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ABSTRACT Stroke is a serious lethal factor for human beings, and thus its unique pathogenic factors and
underlying molecular mechanisms must be thoroughly investigated. Current complicated examination and
treatment approaches on stroke reflect the complicated pathogenesis of stroke, which involves two major
pathogenic factors: phenotypic characteristic and genetic background. Stroke occurrences with different
symptoms and pathogenic characteristics may be induced by genetic variations. However, epigenetic con-
tribution and regulation on stroke pathogenesis have been neglected for a long time and thus environmental
influence on stroke onset is often underestimated. In this study, relied on our newly presented computational
method, we re-screened out the genome methylation data of stroke patients with different subtypes and
identified a group of functional methylated or demethylated genes. Recent reports validated the abnormal
methylation status of the all identified genes in the pathogenesis of stroke. The genes were associated
with biological functions involved in stroke onset. Further functional enrichment analysis confirmed and
summarized the novel specific pathogenic roles of ion binding and focal adhesion in the regulation of stroke
at the methylation level.

INDEX TERMS Stroke, methylation, pattern, multi-class classification.

I. INTRODUCTION
Stroke is a medical emergency with fast onset. In a typ-
ical clinic phenotype of stroke, blood supply to the brain
is greatly interrupted or reduced [1], [2]. Stroke cases can
be divided into two subgroups according to etiological fea-
tures: ischemic stroke induced by lack of blood flow [3]
and hemorrhagic stroke induced by excessive bleeding [4].
Both subtypes can trigger typical stroke symptoms, such as
dysfunction in some brain regions and blockage of blood
supply to crucial brain regions [5]. In the USA, stroke is the
leading cause of death, affecting more than 800,000 people
annually [6]. Therefore, given that stroke is a serious lethal
factor for human beings, the unique pathogenic factors and
underlying molecular mechanisms of stroke must be deeply
explored.
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Clinically, high-risk cases of stroke have various typical
symptoms [3], [6], and patients with such symptoms are
recommended to take medical treatments. For the accurate
clinical diagnosis of stroke, various diagnostic approaches are
generally applied, including CT (Computed Tomography),
MRI (Magnetic Resonance Imaging), carotid ultrasound, and
cerebral angiogram [7], [8]. Moreover, therapy approaches
for stroke during follow-up clinical treatments after diag-
nosis vary among different patients due to their respective
pathogenesis. For instance, patients suffering from ischemic
stroke are generally recommended to be treated with tissue
plasminogen activators within 4.5 hours [9]. By contrast,
patients suffering from hemorrhagic stroke are usually treated
with direct surgery rather than drugs [10].

Such complicated examination and treatment approaches
on stroke actually reflect the complicated pathogenesis of
stroke. The two major pathogenic factors of stroke are phe-
notypic characteristic and genetic background [5]. On the
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FIGURE 1. Whole pipeline for classifying samples from different stroke subtypes.

one hand, various phenotypic characteristics including over-
weight, age, inactive lifestyle, smoking, and drinking have
been tightly connected to the stroke onset, according to recent
publication reports [11]–[13]. On the other hand, the genetic
contribution of stroke has been gradually revealed along
with the development of next generation sequencing. Early
in 2011, a systematic review on the genetic background
of stroke revealed a set of genes with potential functional
contribution to the pathogenesis of stroke [14], [15], and
these genes were clustered into five groups by onset posi-
tion, affected tissues and potential biological mechanisms of
stroke. Some works suggested that stroke onset is affected by
genetic contributions and stroke occurrences with different
symptoms and pathogenic characteristics may be induced by
genetic variations [16], [17].

Although genetic studies on stroke have increasingly
expressed interest in genes and their variants, the epige-
netic contribution and regulation on stroke pathogenesis
have been neglected for a long time and have not been
deeply studied. Therefore, in this study, we re-screened
the genome methylation data of stroke patients from a
recent publication [18], [19]. Basing on our newly presented
computational method, we identified a group of functional
methylated or demethylated genes that may participate as
potential biomarkers in the pathogenesis of different sub-
types of stroke. All predicted the genes and their enriched
functions were confirmed to be associated with the stroke
cases in recent reports. All in all, all the screened genes
identified by our newly presented computational method not
only may reflect the methylation pattern of stroke patients

but also may contribute to the identification of potential
detailed pathogenic mechanisms for stroke initiation and
progression.

