and power generation costs,
ESS degradation cost minus revenue of power injection the
upstream-grid. Equation (1) describes the objective function.

OF =
24∑
h=1



λh × P
G,buy
h +

NCHP∑
i=1

C(PCHPi,h ,HCHP
i,h )

+C(PPOh )+ C(HPO
h )

+
∑

j∈CHP,PO,b
(Cj,SU .SU

j
h + Cj,SD.SD

j
h)

+Cdeg
k (

Nk∑
k=1

Pdisck,h

ηdisck
+ ηCk × P

C
k,h)− λh × P

G,sell
h


(1)

where λh, is the power price in ($/MWh), PG,sellh and PG,buyh
present purchased/sold electricity power from/to the market
(MWh), C(PCHPi,h ,HCHP

i,h ), C(PPOh ), and C(HPO
h ) are the cost

functions of CHP, PO and HO units, respectively. The shut-
down and startup costs of generation plants presented in $
by using Cj,SD and Cj,SU , respectively; SD

j
h/SU

j
h is binary

variables of shut-down/start-up status for each unit at time h,
Cdeg
k is the battery degradation cost in $/MWh, and PCk,h/P

disc
k,h

is charged/discharged power of the ESS in MW.
At each time step, sum of generated power and acquired

power from the upstream-grid minus the total load of MG
after implementation of DRPs should be equal to zero which
is modeled by Eq. (2).

PG,buyh −PG,sellh +

NCHP∑
i=1

PCHPi,h +P
PO
h + P

disc
h − PCh − P

DR
h = 0

(2)

where PDRh , is the electric load profile after implementing
DRP.

B. MODELING OF CHP UNITS
Two different feasible operating regions (FORs), as shown
in Fig. 1, are considered for each of the CHP units in the MG.
As discussed in [12], the heat and electric generations in CHP
units are related to each other. Equations (3)-(21) models first
type of CHP-units [23].

PCHPi,h − P
CHP
i,A −

PCHPi,A − P
CHP
i,B

HCHP
i,A − H

CHP
i,B

(HCHP
i,h − H

CHP
i,A ) ≤ 0 (3)

PCHPi,h − P
CHP
i,B −

PCHPi,B − P
CHP
i,C

HCHP
i,B − H

CHP
i,C

(HCHP
i,h − H

CHP
i,B )

≥ −(1− VCHP
i,h )×M (4)

PCHPi,h − P
CHP
i,C −

PCHPi,C − P
CHP
i,D

HCHP
i,C − H

CHP
i,D

(HCHP
i,h − H

CHP
i,C )

≥ −(1− VCHP
i,h )×M (5)

0 ≤ PCHPi,h ≤ P
CHP
i,A × V

CHP
i,h (6)

0 ≤ HCHP
i,h ≤ HCHP

i,B × V
CHP
i,h (7)
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FIGURE 1. CHP-units’ FOR. (a) Type 1. (b) Type 2.

where, PCHPi,h is generated electric power of each CHP in MW
at time h, HCHP

i,h is generated heat of each CHP in MWth,
A,B,C, and D are marginal points of feasible operating of
each CHP units type, VCHP

i,h is binary variable for presenting
the status of commitment of each CHP unit and M is a large
enough number. Note that each area of FOR in Fig. 1 is
described by one of the Eqs. (3)-(7). The area below the AB
is formulated by Eq. (3). Equations (4) and (5) describe the
upper part of the curve BC and CD, respectively. The output
power will be zero when binary variable VCHP

i,h is zero. This
issue is presented by Eq. (4) and Eq. (5). Equations (6) and (7)
show the limits of power and heat generation, respectively.

The second type FOR of the CHP unit is modeled by
Eq. (8)-(16) based on [29]. To apply model, the second type
of the FOR with conventional formulation, the area FEG is
ignored. So, X1,h and X2,h, which are binary variables, are
considered to divide the discussed area into two sub-sections
as sub section I and II.

PCHPi,h − P
CHP
i,B −

PCHPi,B − P
CHP
i,C

HCHP
i,B − H

CHP
i,C

(HCHP
i,h − H

CHP
i,B ) ≤ 0 (8)

PCHPi,h − P
CHP
i,C −

PCHPi,C − P
CHP
i,D

HCHP
i,C − H

CHP
i,D

(HCHP
i,h − H

CHP
i,C ) ≤ 0 (9)

PCHPi,h − P
CHP
i,E −

PCHPi,E − P
CHP
i,F

HCHP
i,E − H

CHP
i,F

(HCHP
i,h − H

CHP
i,E )

≥ −(1− X1,h)×M (10)

PCHPi,h − P
CHP
i,D −

PCHPi,D − P
CHP
i,E

HCHP
i,D − H

CHP
i,E

(HCHP
i,h − H

CHP
i,D )

≥ −(1− X2,h)×M (11)

0 ≤ HCHP
i,h ≤ HCHP

i,C × V
CHP
i,h (12)

0 ≤ PCHPi,h ≤ P
CHP
i,A × V

CHP
i,h (13)

X1,h + X2,h = VCHP
i,h (14)

HCHP
i,h − H

CHP
i,E ≤ (1− X1,h)×M (15)

HCHP
i,h − H

CHP
i,E ≤ −(1− X2,h)×M (16)

where, E and F determine the FOR of the second CHP unit
type as shown in Fig. 1. Operation states of CHP units are
presented by X1,h and X2,h for the first or second convex
section of the FOR.

