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ABSTRACT Resting-state fMRI studies have suggested that autism spectrum disorder (ASD) is associated
with aberrant dynamic changes. However, existing research either has difficulty showing the brain’s dynamic
characteristics or cannot obtain stable results. We examined the ‘two-group cross-location hidden Markov
model’ of each region of interest (ROI) to identify possible pathogenic features of ASD. Specifically,
we selected resting-state fMRI data with complete scales and good quality from Autism Brain Imaging
Data Exchange (ABIDEI). Eligible data included 145 ASD and 157 control (CON). Two groups of subjects
were separated to train Hidden Markov models representing respective populations. Then, we used each
model to estimate the likelihood values of all participants. Using the likelihood value as features, we tested
the significant differences of 200 ROIs and finally identified ROIs with common significant differences
in the two types of models. Additionally, we investigated the relationship between likelihood values of
significantly different ROIs and clinical scales. some ROIs were negatively correlated with the Autism
Diagnostic Observation Schedule and positively correlated with full IQ. Finally, we constructed a support
vector machine to classify ASD and CON. Overall, our findings suggested that the abnormal areas in the
frontopolar area, orbitofrontal area, inferior temporal gyrus, middle temporal gyrus and fusiform gyrus are
prominent features of ASD and are closely related to clinical functional decline. The average accuracy rate
reached 74.9% after ten cross-validations. This ‘two-group cross-localized Hidden Markov Model’ provides
a robust and powerful framework for understanding the dysfunctional brain architecture of ASD.

INDEX TERMS Autism spectrum disorder, resting-state fMRI, hidden Markov model, computer-assisted
diagnosis.

I. INTRODUCTION
Autism spectrum disorder (ASD) is a typical derangement of
brain development. ASD occurs during a momentous period
of nervous system refinement that includes nerve cell pro-
liferation, synapse formation and functional maturation of
various regions. Developmental disorders lead to differences
at the cerebral cortex macro anatomy level in infants and
young children [1]. ASD is characterized by a collection of
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behavioral abnormalities such as difficulties with social inter-
actions and verbal and nonverbal communication, repetitive
behaviors, and a number of comorbid conditions [2], [3].
Although the clinical cause of autism is unclear, studies have
shown structural and functional brain abnormalities. From a
structural perspective, Khundrakpam et al found widespread
increased cortical thickness in ASD, primarily left later-
alized, with differences decreasing gradually during adult-
hood [3]. Diffusion tensor imaging studies show individuals
with ASD have more densely packed columns of neuronal
cells than normal people [4]. T1-weightedMRI has reported a
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significantly reduced size of the posterior subregions of the
corpus callosum on average and abnormal connections of
the limbic-striatal region, which is the social brain system,
in autistic individuals [5]–[7]. Over the years, the devel-
opment of functional magnetic resonance imaging (fMRI),
which measures intrinsic neural activity based on blood
oxygen level-dependent (BOLD) signals, has provided a
versatile tool for investigating functional mechanisms under-
lying cognitive dysfunction. Compared to other imaging
methods, fMRI has advantages in that is non-invasive and
has relatively good temporal and spatial resolution [8]. The
brain does not need to perform cognitive tasks during col-
lection of resting state fMRI (rs-fMRI) data, so this type
of imaging can reflect the functional organization of the
brain [9] and the hemodynamic changes caused by disease
[10], [11]. The most common method of rs-fMRI data analy-
sis uses correlation [12]–[15], partial correlation [16], [17],
or sparse regression [18], [19] to build a brain functional
connection (FC) network, which is a measure of synchronous
activation of spatially varied brain regions [20], [21]. Based
on functional connections, some autistic brain connections
have been found and are different from those of healthy
people. Most of the reported underconnectivity in autism
is in specific brain regions or networks [22], [23], such as
the default mode network, which demonstrates a consistent
pattern of deactivation across a network of brain regions that
includes precuneus/posterior cingulate cortex (PCC), medial
prefrontal cortex (MPFC) and medial, lateral and inferior
parietal cortex occurring during the initiation of task-related
activity [21].

However, the method of constructing the brain network
overcompresses the information on the time scale and can-
not accurately reflect the internal dynamics of the brain.
As shown by research, the state of the brain is a dynamic
process that changes over time [24]. Many people have made
attempts to find another method to describe the dynamic
brain, such as calculating multiple brain connection networks
based on sliding windows [25]–[27]. The limitation of sliding
windows is that the size of the window is usually determined
empirically. If thewindow is too long, it is difficult to estimate
the dynamic characteristics of brain activity. If the window is
too short, the number of observations is insufficient [28].