II. MATERIALS AND METHODS
A. DATASETS
We downloaded the methylation profiles of patients with
stroke from Gene Expression Omnibus under accession num-
ber of GSE69138 [18], [19]. Previous genome-wide methy-
lation study extracted whole-blood DNA from 404 patients
with ischemic stroke, which were distributed across three
ischemic stroke subtypes: 132 patients with large-artery
atherosclerosis (LAA), 141 patients with small-artery dis-
ease (SAD), and 127 patients with cardio embolic (CE). The
DNA methylation in CpG sites were measured by Illumina
HumanMethylation450 BeadChip array.

B. FEATURE SELECTION
Max relevance feature selection method was first used in
the selection of relevant features (i.e., methylation sites), and
only relevant features with scores greater than the prede-
fined cutoff were retained. Then, a ranked feature list was
obtained by feeding the remaining features into Monte Carlo
feature selection (MCFS). Based on the ranked features,
increment feature selection (IFS) adopting support vector
machine (SVM) as the classifier was further used in the
selection of optimum features with the best discrimination
performance in classifying samples from the different sub-
types of stroke. The whole analysis framework is shown
in FIGURE 1.
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C. MAX RELEVANCE SCORE
In general, if a feature (i.e. one methylation site) is highly
relevant to the outcome variable (i.e. disease phenotype), it is
considered important. The maximum relevance score calcu-
lates the mutual information (MI) between features and class
labels [20]–[22]. The higher the score is, the more important
this feature is [23], [24]. TheMI of variables x and y is defined
as follows:

I (x, y) =
∫∫

p(x, y)log
p(x, y)
p(x)P(y)

dxdy

where p(x) and p(y) is the marginal probability density for x
and y, respectively, and p(x, y) is the joint probability density.
In this study, we used the MI program integrated in the mini-
mum redundancy andmaximum relevance (mRMR) package,
to calculate the MI between features and class labels.

D. MONTE CARLO FEATURE SELECTION
Monte Carlo feature selection (MCFS) is a newly proposed
feature selection approach based on several decision trees
on several bootstrap sets [25]–[27]. Each bootstrap set is
randomly produced from an original training set [28]. MCFS
first generates t feature subsets, each of which contains m
features that are randomly selected from original M fea-
tures. Then, for each feature subset, p decision trees are
generated based on the p bootstrap sample sets, in which
samples are represented by features in a given feature subset.
The abovementioned procedure is executed t times for the t
feature subsets. Accordingly, t∗p trees are constructed. The
relative importance (RI) score for each feature is measured
in terms of the number of observation times of this feature
in all constructed trees. MCFS package [28] retrieved from
http://www.ipipan.eu/staff/m.draminski/mcfs.html was used
in this study. For convenience, default parameters of MCFS
were used to execute, i.e. t = 2000 and p = 5. Obviously,
such RI score indicates the importance of features relevant
to class labels. The higher RI score is, the more important
the feature is; thus, features can be further ranked with the
decreasing order of their RI scores.

E. INCREMENT FEATURE SELECTION
Not all features are needed to show excellent performance.
Thus, IFS [29], [30] was used to select optimum features
for a supervised prediction model (i.e. multi-class classi-
fier). It first generates a series of feature subsets with a step
interval of 10 according to the ranked features yielded by
MCFS. For example, feature subset 1 has only the top 10
features, and feature subset 2 has the top 20 features, and
so on. Then, for each feature subset, a supervised classifier
(i.e. support vector machine) is trained and evaluated on
the samples represented by features in this feature subset.
In the end, we selected the feature subset yielding the best
performance during 10-fold cross-validation as the optimum
feature (e.g., optimal methylated/demethylated genes).

F. CLASSIFICATION MODEL
Support vector machine (SVM) is a widely applied
supervised classification model under a statistical frame-
work [31], [32]. It finds an optimal hyperplane between two
classes of samples to make the margin maximum. Clearly,
the margin is closely related to generalization error. Fur-
thermore, SVM can efficiently handle linear and nonlinear
data, as it can map the original data into a linear space
with high dimension through kernel trick. The SVM has an
effective mathematical theory for solving convex objective
function with the global minimum and is appropriate for data
with nonlinear structures. Additionally, it requires appropri-
ate kernels and few tuning parameters. In this study, three
groups of samples were considered, so a multi-class SVM
adopting one-versus-rest strategy for multiclass classification
was adopted. The polynomial function was set as the kernel
function, and the regularization parameter was set to 1.

