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ABSTRACT Safe driving is a relatively new concept that focuses on solving the responsibility attribution
problem for autonomous vehicles (AVs), claiming that once the AVs follow a series of pre-defined safe
driving policies, it is free from liability even when accidents happen. In this work, we propose safe driving
policies for traffic configurations, including straight road, intersection, and Manhattan-like city. Base on
the defined safe driving policies, we offer the concepts of safe driving capacity (SDC) and safe driving
throughput (SDT) to measure the safe efficiency of the traffic configurations. The former measures the
maximumAVs a traffic configuration could accommodate, and the latter measures themaximum throughputs
of safe AVs of a traffic configuration. The values obtained are the fundamental limits of the traffic efficiencies
for liability-free AVs under the defined conditions. The theoretical performance bounds give people insights
on the potential limitations of the safe traffic efficiencies. Finally, this work provides analytical results of
SDC and SDT on all the traffic configurations mentioned with explanations, implications, and trade-offs on
the issues that may have effects on them.

INDEX TERMS Self-driving car, autonomous vehicles, safe driving throughput, safe driving capacity,
VANET, V2V, collision avoidance, C-ITS, cooperative intersection management.

I. INTRODUCTION
The concept of safe driving is first proposed by the Intel
Mobileye group [1] under the name of responsibility-sensitive
safety (RSS). It uses the formal method to define the safe-
ness of an autonomous vehicle (AV). Unlike the convention
definition of safety, RSS defines the safeness of AVs upon
whether it’s liable when an accident happens and the liability
attribution is based on a set of rules. In this work, we name
these rules safe driving policies. If these rules are properly,
reasonably, and completely defined, the AV-related constitu-
tional issues studied by Merchant and Lindor in [2] and the
concerns on the relations between AVs and pedestrians [3]
may to some extent be relieved. The original work focused on
the logic, the conditions, and the liveness of the safety rules.
It covered a variety of scenarios and traffic configurations
an AV might encounter but mentioned very little on the
efficiencies of AVs based on such rules.

Theoretic performance bounds provide fundamental
understating of systems. Shannon’s work [4] lay the

The associate editor coordinating the review of this manuscript and

approving it for publication was Baozhen Yao .

foundation of communications systems and gives theoretic
bound on their efficiencies through the proposition of infor-
mation entropy. Gupta and Kumar [5] investigated the the-
oretic capacity of two types of N-node wireless networks,
Random Networks and Arbitrary Networks. In this work,
motivated by these works, we aim to investigate the the-
oretic performance bound for safe-driving vehicles on the
roads. We first formalize the concept of efficiency under
the safe driving context and proposed two metrics, SDC
and SDT, as the measure of safe driving efficiency. The
former measures how many AVs that do not violate the
safe driving rules an area (a traffic configuration) could
accommodate, and the latter measures the number of safe
AVs to pass through the traffic configuration within a
fixed time. As there are hundreds of traffic configurations,
in this work, we focus only on the following three types
for their simplicity in theoretical studies and their universal-
ity. They are straight road, intersection, and Manhattan-like
city, as shown in Fig. 1. Many related studies of vehicle
behaviors in these traffic configurations, depends on the
focus, have been done. For the straight road, Zhang et al.
focused on the over-riding mechanism and proposed the idea
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FIGURE 1. Traffic configurations: A is the straight road, B is the
intersection, and C is the the Manhattan-like city.

of time-to-last-second-braking [6]. Wu et al. focused on the
linear stability required for platoon safety in emergent situa-
tions on a straight road. Ayumu et al. studied the relationship
between rear-end collision and automatic brake control [7].
Nunen et al. and Solyom et al. discussed the safety and limita-
tions of truck platooning [8], [9]. Aoki and Rajkumar design
algorithms for vehicle merging when two straight roads are
merged [10]. Wang and Wei showed the efficiency limitation
of straight road base on safe driving mechanisms proved that
the enabling of V2V communication is positive to the overall
efficiency [11].