To avoid possible disadvantages in window length selec-
tion, some researchers have also begun to use dynamic
Bayesian networks to generate the general framework of
probabilistic models, which is often used to deal with time-
varying signals with good results [29]. One of the effective
methods is the Hidden Markov Model (HMM), which can
describe the dynamic state switching process of the brain as a
Markov chain with different transition probabilities between
states [30], [31]. Due to the many excellent characteristics of
HMM, it has been applied to the study of a variety of clinical
diseases, among which the representative diseases include
cancer [32] Alzheimer disease (AD), Huntington disease,
Parkinson disease [29] and ASD [8]. Therefore, we consider
the HMM to be a good model for measuring the dynamic

changes in the brain time scale with good generalization
ability.

In this article, we use ASD and control (CON) subjects to
train the respective HMMs for each region of interest (ROI)
and then use the constructed models to calculate the occur-
rence probability of each ROI’s fMRI signal, called goodness
of fit or likelihood value. Statistical analysis was used to
locate areas where the dynamic state had significant differ-
ences between autistic patients and normal subjects in the
two models and to discuss the clinical significance of these
differential ROI. This work also used the likelihood value
of the selected ROI to build a classifier. The contributions
of our work can be summarized in three aspects. First, data
filtering is based on multisite datasets, so the results are more
scalable. Second, more representative models are trained for
two groups of people, and then the intersections of areas
with significant differences are chosen, so the results are
more robust. Finally, the brain partitions we use are more
detailed and can more accurately locate the abnormal brain
areas of ASD. Our research can provide useful information
for clinical studies of autism. Then, we can use the data of
the characteristic regions we are looking for to construct a
classifier, which is expected to achieve an accurate diagnosis
of autism.

The remainder of this article is structured as follows: In
the methods section, we introduce the exclusion criteria and
demographic information for the data. Then, we introduce
the data processing and analysis process, including data pre-
processing, model construction, and classifier construction.
In the results section, we summarize the abnormal brain
regions exhibited by autistic patients, their relationship to
clinical scales, and the performance of the classifier. The
discussion section discusses the significance of the findings,
the shortcomings and future perspectives.

II. MATERIALS AND METHOD
A. SUBJECTS
The present study downloaded rs-fMRI time series and
acquisitions for samples of 16 international imaging sites
that had aggregated and were openly sharing neuroimaging
data from 539 individuals affected by ASD and 573 con-
trols (CON), available in the ABIDE (http://fcon_1000.
projects.nitrc.org/indi/abide) [7]. After a series of screenings
for all datasets, 302 subjects were chosen. The selected data
consisted of 145 ASDs and 157 CONs. The summary of
demographics and clinical characteristics is represented in
TABLE 1. Full IQ (FIQ) was measured using the Wechsler
Adult Intelligence Scale, and the FIQ of CON was signifi-
cantly higher than that of ASD (p<0.01). The Autism Diag-
nostic Observation Schedule (ADOS) was measured only in
ASD. Data screening criteria are shown in FIGURE 1.

B. PREPROCESSING
In this research, we preprocessed datasets by the Cofigurable
Pipeline for the Analysis of Connectomes (C-PAC,
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TABLE 1. Summary of demographics and clinical characteristics for ASD
and CON.

FIGURE 1. Data screening flowchart. The numbers in parentheses
represent the number of participants remaining after the previous
screening. 1 Exclude bad data. There are manual quality assessments of
the data by three raters with columns having the prefix qc_ in the
phenotypic file downloaded from the site. To obtain high quality data,
we excluded the data if any rater’s evaluation result was ‘‘Failed’’ for
functional data. 2 Choose the data’s repetition time as 2000 ms. The TR
time was the same to ensure that the time series had the same strength
standard. Data with TR equal to 2000 constituted the majority of all data.
3 Exclude the data whose age was over 35. Some research suggested that
the difference in the brain between ASD and CON patients was small over
the age of 35. 4 Exclude the data of subjects who lacked WASI-FIQ if the
patient lacked the ADOS. For the purpose of subsequent analysis,
the data from incomplete clinical scales were removed. 5 Exclude female
data. A chi-square test was performed on the sex of the ASD group and
the CON group, and there was a significant difference between the two
groups. Female data were much less frequent than male data, so all
female data were excluded.