In abovementioned equations, the area under the curve BC,
upper the curve CD, over the DE and EF curves are modeled
by Eqs. (8)-(11), respectively. The generation of power and
heat energies of the CHP are limited by Eq. (12) and Eq. (13),
respectively. Equation (14) is used to select operation area of
the CHP as discussed earlier.

Total cost of CHP’s operation is modeled by Eq. (17) as
presented in [30].

C(PCHPh ,HCHP
h )

= a× (PCHPh )2 + b× PCHPh + c+ d × (HCHP
h )2

+ e× HCHP
h + f × HCHP

h × PCHPh (17)

where a, b, c, d, and f are coefficients of the CHP’s cost
function.

C. MODELING OF POWER-ONLY AND HEAT-ONLY UNITS
Related constraints to the operation of heat and power only
units are presented by Eqs. (18)-(19), respectively.

Hb−min
h × V b

h ≤ Hb
h ≤ H

b−max
h × V b

h (18)

PPO−min
h × V PO

h ≤ PPOh ≤ P
PO−max
h × V PO

h (19)

where PPOh is the power output of power only unit in MW,
PPO−max
h /PPO−min

h is the maximum/minimum output con-
straints of the power only unit,Hb−max

h and Hb−min
h are the

maximum and minimum heat limits of the boiler, Hb
h is the

heat generation of the boiler unit at time h (MWth).
Equations (20) and (21) describe the cost functions of PO

and HO units.

C(PPOh ) = λPO × PPOh (20)

C(Hb
h ) = λb × H

b
h (21)

where C(PPOh ) is the power only unit’s cost function, C(Hb
h )

is cost-function of the boiler and λPO is PO unit’s power price
in $/MW h. Finally, λb is the boiler’s power price in $/MWth.

D. MODELING OF ESS
Equations (22)-(23) models the Charged and discharged con-
straints of the ESS.

0 ≤ Pch ≤ b
c
h × P

c,max
h ,

0 ≤ Pdisch ≤ bdisch × Pdisc,max
h (22)

Emin
k ≤ Eh,s ≤ Emax

k (23)

where bch/b
disc
h is the charging/discharging states’ binary vari-

able, Eh,s is the ESS’ capacity in kWh, Emax
k /Emin

k is maxi-
mum/minimum stored energy in ESS in kWh. Simultaneous
discharging and charging of the battery can be restricted by
Eq. (24).

bch + b
disc
h ≤ 1; bch, b

disc
h ∈ {1, 0} (24)

Finally, by using Eq. (25) the stored energy in the ESS at
each time step can be calculated.

Eh+1 = Eh + (ηc × Pch −
Pdisch

ηdisc
) (25)
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E. E MODELING OF HEAT BUFFER TANK
The total stored heat in heat buffer tank can be calculated
using Eq. (26). The heat buffer-tank has been utilized to store
heat energy which is described by Eq. (26) [31].

H̄h =
NCHP∑
i=1

HCHP
i,h + H

b
h (26)

By using βgain /βloss which is excess/loss heat generation
of the CHP unit in the shutdown/startup time, heat losses can
be modeled as Eq. (27).

Hh = H̄h − βloss.SU i
h + βgain.SD

i
h; ∀i ∈ CHP, b (27)

At each period, the Eq. (28) is used to calculated the
available heat capacity in the heat buffer.

Bh = (1− η)× Bh−1 + Hh − H̄ load
h (28)

where η, is heat loss rate of the buffer tank.
The maximum available capacity of heat storage is limited

by using Eq. (29).

Bmin ≤ Bh ≤ Bmax (29)

where Bmax/Bmin is maximum/minimum capacity of the heat
buffer tank in MW.

The ramping down and ramping-up rates of heat-storage
device, Eqs. (30) and (31) are used, respectively.

Bh − Bh−1 ≤ Bch arg emax (30)

Bh−1 − Bh ≤ Bdisch arg emax (31)

where, Bdisch arg emax /Bch arg emax is the maximum rate of
discharging/charging of the heat buffer tank.

F. SHUT-DOWN AND START-UP STATUSES
Using Eqs. (32) and (33), the start-up and shut-down status
of each unit can be modeled.