For the intersection, depends on whether there is central-
ized signaling, the study of intersection could be classified
into the signalized one and the non-signalized one. And ways
of managing them varies. For the non-signalized intersection,
which is the setting of this work, Chen and Englund [12]
did a complete survey and categorize the studies according
to the algorithm design philosophy into the following three
classes: resource reservation, trajectory planning, and colli-
sion avoidance (CA). The first class treats the intersection as
a resource to contend and reserve for and provide analysis and
heuristics, aiming to improve passing efficiency [13], [14].
The second class designs trajectory planning algorithms to
find the optimum route with minimum risk for AVs [15].
The third class focuses on avoiding collisions with brakings
and steerings and, at the same time, manage to enhance the
passing efficiency [16]–[20].

In general, intersection management without further
restrictions is a multi-agent, and thus NP-hard problem [21].
In order to obtain an analytic result, problem relaxation is
required. The approaches we used to relax the problems are
motivated by the following works: The worst-case study from
the work of Nilsson et al. [22]; The constant spacing strategy
from the work of Darbha and Hedrick et al. [23]; The rear-end
collision avoidance with brake control and emergency brak-
ing from Ayumu et al. and Segata et al. [7], [24]; The idea to
quantify the DoF of AV by Rodrigues de Campos et al. and
the safety assessment from the Ph.D. thesis of Althof [25].

The major distinction between our work and all the ones
mentioned above is clear.We are the first group to propose the
idea of SDC and SDT that measures the safe AVs on roads.
And we are also the first group to study the fundamental

efficiency limits in the context of safe driving with precise
analytic results. The trade-off of the precision comes from
our relatively idealistic presumptions made comparing to the
rest that tries to make their work as practical as possible but
could only give heuristics.

To conclude, the major contributions of this paper are:

1) We are the first group to analyze the traffic efficiencies
under the context of safe driving.

2) We formalize the concept of safe driving efficiencies in
both space and time domain and obtain their achievable
analytic upper-bounds under the provided conditions;
furthermore, some direct corollaries are given.

We organized the rest of this paper as follows. In section II,
we give an overview of the problem and elaborate settings
and requirements needed for later analysis. In section III,
we first define the safe driving policies with math and some
modal languages. Then we set the metrics SDC and SDT as
the indications of the efficiencies under safe driving policies.
In section IV, we analyze the traffic efficiencies of sev-
eral traffic configurations and their behaviors. In section V,
we discuss the direct results from the theorems proven in
Section IV. We conclude the work in Section V. Most proofs
of this work are left in the Appendix section.

II. PROBLEM OVERVIEW AND SETUP
A. VEHICLE REQUIREMENTS AND CAPABILITIES
In the following contexts, All AVs are presumed to have iden-
tical physical characteristics and capabilities (Same vehicle
length, width, response time, acceleration, and deceleration).
The maximum accelerations and decelerations are presumed
to be constant. The AVs are equipped with high-precision
mapping, navigating, positioning, and perceiving systems
along with the wireless V2X interfaces like 4G/5G and
DSRC. The perceiving system consists of all the avail-
able visual sensors such as LIDAR, camera, and radar. The
inter-vehicle communication is presumed to be free from
attack and is always reliable as long as received. All the traffic
configurations are signal-free, and roads are orthogonal to
one another if intersected, as shown in Fig. 1. All the traf-
fic configurations have the same speed limit [Vmin,VMax].
No traffic facilities nor pedestrians unless otherwise speci-
fied, and no AVs would form platoons. Each of the AVmakes
decisions following identical decision process characterized
by a four tuple < S,A, T ,R >. S denotes the state space,
which is the collection of all possible situations the vehicle
might encounter while driving. A denotes the action space
representing all the possible actions the agent is capable of
apply under the current state. In general context, it could be
referred to actions such as brake, change the heading, lane,
speed, etc. However, in this work, it is confined to brake
with maximum braking power for tractable analysis. T is the
transition function with domain and co-domainS×A×S ′→
[0, 1]. R: S ×A→ R is the reward function to evaluate the
goodness of a chosen action.