http://fcp-indi.github.com). This python-based pipeline tool
makes use of AFNI, ANTs, FSL, and custom python code.
The pre-processing steps include slice time correction,
motion correct to the average image, skull-strip, global
mean intensity normalization to 10,000 and nuisance signal
regression. Band-pass filtering (0.01-0.1Hz) was applied only
for one set of strategies. Functional images were registered
linearly to anatomical space and were normalized to Mon-
treal Neurological Institute (MNI) 152 stereotactic space

(1 mm3 isotropic) with linear and non-linear registrations.
The regressed rs-fMRI images parcellated into 200 ROIs
in the cortical regions, and then the mean across the vox-
els within each ROI was computed. Finally, we obtained
a 200-dimensional vector sequence for each subject [33].

C. HMM
Some studies have suggested that the brain switches from
one state to another. HMM is a probability model that solves
the unknown hidden state by using known observation data.
In this section, we will describe how to model the brain
time series using an HMM framework. We will use the data
of ASD and CON to construct HMMs of their populations
separately (ASD MODEL and CON MODEL) and use the
trained model to calculate the likelihood of all participants
(FIGURE 2).

Assume the amount of data we will use to train the
model is R (all ASD or CON). Every subject data has D
(in fMRI data, D can be the number of voxels, regions of
interest (ROI) or components). ROIs have a sequence of
E-length time series. Denote the time series data as χ ={
X (1),X (2), . . . ,X (r) . . .X (R)

}
, r = 1, 2, . . .R, where each

subject data X (r)
=

[
X (r)1 ,X (r)2 , . . . ,X (r)d , . . . ,X

(r)
D

]
∈

RE×D, X (r)d =

[
X (r)d _1,X (r)d _2, . . . ,X (r)d _e, . . . ,X (r)d _E

]
∈

RE . In this work, we support the hypothesis that (i) the
temporal BOLD fluctuations of ROIs, that is to say,X_ROI =[
(X (1)d )T , (X (2)d )T , . . . , (X (r)d )T , . . . , (X (R)d )T

]
∈ R(E∗R) have

their own dynamic patterns, and (ii) there may be significant
differences in temporal dynamic models between ASD and
CON. Based on these hypotheses, we model region-wise
temporal dynamics with HMMs. It is assumed that the hidden
states are changing over time with a certain probability, called
state transition probability. In a transition matrix A, i.e.,
A =

[
aij
]
each aij refers to the probability of moving from

state i to state j. Moreover, each state should be initialized,
i.e. π = [πi], in which each πi refers to the probability that
the initial time may be in a hidden state. In the HMM model,
wemark HMMs set as SROI =

{
S(1), S(2), . . . , S(d) . . . S(D)

}
,

where S(d) is the HMM of dth ROI and comes from a discrete
state set with size K. For the dth ROI, the hidden state
is denoted as S(d) =

[
S(d)1 , S(d)2 , . . . S(d)e . . . , S(d)E

]
where

S(d)e is a hidden state variable of a time point. S(d)1 is the
initial time, whose hidden state probability depends on π =
[πi] .S

(d)
e is an intermediate state hidden state variable, whose

hidden state probability depends on S(d)e−1 and A =
[
aij
]
In this

work, we exploited a standard HMM with a Gaussian dis-
tribution parameterized by µk , εk as the mean and variance
for observation. We mark S(d)e _k as a hidden state variable
placing hidden state k, k ∈ 1, 2, . . .K We can calculate the
probability of X (r)d occurring in the hidden state S(d)e _k as
shown:

p(X (r)d |S
(d)
e _k) =

1

(2πεk )
1
2

e−
(X(r)d −µk )

1
2

2εk (1)
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FIGURE 2. Description of training hidden Markov processes and calculation of likelihood values. First, we used the data of all ASDs
(145) to train the HMM (ASD MODEL) of each ROI. The likelihood value of all people including ASD and CON was estimated by the
trained corresponding ROI model. Then, a rank sum test was performed on the likelihood value of each ROI, and the test value was
subjected to FDR correction. Second, we replaced the training model data with all CON (157) (CON MODEL) and repeated the previous
steps. Finally, the ROI that showed significant differences in both tests was selected.