SU i
h = V i

h × (1− V i
h−1), ∀i ∈ CHP,PO, b (32)

SDih = (1− V i
h)× V

i
h−1, ∀i ∈ CHP,PO, b (33)

G. MODELING OF DRP
In the current power systems, the concept of DRP are consid-
ered as feasible and reliable tool to provide various service
from peak-shaving to ancillary services. Generally, DRPs
are grouped as time-based and incentive based. The time-
based (price based) DRPs shift load from an expensive period
to an inexpensive period which provides many advantages
such as avoiding costly energy procurement and unnecessary
capacity expansion [32]. To get mentioned benefits of the
DRP, RTP and TOU rates of DRPs are used to evaluate their
impact on the final results.

1) MODELING OF TOU RATE OF DRP
Eq. (34) models the TOU rate of DRP [33].

PDRh = PDh + ldrh (34)

where ldrh is transferred load from one load level to load level
of h.th hour. ldrh is calculated through Eq. (35).

ldrh = DRh × PDh (35)

where DRh is the contribution coefficient of DRP and PDh is
the initial demand in MWh. It is assumed that sum of shifted
load during the time period is equal to zero which is stated by
Eq. (36).

24∑
h=1

ldrh = 0 (36)

At each time-step, DRh is limited by Eq. (37).

DRmin
h ≤ DRh ≤ DRmax

h (37)

In this paper DRmin
h is assumed to be equal−30% and DRmax

h
to be equal +30%.

2) MODELING OF RTP RATE OF DRP
The RTP model is developed via the forecasted data for load
profile of the system which is expressed in Eq. (38).

Td =
24∑
h=1

PDh (38)

where Td is the total load of the MG. The mean load demand,
Pav, is calculated by Eq. (39).

Pav =
Td
24

(39)

Using the calculated mean load demand, Eq. (40) is used
to get float factor of RTP.

γh =
PDh
Pav

(40)

The RTP model can be expressed as follows:

λRTP = γh.λTOU (41)

λMinRTP ≤ λRTP ≤ λ
Max
RTP (42)

where λTOU is the benchmark-price, which, in this paper,
considered to be equal to the TOU pricing. λMinRTP/λ

Max
RTP is the

minimum/maximum limits of the RTP.
With taking the RTP of DRP into account, new load profile

of the MG can be formulated as Eq. (43).

PDRh = PDh +
E .PDh (λRTP − λTOU )

λRTP
(43)

where E is the elasticity coefficient of demand-price.
It should be denoted that E is taken according to the his-
torical load information and customer types. Based on [30],
E can get any value between −0.5 and 0 which in this paper,
is assumed equal to −0.5.
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III. IGDT TECHNIQUE
In the power system, there are many important parameters
such as power price and load demand with uncertainty [34].
The uncertainty in the power systems may have desirable
or undesirable effects on the system. To model desired and
undesired aspects of uncertainty of any parameter, the IGDT
method offers two functions as opportunity and robustness,
respectively. System model, operation requirements, and
uncertainty modeling are the three parts of IGDT which is
will be detailed in the following sections.

A. SYSTEM MODELING
Output or input structure of under study system is presented in
the system modeling section which is referred to as C(p, ζ ).
In system model, ζ is called uncertainty parameter and p is
considered as the decision variable. In the problem of optimal
scheduling MG, total operating cost is the system model and
load demand is the uncertainty parameter.

B. OPERATION REQUIREMENTS
The expected performance of the under study system, MG in
this case, in different circumstances is described in operation
requirements. The functions of robustness and opportunity
are used to analyze these expectations. Therefore, the robust-
ness and opportunity functions of MG will be as follow:

α̂(Cr ) = max
α
{α : max(C(p, ζ )) ≤ Cr } (44)

β̂(Co) = min
α
{α : min(C(p, ζ )) ≤ Co } (45)

where Cr and Co are the critical costs of robustness function
and opportunity functions, respectively. As shown in Eq. (44),
MG is resistant to increasing load demand, with considering
the risk-averse strategy. α̂ is degree of resistance against
increasing load demand which means the higher values for
α̂ is preferable.
MG will benefit from the load reduction modeled through

function of opportunity of the IGDT as expressed in Eq. (45),
under risk-taker strategy. As β̂ states the lowest amount of
load reduction, the lower values for β̂ is preferable. Note β̂ is
the lowest value of α. In addition, the operating cost of MG
should be less than a fixed value, Co.

C. UNCERTAINTY MODELING
In order to model the uncertainty parameter (ζ ), fractional-
error model of the IGDT technique can be used. This model
is established in next section.

IV. PROPOSED IGDT-BASED RISK-CONSTRAINED
FORMULATION
In the following sub-sections, IGDT-technique is imple-
mented to deal with load uncertainty in MG’s total operating
cost optimization.

A. UNCERTAINTY MODELING
The uncertainty parameter, which is the load demand in this
study, as said before, is modeled using the info-gap model

which provided in Eq. (46).