G. PERFORMANCE MEASUREMENT
In this work, there are three classes of samples, so that,
a multiclass SVM classifier was learned. The individual
accuracies of the three classes and the overall accuracy and
Matthews correlation coefficient (MCC) [33], [34] were cal-
culated for objective performance evaluation, combined with
10-fold cross-validation. Given that X is the predicted labels
of samples and Y is the true labels, the MCC is calculated as

MCC =
cov(X ,Y )

√
cov(X ,X )cov(Y ,Y )

=

n∑
i=1

C∑
j=1

(xij − x̄j)(yij − ȳj)√
n∑
i=1

C∑
j=1

(xij − x̄j)2
n∑
i=1

C∑
j=1

(yij − ȳj)2

where x̄j and ȳj are the average values of members in the
j-th column of X and j-th column of Y , respectively. Besides,
the accuracy (ACC) for each class can also be estimated by

ACC =
TP+ TN

TP+ TN + FP+ FN

where TP and FP indicate the number of true-positive and
false-positive samples respectively, while TN and FN indi-
cate the number of true-negative and false-negative samples
respectively.

H. BIOLOGICAL ENRICHMENT ANALYSIS
According to the probe annotation table of Illumina Human-
Methylation450 BeadChip [18], [19], our selected methyla-
tion probes were mapped onto detailed genes, which were
then enriched onto GO and KEGG through a hypergeometric
test [35]. The GO and KEGG terms with false discovery rate
smaller than 0.05were considered as relevant biological func-
tions with significant enrichment on our selected features.
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TABLE 1. Performance of IFS with SVM and RF.

III. RESULTS
The input features were ranked as 482,421 methylation sites
by their maximum relevance scores, and only 19,491 highly
relevant features with score of >0.015 were selected. Then,
the discriminative features for classifying stroke samples
from different disease subgroups were obtained by further
refining these relevant features.

The optimal feature combination was determined through
a supervised classifier by running IFS with SVM for sample
classification. During this process, a series of feature subsets
with a step interval of 10 was generated, and the SVM with
10-fold cross-validation were run on the samples consisting
of features from one feature subset and validated. This oper-
ation was performed in each feature subset. The best MCC
(0.892) was obtained when the top 4730 features were used,
and the overall accuracy was 0.928. The features along with
their importance scores calculated by MCFS are shown in
TABLE S1. Performance corresponding to all feature sub-
sets is provided in TABLE S2. An IFS curve is illustrated
(FIGURE 2A) with the MCC value (i.e. y) as y-axis and the
number of features (i.e. x∗10) as x-axis. We ran IFS in the
same way, with random forest as the supervised classifier,
to verify the selection of SVM as a supervised classifier in
this work. The best MCC value of 0.556 was obtained when
the top 790 features were used, and the overall accuracy was
0.703. Performance corresponding to all the feature subsets
is provided in TABLE S2 as well. FIGURE 2B illustrates
the MCCs that the RFs yielded when the number of features
involved varied. The results in TABLE 1 and FIGURE 2 indi-
cated that SVM outperforms RF and is thus a better choice for
classifying samples from dissimilar stroke subtypes.

IV. DISCUSSION
Basing on our newly presented computational method in
FIGURE 1, we screened a group of functional genes that have
abnormal methylation status contributing to stroke pathogen-
esis. Of note, we adopted a two-stage feature selection proce-
dure, considering many features required filtering. In the first
stage, the Max’s relevance score (MI value) of each feature
was calculated, thereby discarding lots of irrelevant features.
Then in the second stage, the RI score of each remain-
ing feature was computed to obtain final relevant features.

FIGURE 2. IFS curve for SVM and RF with the number of features involved
from 19,491 highly relevant features.

Thus, the Max’s relevance score and MCFS had different
functions and were both necessary in our analysis, providing
an efficient feature selection procedure for 482,421 methy-
lation sites. The final optimal genes and enriched functional
terms are analyzed and discussed below.

A. OPTIMAL MEHTYLATED/DEMETHYLATED GENES
Recent publication confirmed the identified optimal methy-
lated/demethylated genes with high ranks (i.e., the top
5 genes).

TSPY4, encoding a specific functional gene participat-
ing in sperm differentiation and proliferation, is a potential
stroke-associated gene with respective methylation abnor-
mality [36]. The methylation regulation of TSPY4 and its
homologues have been widely identified during tumorige-
nesis and found to interact with Y chromosome-located
oncogenes [37]–[39]. Moreover, the specific gene expres-
sion patterns of genes in the Y chromosome may directly
participate in the pathogenesis of ischemic stroke [40].
Therefore, indirectly, our predicted TSPY4 with differ-
ential methylation may influence the expression of Y
chromosome-located genes during the pathogenesis of stroke.