Different hidden states obey a Gaussian distribution and have
the same calculation form for probability but with unequal
mean and variance. Combining p(X (r)d |S

(d)
e _k) with the tran-

sition probability, the probability likelihood of the dth ROI is
written as:

p
(
X (r)d

∣∣∣θ,∅) = p(X (r)d _1|π )
E∏
e=2

p(S(d)e |S
(d)
e−1,A)

×

E∏
e=1

p(X (r)d _e|S(d)e _k,∅) (2)

Maximizing this probability gives the maximum likelihood
estimation (MLE) based on themodel parameters θ = {π,A}
and ∅ = µk , εk

K
k=1 The detailed construction process of

HMM is shown in FIGURE 3. HMM can be solved according

to the Expectation-maximization (EM) algorithm, which is a
common method for solving maximum likelihood estimate
in probability models. Since the likelihood value is too small,
we take the natural logarithm of it. Then, in order to elimi-
nate the difference in length of the rs-fMRI BOLD signals,
the original likelihood value v is scaled by the length of time
series E. Therefore, the final likelihood value L is expressed
as follows:

L =
1
E
ln v (3)

D. STATISTICAL ANALYSES
To determine the brain regions with abnormal switching of
ASD, we use the rank sum test to statistically analyze the
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FIGURE 3. HMM parameter visualization (a) HMM process diagram. (b) Schematic diagram of the initial state
probability distribution of the HMM. (c) Schematic diagram of a state transition probability matrix. In
continuous Gaussian hidden Markov processes, state transitions represent the probability that the
distribution to which the observed values obey jumps from one Gaussian process to another.

likelihood values of the two groups of people and correct the
statistical P value using false discovery rate correction [34].

III. RESULT
A. STATISTICAL RESULTS OF ROI LIKELIHOOD AND THE
CORRELATION WITH CLINICAL SCALE
On the one hand, we used ASD MODEL to calculate
the likelihood values of ASD and CON and performed
statistical tests. On the other hand, we trained the CON
MODEL and repeated the same process. In the end, there
were a total of 7 ROIs with significant differences selected
using ASD MODEL, all of which were included in ROIs
with significant differences selected using CON MODEL.
A boxplot of the likelihood values and specific position in
the brain for these seven regions is shown in FIGURE 4.
In the CC200 brain region, their numbers were 39, 42,
57, 100, 113, 124, and 183. The corresponding AAL par-
titions are shown in Table 2. We calculated the correla-
tion between ASD and ADOS in 7 ROIs and found that
ROI_39 showed a statistically significant negative correla-
tion in the two models (FIGURE 5a, FIGURE 5b). Since
most of the clinical scales were only for ASD patients,
the IQ scale set was relatively complete, and the IQs of
the two groups showed significant differences (p <0.01).
IQ was also used as a reference value for clinical diag-
nosis, so we calculated the correlation between these
regions and FIQ. Likelihood values of ROI_113 in both
models showed significant positive correlations with FIQ
(FIGURE 5c, FIGURE 5d).

B. DIFFERENCE IN LIKELIHOOD VARIANCE
In two models, the variances of the seven ROI likelihood
values of ASD and CON were calculated. The two groups of

TABLE 2. Regions showing significant differences in both models.

variance valueswere tested using the paired sample t-test. The
p-value of the paired sample T test between the two groups
was 0.303 in ASD MODEL and 0.026 in CON MODEL.
In CON MODEL, the variance of the likelihood value in
the CON group was significantly smaller than that in the
ASD group. Although there was no significant difference in
another model, we could see that the median variance of the
CON group was smaller than that in the ASD group. All in
all, the variance of the likelihood value in the CON group was
slightly smaller than that in the ASD group.

C. RESULTS OF CLASSIFICATION
Next, in order to assist in diagnosing ASD objectively
with neuroimaging data, we used the seven brain regions
extracted by the two models as features. For enriching the
features, we also used ASD and CON data to train an HMM
(ASD-CON MODEL) corresponding to seven regions jointly.
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FIGURE 4. (a) Box chart of the likelihood values of all the data calculated by the ASD MODEL. The top and bottom of
each box plot and the upper and lower edges of the middle entity represent the quartile of the entire data. The middle
line of the box is the median of the entire data. The points outside the boxplot represent outliers. (b) Box chart that
was model trained using only control data. (c) Locations of ROIs with significant differences in the brain. The figure in
the blue box comprehensively shows the position of the seven significantly different regions in the brain from three
different directions, and the surrounding figures alone show the position of the corresponding subscript ROI.