U (α, P̃DRh ) =

PDRh :
∣∣∣PDRh − P̃DRh ∣∣∣

P̃DRh
≤ α

 , α ≥ 0 (46)

where PDRh is the load demand after applying DRPs.

B. ROBUSTNESS FUNCTION
The α̂(Cr ) parameter in the robustness function of the IGDT
determines the maximum resistance versus the uncertainty of
load. The goal of robust performance of the MG is desire to
select the risk-averse strategy by paying more money [35].
Robustness function of IGDT-technique is simulated as:

α̂(Cr ) = max
{
α :
(
max cos t total≤Cr= (1+ ω)Cb

)}
(47)

where, α̂(Cr ) is the robustness function. In risk averse strat-
egy, with satisfying all requirements of theMG, the parameter
of the uncertainty is maximized.

α̂(Cr ) =max α (48)

Subject to : Max {OF} ≤ Cr (49)

(1−α)P̃DRh ≤ P
DR
h ≤ (1+ α)P̃DRh (50)

Eqs. (2)− (43) (51)

Eq. (52) will be considered to get the maximum increase of
the uncertainty parameter in which the maximum objective
function is obtained.

PDRh = (1+ α)P̃DRh (52)

Therefore, in the risk-averse strategy, the robustness func-
tion will be shortened as:

α̂(Cr ) = max α (53)

Subject to : OF ≤ Cr (54)

PDRh = (1+ α)P̃DRh (55)

Eqs.(2)− (43) (56)

C. OPPORTUNITY FUNCTION
The opportunity functionmodels any downsizing in uncertain
parameter that will result possible increase in benefit. The
Opportunity function of IGDT is as:

β̂(Co) = min
{
α : (min cos t total ≤ Co) = (1−ϒ)Cb

}
(57)

Maximizing the benefits of reduction in the uncertainty
parameter with meeting MG’s requirements is the main goal
of the IGDT-technique.

β̂(Co) = min α (58)

Subject to : Min {OF} ≤ Co (59)

(1− α)P̃DRh ≤ P
DR
h ≤ (1+ α)P̃DRh

(60)

Eqs. (2)− (43) (61)
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To model the decrease in the uncertainty parameter,
Eq. (62) is considered which gives the minimum amount of
the objective function.

PDRh = (1− α)P̃DRh (62)

Therefore, in the risk-taker strategy, the opportunity func-
tion will be shortened as follows:

β̂(Co) = min α (63)

Subject to : OF ≤ Co (64)

PDRh = (1− α)P̃DRh (65)

Eqs. (2)− (43) (66)

V. CASE STUDY
In this paper, minimizing an MG’s operating cost based on
IGDT based risk-constrained with taking electricity demand
uncertainty is pursued. Load uncertainty ismodeled via IGDT
approach. As said before, MG model contains two different
CHP units, PO and HO units, and ESS. TOU and RTP of
DRP are proposed to decrease the MG operating costs. In this
paper, it is considered that MG can exchange energy with the
upstream grid according to its demand and generation.

A. INITIALIZING DATA
Figure 2 depicts the base electric and heat demand of MG in
which when t= 21 and t= 4 the highest and lowest demands
of electricity power are recorded. These amounts are equal to
4.65 and 1.0207, both in MW.

FIGURE 2. Base heat and electric power heat demands.

In Fig. 3, electric power price is shown for both DRP
in which TOU prices are market price and RTP prices
are obtained based on Eqs. (38)-(42). For TOU-DRP
case, the highest price of electric power is experienced at
h = 12 − 15 and the lowest price is occurred between
at h = 22 h and h = 24. The maximum and mini-
mum electricity price in RTP-DRP case is experienced at
h = 15− 16 and h = 4, respectively.
The information of heat buffer tank, energy storage

devices, the shutdown and startup cost of units and the coef-
ficients of cost function for FC unit are used from worthy
reference [36].

FIGURE 3. Electric power prices for each hour.

B. DETERMINISTIC CASE RESULT
By taking the degree of resistance equal to zero, the risk-
neutral strategy results are obtained. In this strategy, optimal
performance of MG is obtained without considering load
uncertainty by minimizing (1) which is subjected to (2)-(43).
MG operating cost has been reduced due to the implementa-
tion of DRPs, which the costs without DRP, with TOU-DRP
and with RTP-DRP are equal to $5088 and $4959, and 4749,
respectively. It can be concluded that the total cost is reduced
about 2.5% and 6.6% by implementing TOU-DRP and RTP-
DRP, respectively. The load change in TOU-DRP is limited
to TOU price which has caused less reduction in comparison
with RTP-DRP.

C. RESULT OF ROBUSTNESS FUNCTION
Maximizing Eq. (53) gives the robustness function curve
which is subjected to (54)-(56). Fig. 4 illustrates robustness
function (in percent) against robustness cost.

FIGURE 4. Robustness function curve.