LHB, as a glycoprotein-hormone-encoding gene, has been
predicted to be abnormally regulated at the methylation
level [41], [42] during the initiation and progression of stroke.
As reported, an abnormal sex hormone (e.g., testosterone in
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TABLE 2. Representative functional terms of enrichment analysis.

the blood) may participate in the pathogenesis of stroke [43].
Given that LHB is the encoding gene of a quiet effective sex
hormone (i.e., luteinizing hormone), its methylation status
may affect gene/protein expression level and is potentially
pathogenic for our objective disease/symptom, stroke.

FAM153C is another identified stroke-associated gene.
Binding to its related regulatory factors, FAM153C has only
been reported to participate in human height regulation.
According to a recent publication on voltage-gated pro-
ton channels in sperm, which is functionally connected to
FAM153C [44], the proton channels are potential targets of
novel drugs with specific side effects in stroke. Therefore,
despite the lack of evidence, the methylation status of our
predicted gene FAM153C may be functionally related to
stroke symptoms.

GRIN2A, encoding a member of the glutamate-gated ion
channel, has been predicted to contribute to stroke-related
abnormally methylation regulation. A systematic analysis
on a typical disease named Landau-Kleffner [45] confirmed
that the expression and mutational pattern of GRIN2A may
contribute to the pathogenesis of the disease as one of the core
driver at the genetic and epigenetic levels. Further studies
identified that stroke is one of its major complications of
Landau-Kleffner which would be induced by the defected
mitochondrial respiratory chain [46]. Therefore, these facts

FIGURE 3. Cases of differential methylation distributions in Small-artery
disease (SAD), Cardio embolic (CE), and Large-artery atherosclerosis
(LAA).

indicate the methylation of GRIN2A has potential to involve
in the pathogenesis of stroke.

LHX9, encoding a member of the LIM homeobox gene
family, acts as a development-associated transcription fac-
tor [47], [48]. The methylation status of LHX9 contributes to
the formation of the testicular cord [49]. Therefore, speculat-
ing that the abnormal expression/methylation of LHX9 may
lead to the endogenous defect of the testicular cord and results
in hemorrhagic shock in some cases is reasonable.

As shown in FIGURE 3 and FIGURE S1, the above
discussed genes have different methylation distributions in
different patient groups. In addition, we also validated the
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differential expression of these genes between control sam-
ples and cardioembolic stroke samples, on an independent
dataset of GEO GSE58294 (TABLE S4). Actually, we found
FAM153C, GRIN2A, and LHX9 have significantly differen-
tial expressions (P value < 0.05), which might be caused by
their differential methylation reported here.

B. FUNCTIONAL ENRICHMENT ANALYSIS
OF OPTIMAL GENES
All the optimal screened genes directly and indirectly partic-
ipate in stroke-associated biological processes. For the accu-
rate identification and analysis of these potential pathological
processes, gene ontology and KEGG enrichment analyses
were performed on the selected optimal genes by the R
function phyper, whose results are supplied in TABLE 2 and
TABLE S3.

Two specific GO terms (GO: 0009653 anatomical struc-
ture morphogenesis, and GO: 0048856 anatomical struc-
ture development biological process) are quite significant
for stroke symptoms, indicating the specific role of unique
anatomical structure in such processes. For instance, various
specific anatomical structures, such as the testicular cord,
participate in the pathogenesis of stroke.

Ion binding (described by GO: 0043167) has also been
screened out as one of the enriched items. In fact, various
publications have systematically confirmed that ion bind-
ing processes, such as gating in TRPV1 channels [50] and
potassium ion for Na(+)/K(+)-ATPase regulation [51], may
directly participate in various complicated pathological pro-
cesses related to stroke. Another GO-term-like membrane-
bounded organelle has been found to have core biological
processes, reflecting the complicated biological mechanisms
for the onset of stroke.

We identified a few functional KEGG pathways that are
significantly enriched. Among them, hsa04510 (focal adhe-
sion) is the only one that is quite significant for the patho-
genesis of stroke. A specific regulator of a focal adhesion,
named as carcinoembryonic antigen-related cell adhesion
molecule 1, has been identified as a pathogenic factor for
stroke [52]. This finding indicates the detailed connection of
focal adhesion and our objective disease symptom.

V. CONCLUSION
Based on our newly presented computational method, all
the identified genes have been validated to have abnormal
methylation status during the pathogenesis of stroke and to be
associated with biological functions involved in stroke onset.
Further functional enrichment analysis confirmed and sum-
marized the novel specific pathogenic roles of ion binding and
focal adhesion for stroke regulated at the methylation level.
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