95780 VOLUME 8, 2020



Y.-Y. Wang, H.-Y. Wei: Road Capacity and Throughput

B. PRESUMPTIONS AND DEFINITIONS OF
SAFE DRIVING POLICIES
We denote the trace of states for the ith AV on the road as
σi = <si0, si1, . . . , siŤ>, where the subscript 0 and subscript
Ť denote the current instant and a finite system-dependent
time horizon, respectively. Also, let W and L be the width
and length of the AVs. To address the policy-based safety,
We define a set that is a sub-set ofA and call the set best effort
reaction (BER). It contains only those at ∈ A that minimize
the probability of leading to an accident.

BER(st ) = argminat∈A{maxst+1∈{accident}T (st , at , st+1)}.

In the following context, taking at ∈ BER(st ) should lead
the AVs to accident with probability 0 almost surely, that is,
no collision is allowed. Also, we only consider the scenarios
that the BER within the time horizon never becomes empty
for the logical liveness issue. Furthermore, we presume that
the larger the deceleration, the better the reward. Briefly
speaking, ∀at ∈ BER(st ), the following three equations
always hold
• maxst+1∈{accident}T (st , at , st+1) = 0 a.s..
• |a1| > |a2| ↔ R(s, |a1|) > R(s, |a2|), ∀s ∈ S.
• BER(st) 6= {},∀t ∈ [t0, t0 + Ť ].
The t0 in the last equation denotes the current instance.

Now we could define the safe state of an AV. We say an AV,
ωr , is safe, or is in safe state, if and only if there would be no
collision between the rear AV ωr and the front AV ωf , when
ωf applies any possible action abruptly, and ω1 responds
to the action with the action in its BER. For straight road
analysis, we define the longitudinal distance (inter-vehicle
distance) of AVs on the same lane as the distance of their body
center measured along the direction of the road parallel to the
ground. With the safe definition given, we say a longitudinal
distance is safe if and only if it’s sufficient to make the rear
AV stay within safe states no matter what the front AV does.

For the intersection, we define the concept of intersection
distance and exposure time. The intersection distance of an
AV is the euclidean distance measured along the direction
parallel to the ground from the AV center to the intersection
center. The red arrows in Fig. 2 illustrates the intersection
distances of ω1, ω2 and ω3. If the intersection distance of an
AV is sufficient for it to remain in a safe state when applying
its BER right after a fixed response time τ from the first
time an emergency happens, it’s safe. The exposure time is
the first time point when vehicles from two intersected lanes
of an intersection notice the coming of each other through
either their perception system or the V2V communication
when they are within the communication rangeDcomm. When
first exposed, the AV closer to the intersection would be the
prioritized vehicle, and the other one would be the yielding
vehicle. The priority is relative, i.e., ω2 might be the priori-
tized vehicle to ω3 but is the yielding vehicle to ω1, as shown
in Figure.2. If there is no counter-lane vehicle detected at
the intersection distance 1

√
2
Dcomm, the vehicle accessing the

intersection is defaulted to be the prioritized vehicle. For

FIGURE 2. The intersection priority and exposed time illustration.

the time between an AV is exposed and the time it passes
through the intersection, it’s not allowed to decelerate if it’s
the prioritized vehicle, and it’s not allowed to accelerate if
it’s the yielding vehicle. If an AV is both prioritized to one
AV and yielding vehicle to another, it should keep constant
velocity between the time of its second exposed (that make it
prioritized) to the time it pass through the intersection.

Now we close this section by the definition of safe driving
capacity (SDC) and safe driving throughput (SDT ). The SDC
of a traffic configuration is the maximum number of safe state
AVs that could drive within. The SDT of a traffic configura-
tion is the number of safe AVs that could pass through a cut
of the traffic configuration within a given amount of time T.
If not otherwise specified, we set the T to be a second.

III. ANALYSIS ON SDC AND SDT
In this section, we will derive the two safe driving efficiency
metrics: Safe Driving Capacity (SDC) and Safe Driving
Throughput (SDT) in the following three scenarios.

1) Straight Road
2) Intersection
3) Manhattan-Like City

The straight road and the intersection are the building
blocks for the analysis of the city. With the given definitions
and policies, we first analyze the safe efficiencies of the two
in terms of SDC and SDT. Base on the result, We then derive
the SDC and SDT of a city.