It is clear that by increasing α̂(Cr ), the MG operating
cost has increased. According to Fig. 4, by considering MG
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operating cost as equal to 6000$, theMGwill be robust versus
load uncertainty up to 18.37%, 21.52%, and 24.82 % for
without DRP, TOU-DRP, and RTP-DRP cases, respectively.
Comparing these amounts show that more robust can be
attained by implementing RTP-DRP in versus TOU-DRP and
without DRP.

Results of the robustness function are utilized to evaluate
risk-averse decision making strategies. For each of assumed
cases, high operating cost indicates that the MG’s strategy is
highly robust and risk-averse and vice versa.

D. THE RESULT OF OPPORTUNITY FUNCTION
As discussed before, opportunity function is another func-
tion of IGDT. This function deals with uncertainty problems
considering the risk-taking mode. The opportunity function
is solved by minimizing (63) under constraints (64)–(66).
Opportunity function curve has been illustrated in Fig. 5.
In this case, the lower operating cost is desired by considering
risk-taker strategy.

FIGURE 5. Opportunity function curve.

According to Fig. 5, MG operating cost for 28% of electric
demand reduction will be equal to 3698.12$, 3605.21, and
3338.87$ for without DRP, TOU-DRP, and RTP-DRP respec-
tively. In comparison with deterministic results, 27.31%,
27.29%, and 29.69% reduction in operating costs. In the risk-
taking strategy, lower operating cost means higher risk and
vice versa.

E. SCHEDULING OF COMPONENTS OF MG
In this section, the scheduling of MG’s different units is
reported. By assuming load uncertainty, load profile for risk-
taker, risk-neutral, and risk-averse strategies have been illus-
trated in Fig. 6. For each strategy, three cases as without DRP,
TOU-DRP, and RTP-DRP are taken into account. As was
expected, the total load has been increased in risk-averse
strategy while it has decreased in risk-taker strategy.

According to Figs. 3 and 6, as was expected, TOU-DRP,
in all three strategies, has reduced load demand at high price

FIGURE 6. Electric load profile by considering uncertainty.

period which is experienced between h= 12 and h= 16while
it has raised load at low price timeswhich is occurred between
h= 22 and h= 24. For RTP-DRP at high price periods which
are recorded at h = 12 − 16, the load has been reduced.
Furthermore, low price periods have recorded at h = 4 and
h = 21− 24 which the load has been increased. On the other
hand, the load-curve is more flat after applying RTP-DRP
which leads better result in comparison with TOU-DRP.

MG has been assumed in the grid-connected structure
which interchanges energy with the upstream-grid. The
traded power between the MG and upstream-grid is depicted
in Fig. 7 in which procured power is shown by positive
amount while sold power is presented in negative amounts.
As said before, the electrical load has been increased in
risk-averse strategy. In this strategy, for all cases, more power
is procured from the upstream grid in comparison with the
risk-neutral case while sold power to the grid is highly
reduced.

According to Fig. 6, in the risk-taker strategy, electrical
demand has been reduced. Despite the risk-averse strategy,
procured power from the grid has been reduced while sold
power has been increased. By applying DRP, the load has
reduced at peak period while has increased at off-peak period
which leads to reduction in the MG’s operating costs.

The generated power from the CHP units is depicted
in Fig. 8. As a main internal source of demand-supply in
the MG, it can be seen that aggregation of CHP’s generation
has not changed significantly. CHP unit’s heat generation is
illustrated in Fig. 9 which is used to supply heat demand in

VOLUME 8, 2020 93129



S. Nojavan, K. Jermsittiparsert: Risk-Based Performance of Combined Heat and Power

FIGURE 7. Procured/sold electric power from/to the grid.

FIGURE 8. Generated power from CHP units.

the MG. As said before, power and heat generation of CHP
units are related to each other. So, heat generation changes
are very slight due to power generation’s slight change.

FIGURE 9. Generated heat from CHP units.

FIGURE 10. Power generation of the power-only unit.

The power only unit’s power generation is illustrated
in Fig. 10. In each strategy, according to load profile, gen-
erated power from this unit has changed. For example,
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FIGURE 11. Stored energy in the storage.

by considering TOU-DRP in three strategies, due to load
increment in risk-averse strategy, the power only unit’s par-
ticipation has increased while generated power is reduced in
risk-taker strategy with respect to risk-neutral strategy.

In the MG, ESS is assumed to store excessive generated
energy and inject it to the MG in needed periods. Energy
stored in the battery is shown in Fig. 11. Charging and
discharging of the battery is illustrated in Fig. 12. In this
figure, positive amount is considered as charging power while
negative amount is assumed as discharged power.

FIGURE 12. Discharging and charging power of the battery.