It is worth mentioning that the new likelihood values of
the seven brain regions had significant differences. Using
302 samples, each consisting of 21 features, we constructed
a linear support vector machine classifier. The average clas-
sification accuracy rate after ten cross-validations reached
74.9%. The receiver operating characteristic curve (ROC)
is shown in FIGURE 6. The average Area Under the
Curve (AUC) was 0.8.

IV. DISCUSSION
In this study, we used a two-group cross-localized Hidden
Markov Model approach to brain rs-fMRI data. We focused
on areas with abnormal dynamics states in ASD and discov-
ered their clinical significance.

A. ABNORMAL BRAIN REGIONS WITH SIGNIFICANT
DIFFERENCES
To clearly show where these brain regions belong and to
discuss the physiological significance of these brain region
abnormalities, we merged these brain regions according to
Brodmann divisions. The name and number of the Brodmann
areas and corresponding anomaly areas are shown below:

1) Frontopolar area 10: left middle frontal gyrus, right
middle frontal gyrus, left superior frontal gyrus;

2) Orbitofrontal area 11,12: left orbital inferior frontal
gyrus, right orbital inferior frontal gyrus, left orbital
middle frontal gyrus, right orbital middle frontal gyrus,
right orbital superior frontal gyrus;

3) Inferior Temporal gyrus 20: right inferior temporal
gyrus;

4) Middle Temporal gyrus 21: right middle temporal
gyrus;

5) Fusiform gyrus 37: right fusiform gyrus.

Due to the complexity of the causes and symptoms of
autism, there were also many abnormal areas. By accounting
for the regions listed above, we described their relatedness to
ASD in each region, separately.

Neuroimaging studies have implicated the frontopolar
regions of the prefrontal cortex in playing a central role
in higher cognitive functions such as planning, problem
solving, reasoning, and episodic memory retrieval [35].
The significant positive correlation between FIQ and the
likelihood value of a part of the ROI in this region could
indicate that the function of this region has a greater impact on
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FIGURE 5. Correlation diagram of likelihood value and clinical scale.
(a) The correlation (r = −0.22, p = 0.0092) between ADOS and ASD’s
ROI_39 likelihood value calculated by ASD MODEL. (b) The correlation
(r = −0.21, p = 0.012) between ADOS and ASD’s ROI_39 calculated by
CON MODEL data. (c) The correlation (r = 0.13, p = 0.027) between FIQ
and ROI_113, whose likelihood value was calculated by the ASD MODEL.
(d) The correlation (r = 0.13, p = 0.025) between FIQ and ROI_113, whose
likelihood value was calculated by the CON MODEL.

FIGURE 6. ROC curves of ten cross-validations. The values in the
parentheses denoted the AUC scores.

IQ. This is not contrary to our general understanding because
the functions affected by the frontopolar area are also the abil-
ities examined in theWechsler Intelligence Scale. Significant
abnormalities in this area might explain why ASD showed
lower cognitive abilities than CON. Based on neuroanatomy,
Eric Courchesne et al. [36] also confirmed the abnormality
of the prefrontal cortex of ASD. They found that there was
overgrowth in this area in ASD, and the number of neurons
was significantly higher than that in CON. Combinedwith the
results we obtained, we could infer that the function of the

prefrontal cortex might be abnormal because of overgrowth
in ASD.

Functions of the orbitofrontal cortex include emotions,
decision-making processes and cognition [37]–[39], many of
which are abnormal in ASD. In particular, some research [40]
pointed out that among the many complications of autism,
emotional problems are particularly prominent, and it is often
difficult for such individuals to maintain their emotions in
a relatively stable state. Our results could show that the
emotional problems of autism are caused by abnormalities in
the orbitofrontal cortex, which is consistent with the clinical
manifestations of autism and previous studies [41], [42].
Obviously, the functions of this region also have an important
impact on IQ, so the likelihood of partial ROI correlating
with FIQ further confirmed the role of orbitofrontal cortex
abnormalities in the pathogenesis of autism.