A. STRAIGHT ROAD
The overall derivation of SDC and SDT for a straight road
R is based on the concept that the longitudinal distance kept
between two AVs should be no less than the minimum safe
longitudinal distance inf dRLS . Such distance should be suf-
ficient so that even the front vehicle ωf applies maximum
braking power without early warnings and the rear vehi-
cle, ωr , without knowing the emergency, applies maximum
acceleration u throughout the response time τ , ωr would not
collide withωf if it performs the action in its BER (Maximum
braking power here). Let vr and vf be the velocity of ωr and
ωf respectively and amax be the maximum deceleration of the
vehicle, then for ωr not to collide with ωf , their longitudinal
distance should always be greater than L. Let dRLS (vr , vf ) be
the longitudinal distance between ωr and ωf at the moment
ωf starts to brake with amax , then until ωr fully stops, it is
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FIGURE 3. Safe longitudinal distance surface in different angles. One can
clearly see a saddle point and thus non-convex.

required that

dRLS (vr , vf )+
v2f

2amax
≥ L + τ (vr +

uτ
2
)+

(vr + uτ )2

2amax
. (1)

The LHS of inequality is the sum of initial inter-vehicle
distance and the distance ωf would forward throughout the
deceleration. The RHS is the distance ωr would forward
before it stops. Re-organize the terms, we have

dRLS (vf , vr ) ≥ τ (vr +
uτ
2
)+ L +

(vr + uτ )2 − v2f
2amax

. (2)

Adding the condition that the inter-vehicle distance should
never be less than L that corresponds to the trivial case that
ωf stops after ωr stops, we have the general form

dRLS (vf , vr )≥max{τ (vr+
uτ
2
)+ L +

(vr + uτ )2 − v2f
2amax

,L}.

(3)

Since the worst case only happens at either the moment ωf
starts to brake with amax or the time that ωr stops, we can be
sure the correctness of (3).

1) SDCR AND SDTR
To find the SDCR and SDTR of a Ṅ -lanes Ṁ -meter road mea-
sure within the time T , we first index the AVs along the road
from rear to front in increasing order. Then by definitions,
we have

SDCR(Ṁ , Ṅ )= sup
n

inf
λIλ≥0

Ṅ
(
n+λ{1−

∑n−1
i infdRLS [ωi]

Ṁ
}

)
.

(4)

SDTR(T , Ṅ )= sup
n

inf
λIλ≥0

Ṅ
(
n+λ{1−

∑n
i inf d

R
LS [ωi]∫ T

0 vn(t)dt
}

)
.

(5)

The λs on the RHS of (4) and (5) are the KKTmultipliers cor-
respond to the constraints that the results are measured within
the specified space range Ṁ and time range T . dRLS [ωi] is the
longitudinal distance between the ith AV and the (i+ 1)th AV
in its front. This primal form of the problem is intractable due
to its multi-agent nature and its non-convexity in the feasible
set shown in Fig. 3. We define the concept of steady-state

to relax the problem. We say a road is in steady-state if all
the AVs within are driving with constant velocity v for which
Vmin ≤ v ≤ VMax and each of the inter-vehicle distance is
greater than inf dRLS (v, ·). Here d

R
LS (v, ·) ≡ dRLS (v, v). In the

steady-state, we have ∀ i, j ∈ {0, 1, . . . , n− 1}

inf dRLS [ωi] = inf dRLS [ωj]. (6)

(6) states the minimum safe inter-vehicle distance between
different AVs, when R is steady, are independent. For R that
is initially unsteady, one could have it steady by letting every
AV in R to keep a constant safe distance with the AV in its
front except the AV at the very front of R that has no front
AV to follow and keep distance with. This procedure would
terminate within finite time if the conditions in the following
lemma hold. The proofs of the lemmas and theorem follows
are left in the Appendix.
Lemma 1: If all the AVs in R with |R| < ∞ are safe

initially with u > 0 and amax > 0, then the procedure
described above terminates within finite time.