VI. CONCLUSION
In this work, short-time scheduling of an MG is considered in
the presence of load uncertainty. Load uncertainty modeling
is done by using IGDT approach. Different strategies such
as risk-take, risk-neutral, and risk-averse are driven from
IGDT functions in which the load profile has changed cor-
respondingly. TOU and RTP of DRP are applied to peak load
management. For each strategy, three cases as without DRP,
TOU-DRT, and RTP-DRP are studied. Load uncertainty and
demand response programs’ effects on the load and operating
cost are discussed. Results show that in deterministic mode,
operating costs for without DRP, with TOU-DRP and with
RTP-DRP cases are equal to $5,088 and $4,959, and $4,749
respectively. This means that total operating cost is reduced
about 2.5 and 6% by implementing TOU and RTP DRPs,
respectively. In the robustness function curve, by consid-
ering MG operating cost as equal to $6,000, the MG will
be robust against load uncertainty up to 18.37%, 21.52%,
and 24.82 % for without DRP, TOU-DRP, and RTP-DRP
cases, respectively. Comparing these amounts shows that by
implementing RTP-DRP better result can be attained. These
results can be used to select the risk-averse decision making
mode. In risk-averse strategy, the more operating cost is paid;
the more robustness is attained against load uncertainty and
vice versa. The risk-taker strategy is obtained by opportunity
function of IGDT. Lower operating cost is desired in this strat-
egy. MG operating cost for 28% of electric demand reduc-
tion will be equal to $3,698.12, $3,605.21, and $338.87 for
without DRP, TOU-DRP, and RTP-DRP cases, respectively.
In comparison with deterministic results, 27.31%, 27.29%,
and 29.69% reduction in operating costs. In risk taking strat-
egy, the lower operating cost is paid, the higher risk is taken
against load uncertainty and vice versa.

REFERENCES
[1] T. C. Bora, V. C. Mariani, and L. D. S. Coelho, ‘‘Multi-objective optimiza-

tion of the environmental-economic dispatch with reinforcement learning
based on non-dominated sorting genetic algorithm,’’ Appl. Thermal Eng.,
vol. 146, pp. 688–700, Jan. 2019.

[2] A. Dolatabadi and B. Mohammadi-Ivatloo, ‘‘Stochastic risk-constrained
scheduling of smart energy hub in the presence of wind power
and demand response,’’ Appl. Thermal Eng., vol. 123, pp. 40–49,
Aug. 2017.

[3] F. Jabari, S. Nojavan, B. Mohammadi-ivatloo, H. Ghaebi, and
H. Mehrjerdi, ‘‘Risk-constrained scheduling of solar stirling engine
based industrial continuous heat treatment furnace,’’ Appl. Thermal Eng.,
vol. 128, pp. 940–955, Jan. 2018.

[4] A. Najafi-Ghalelou, S. Nojavan, and K. Zare, ‘‘Robust thermal and elec-
trical management of smart home using information gap decision theory,’’
Appl. Thermal Eng., vol. 132, pp. 221–232, Mar. 2018.

[5] H. Yousefi, M. H. Ghodusinejad, and A. Kasaeian, ‘‘Multi-objective opti-
mal component sizing of a hybrid ICE+PV/T driven CCHP microgrid,’’
Appl. Thermal Eng., vol. 122, pp. 126–138, Jul. 2017.

[6] S. Nojavan and H. A. Aalami, ‘‘Stochastic energy procurement
of large electricity consumer considering photovoltaic, wind-turbine,
micro-turbines, energy storage system in the presence of demand
response program,’’ Energy Convers. Manage., vol. 103, pp. 1008–1018,
Oct. 2015.

[7] W. Guo and J. Yang, ‘‘Stability performance for primary frequency reg-
ulation of hydro-turbine governing system with surge tank,’’ Appl. Math.
Model., vol. 54, pp. 446–466, Feb. 2018.

VOLUME 8, 2020 93131



S. Nojavan, K. Jermsittiparsert: Risk-Based Performance of Combined Heat and Power

[8] V. Indragandhi, R. Logesh, V. Subramaniyaswamy, V. Vijayakumar,
P. Siarry, and L. Uden, ‘‘Multi-objective optimization and energy manage-
ment in renewable basedAC/DCmicrogrid,’’Comput. Electr. Eng., vol. 70,
pp. 179–198, Aug. 2018, doi: 10.1016/j.compeleceng.2018.01.023.

[9] E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba,
F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, ‘‘Microgrid
clustering architectures,’’ Appl. Energy, vol. 212, pp. 340–361, Feb. 2018.

[10] C. Cai, H. Liu, H. Zheng, F. Chen, L. Deng, and Q. Xu, ‘‘Microgrid multi-
source coordination optimal control based on multi-scenarios analysis,’’
J. Eng., vol. 2017, no. 13, pp. 1457–1461, Jan. 2017.

[11] A. Mehdizadeh and N. Taghizadegan, ‘‘Robust optimisation approach
for bidding strategy of renewable generation-based microgrid under
demand side management,’’ IET Renew. Power Gener., vol. 11, no. 11,
pp. 1446–1455, Sep. 2017.