We will discuss the next three areas together because they
are all related to the visual function of the brain. Anatomic,
ablation, and physiological evidence all suggest that the neu-
ronal mechanisms that connect vision and memory in pri-
mates are located within the inferior temporal cortex, which
consists of the middle temporal gyrus and the inferior tempo-
ral gyrus anatomically [43]–[45]. The fusiform is involved in
both detection and identification of faces [46]. From behav-
ioral experiments and clinical observations, it can be seen that
individuals with autismwill scan nonfeature areas of the faces
significantly more often and core feature areas of faces (such
as nose, eyes, etc.) less often [47], [48]. Our findings suggest
that disorganized processing of face stimuli is caused by the
abnormal activation of the visual area of the brain. Multiple
studies involving brain functional connectivity networks and
behavioral experiments found that autism is abnormal in the
inferior temporal gyrus, middle temporal gyrus, and fusiform
gyrus, which supports our results in other ways [49]–[53].
In addition, there is evidence that visuospatial processing is
related to the development of core autistic sociocommunica-
tive impairments [54]. In addition to the results mentioned
above, the significant negative correlation between the likeli-
hood values of ROIs in this area and the ADOS also proved
that the brain status in this area can reflect the severity of
autism.

B. STATISTICAL DIFFERENCES OF LIKELIHOOD VARIANCE
According to the results of the statistical test of the different
regions and the analysis of FIGURE 4, an interesting phe-
nomenon was found, that is, the likelihood values of the seven
different regions of the CON were significantly higher than
those of the ASD in the models trained by ASD or CON.
According to the statistical test results of the variance in
the abnormal area, it could be seen that the variance of the
likelihood value in the CON group was significantly smaller
than that of the ASD group in CON MODEL. In the other
model, although the variance of CON was not statistically
significant, we could still see from the trend that its median
variance was smaller than that of patients with autism. For
this reason, a hypothesis was proposed by us in an attempt
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to give a reasonable explanation for the above experimental
results: Compared to a resting state of CON, the brain of ASD
is often in a chaotic state randomly. When we trained HMMs,
a Bayesian probability model, the effects of these random
states were averaged. The averaged model was less affected
by the random state and was similar to the CON MODEL,
so there was not much difference between the two models.
However, when we calculated the likelihood value based on
such amodel, ASDwould show a lower likelihood value and a
higher variance due to the random state. Rudie et al also found
similar results [55]. They found ASD functional connectivity
networks had lower clustering (i.e., local efficiency) and
shorter average path lengths, which were the characteristics
of random connected networks [56].

C. PERFORMANCE IN ASD IDENTIFICATION
After extracting clinically meaningful brain features, a direct
way to apply them was to use the extracted features to build a
classifier with high accuracy and stability to assist doctors
in making more objective clinical diagnosis. Using ASD
MODEL, CONMODEL and ASD-CONMODEL calculated
the likelihood values of 7 ROIs as features to train the lin-
ear support vector machine model. The average accuracy
rate reached 74.9%, and the average AUC reached 0.8 after
ten cross-validations, which was better than the classifica-
tion accuracy rate (67%) obtained by Alexandre using func-
tional connectivity networks [57]. The classification results
could also explain the effectiveness of our localized ROI and
extracted features.

D. LIMITATIONS OF CURRENT RESEARCH
First, in the process of data selection, to ensure the quality
of the data we use, complete scales and sex matching can be
guaranteed, a large amount of data were eliminated. Although
we selected the data from multiple sites without discrimina-
tion, the representativeness of the experimental data has not
yet been determined. At the same time, because the amount
of data is not very large, the final classification results have
not been verified on an independent test set. Additionally,
we only kept male data because of the inability of men and
women tomatch. Therefore, it is unknownwhether the results
of this study will be applicable to women with autism. If we
can collect enough data for female autism patients in the
future, the above results will be supplemented and updated.
Furthermore, regarding the selection of the number of hidden
states in the experiment, we have combined three factors. The
first is research with some good results; the second is to make
the average likelihood value obtained by the trained model
from the training data as large as possible; the third is the
computing power we can currently achieve. We found that
within a certain range, the greater the number of hidden states,
the larger the mean of the likelihood would be. The larger
likelihood values indicated that the currently trained model
could better reflect the characteristics of the data. However,
when the number of hidden states was large, themean value of
the likelihood increased slowly. Considering our computing

power, we finally chose 20 hidden states. Exploring the phys-
iological meaning of the hidden state and the results in the
higher hidden state is our next work plan.

V. CONCLUSION
In conclusion, the present study demonstrated that the abnor-
mal areas in the frontopolar area, orbitofrontal area, inferior
temporal gyrus, middle temporal gyrus, and fusiform gyrus
are prominent features of ASD and closely related to the
decline in clinical function. This ‘two-group cross-localized
Hidden Markov Model’ provides a robust and powerful
framework for understanding the dysfunctional brain archi-
tecture in ASD and auxiliary diagnosis.
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