[12] M. Alipour, B. Mohammadi-Ivatloo, and K. Zare, ‘‘Stochastic scheduling
of renewable and CHP-based microgrids,’’ IEEE Trans. Ind. Informat.,
vol. 11, no. 5, pp. 1049–1058, Oct. 2015.

[13] G. Liu, M. Starke, B. Xiao, and K. Tomsovic, ‘‘Robust optimisation-based
microgrid scheduling with islanding constraints,’’ IET Gener., Transmiss.
Distrib., vol. 11, no. 7, pp. 1820–1828, May 2017.

[14] B. Khorramdel, H. Khorramdel, J. Aghaei, A. Heidari, and V. G. Agelidis,
‘‘Voltage security considerations in optimal operation of BEVs/PHEVs
integrated microgrids,’’ IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 1575–1587, Jul. 2015.

[15] C. Marino, M. A. Quddus, M. Marufuzzaman, M. Cowan, and
A. E. Bednar, ‘‘A chance-constrained two-stage stochastic programming
model for reliable microgrid operations under power demand uncertainty,’’
Sustain. Energy, Grids Netw., vol. 13, pp. 66–77, Dec. 2017.

[16] A. Chaouachi, R. M. Kamel, R. Andoulsi, and K. Nagasaka, ‘‘Multiob-
jective intelligent energy management for a microgrid,’’ IEEE Trans. Ind.
Electron., vol. 60, no. 4, pp. 1688–1699, Apr. 2013.

[17] M. Di Somma, B. Yan, N. Bianco, G. Graditi, P. B. Luh, L. Mongibello,
and V. Naso, ‘‘Multi-objective design optimization of distributed energy
systems through cost and exergy assessments,’’ Appl. Energy, vol. 204,
pp. 1299–1316, Oct. 2017.

[18] Z. Li and Y. Xu, ‘‘Optimal coordinated energy dispatch of a multi-energy
microgrid in grid-connected and islanded modes,’’ Appl. Energy, vol. 210,
pp. 974–986, Jan. 2018.

[19] A. Maulik and D. Das, ‘‘Optimal operation of microgrid using four dif-
ferent optimization techniques,’’ Sustain. Energy Technol. Assessments,
vol. 21, pp. 100–120, Jun. 2017.

[20] X. P. Chen, N. Hewitt, Z. T. Li, Q. M. Wu, X. Yuan, and T. Roskilly,
‘‘Dynamic programming for optimal operation of a biofuel micro
CHP-HES system,’’ Appl. Energy, vol. 208, pp. 132–141, Dec. 2017.

[21] M. Nemati, M. Braun, and S. Tenbohlen, ‘‘Optimization of unit commit-
ment and economic dispatch in microgrids based on genetic algorithm and
mixed integer linear programming,’’ Appl. Energy, vol. 210, pp. 944–963,
Jan. 2018.

[22] M. Alipour, K. Zare, and B. Mohammadi-Ivatloo, ‘‘Short-term scheduling
of combined heat and power generation units in the presence of demand
response programs,’’ Energy, vol. 71, pp. 289–301, Jul. 2014.

[23] B. Mohammadi-Ivatloo, M. Moradi-Dalvand, and A. Rabiee, ‘‘Combined
heat and power economic dispatch problem solution using particle swarm
optimization with time varying acceleration coefficients,’’ Electr. Power
Syst. Res., vol. 95, pp. 9–18, Feb. 2013.

[24] M. Elsied, A. Oukaour, H. Gualous, and R. Hassan, ‘‘Energy management
and optimization in microgrid system based on green energy,’’ Energy,
vol. 84, pp. 139–151, May 2015.

[25] C. Wang, Y. Liu, X. Li, L. Guo, L. Qiao, and H. Lu, ‘‘Energy management
system for stand-alone diesel-wind-biomass microgrid with energy storage
system,’’ Energy, vol. 97, pp. 90–104, Feb. 2016.

[26] S. Nojavan, H. Ghesmati, and K. Zare, ‘‘Robust optimal offering strategy
of large consumer using IGDT considering demand response programs,’’
Electr. Power Syst. Res., vol. 130, pp. 46–58, Jan. 2016.

[27] M. Jin, W. Feng, C. Marnay, and C. Spanos, ‘‘Microgrid to enable optimal
distributed energy retail and end-user demand response,’’ Appl. Energy,
vol. 210, pp. 1321–1335, Jan. 2018.

[28] L. Montuori, M. Alcázar-Ortega, C. Álvarez-Bel, and A. Domijan, ‘‘Inte-
gration of renewable energy in microgrids coordinated with demand
response resources: Economic evaluation of a biomass gasification plant
by Homer simulator,’’ Appl. Energy, vol. 132, pp. 15–22, Nov. 2014.

[29] G. S. Piperagkas, A. G. Anastasiadis, and N. D. Hatziargyriou, ‘‘Stochastic
PSO-based heat and power dispatch under environmental constraints incor-
porating CHP and wind power units,’’ Electric Power Syst. Res., vol. 81,
no. 1, pp. 209–218, Jan. 2011.

[30] T. Niknam, A. Kavousifard, S. Tabatabaei, and J. Aghaei, ‘‘Optimal
operation management of fuel cell/wind/photovoltaic power sources con-
nected to distribution networks,’’ J. Power Sources, vol. 196, no. 20,
pp. 8881–8896, Oct. 2011.

[31] M. Shahverdi and S. M. Moghaddas-Tafreshi, ‘‘Operation optimization of
fuel cell power plant with new method in thermal recovery using particle
swarm algorithm,’’ in Proc. 3rd Int. Conf. Electric Utility Deregulation
Restructuring Power Technol., Apr. 2008, pp. 2542–2547.

[32] S. Nojavan, K. Zare, and B. Mohammadi-Ivatloo, ‘‘Optimal stochastic
energy management of retailer based on selling price determination under
smart grid environment in the presence of demand response program,’’
Appl. Energy, vol. 187, pp. 449–464, Feb. 2017.

[33] S. Nojavan, H. Qesmati, K. Zare, and H. Seyyedi, ‘‘Large consumer
electricity acquisition considering time-of-use rates demand response pro-
grams,’’ Arabian J. Sci. Eng., vol. 39, no. 12, pp. 8913–8923, Dec. 2014.

[34] S. Nojavan, K. Zare, and M. R. Feyzi, ‘‘Optimal bidding strategy of
generation station in power market using information gap decision theory
(IGDT),’’ Electric Power Syst. Res., vol. 96, pp. 56–63, Mar. 2013.

[35] S. Nojavan, H. Pashaei-Didani, K. Saberi, and K. Zare, ‘‘Risk assess-
ment in a central concentrating solar power plant,’’ Sol. Energy, vol. 180,
pp. 293–300, Mar. 2019.

[36] M. Nazari-Heris, S. Abapour, and B. Mohammadi-Ivatloo, ‘‘Optimal eco-
nomic dispatch of FC-CHP based heat and power micro-grids,’’ Appl.
Thermal Eng., vol. 114, pp. 756–769, Mar. 2017.

SAYYAD NOJAVAN received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical power engineer-
ing from the University of Tabriz, Tabriz, Iran,
in 2010, 2012, and 2017, respectively. He was a
Postdoctoral Researcher with the Faculty of Elec-
trical and Computer Engineering, University of
Tabriz, from September 2017 to September 2018.
He is currently an Assistant Professor with the
Department of Electrical Engineering, University
of Bonab, Bonab, Iran. His research areas include

distribution networks operation, power system operation and economics,
electricity market, demand response applications, hybrid energy systems,
uncertaintymodeling, and riskmanagement. He has also edited several books
in the electrical and energy fields in Springer and Elsevier publications.

KITTISAK JERMSITTIPARSERT received the
Ph.D. degree in social sciences from Kasetsart
University, Thailand. He is currently a Researcher
with the ChulalongkornUniversity Social Research
Institute, a part-time Researcher with Ton Duc
Thang University, and the Secretary General
of the Political Science Association, Kasetsart
University. His areas of expertise are politics,
public policy, business, development, and energy
management.

93132 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.compeleceng.2018.01.023

	INTRODUCTION
	LITERATURE REVIEW
	NEW CONCEPTS AND CONTRIBUTIONS
	PAPER ORGANIZATION

	PROBLEM FORMULATION
	OBJECTIVE FUNCTION AND POWER BALANCE
	MODELING OF CHP UNITS
	MODELING OF POWER-ONLY AND HEAT-ONLY UNITS
	MODELING OF ESS
	E MODELING OF HEAT BUFFER TANK
	SHUT-DOWN AND START-UP STATUSES
	MODELING OF DRP
	MODELING OF TOU RATE OF DRP
	MODELING OF RTP RATE OF DRP


	IGDT TECHNIQUE
	SYSTEM MODELING
	OPERATION REQUIREMENTS
	UNCERTAINTY MODELING

	PROPOSED IGDT-BASED RISK-CONSTRAINED FORMULATION
	UNCERTAINTY MODELING
	ROBUSTNESS FUNCTION
	OPPORTUNITY FUNCTION

	CASE STUDY
	INITIALIZING DATA
	DETERMINISTIC CASE RESULT
	RESULT OF ROBUSTNESS FUNCTION
	THE RESULT OF OPPORTUNITY FUNCTION
	SCHEDULING OF COMPONENTS OF MG

	CONCLUSION
	REFERENCES
	Biographies
	SAYYAD NOJAVAN
	KITTISAK JERMSITTIPARSERT