Here |R| stands for the number of AVs in R. Lemma 1
states that there exists a finite time way to make R
steady. The following lemma holds true when R is
steady.
Lemma 2: When a R is steady and Vmin ≤ v ≤ VMax ,

the following relations hold

VMax
inf dRLS (VMax , ·)

≥
v

inf dRLS (v, ·)
. (7)

∑
ωi∈R

inf dRLS [ωi] ≥ inf
( ∑
ωi∈R

dRLS
)
= |R| inf dRLS (Vmin, ·).

(8)

Base on lemma 2, (4), and (5), we have the following
theorem
Theorem 1: The SDCR of R with Ṁ -meter length and

Ṅ -lanes in the steady-state is

SDCR(Ṁ , Ṅ ) = Ṅb
(Ṁ )

inf dRLS (Vmin, ·)
c

= Ṅb
(Ṁ )

τ (Vmin+ uτ
2 )+L+

(Vmin+uτ )2−V 2
min

2amax

c. (9)

And the SDTR of R with Ṅ lanes in the steady-state is

SDTR(T , Ṅ ) = Ṅb
VMaxT

inf dRLS (VMax , ·)
c = Ṅb

VMax
VMaxτ + L

c.

(10)

The results are shown visually in Fig. 4, Fig 5, Fig. 6, and
Fig. 7. The figures show how safe driving efficiencies are
affected by changing some of the parameters while fixing
others. The parameters include the maximum acceleration,
the response time, and the upper and lower-speed limits set
by the road.
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FIGURE 4. The SDCR under different τ and aMax .

FIGURE 5. The SDCR under different aMax and Vmin.

FIGURE 6. The SDCR under different τ and Vmin.

FIGURE 7. The SDTR under different τ and VMax .

B. INTERSECTION
Fig. 8 shows an illustration of the type of intersection we
considered. We say an AV is safe in the intersection if its

FIGURE 8. Safe driving analysis at an intersection.

intersection distance is sufficient for it to avoid the colli-
sion with AVs on the contrary lane with higher priorities by
applying maximum braking power when they make emergent
moves. To achieve the optimum safe efficiencies in the inter-
section, we presume that there are always AVs accessing the
intersection. Since the two intersected roads l1 and l2 are of
equal importance in our setting, If the ith AV from l1 to access
the intersection be labeled as ω2i−1 and the ith AV to access
the intersection in l2 beω2i. For fairness,ωi would prioritized
ωj on the counter lane if j < i. Under this setting, finding the
SDCI of two Ṁ -meter roads l1 and l2 could be written as

SDCI (Ṁ ) = sup
n

inf
λIλ≥0

2n+ λ(1−

∑n−1
i d ILS [ωi]

Ṁ
). (11)

The SDTI measured within time T could be expressed as

SDTI (T ) = sup
n

inf
λIλ≥0

n+ λ(1−

∑n
i inf d

I
LS [ωi]∫ T

0 vn(t)dt
). (12)

Here d ILS [ωi] stands for the inter-vehicle distance between
the ith AV and (i−2)th AV on the same lane. As shown in (11)
and (12), even though we have greatly simplified the problem
by considering only single lane on each intersected road and
also have we reduced the action space of AVs by only allow-
ing them to accelerate or decelerate, (11) and (12) still fall
in the category of multi-agent problem, which is intractable
in general. To solve this issue, similar to how we relax the
straight road efficiency problem, we define the steadiness of
an intersection as follows: An intersection is steady if and
only if both l1 and l2 are steady. By lemma 1, we know that
there exists ways to make l1 and l2 steady if they are treated
independently. However, they are not always independent
now since they are intersected. Suppose AVs in l1 keep identi-
cal safe inter-vehicle distance dH with steady-state velocities
vH and AVs in l2 keep dV in between with velocities vV ,
the following lemma states that only if dH , dV , vH and vV
satisfy certain conditions could the intersection be steady.
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FIGURE 9. The upper half figure illustrates the passing scenario during
the intersection, and the lower half, ranging from (A) to (F), shows the
scenarios with different velocities and inter-vehicle distances. (A) vH > vV

and
dH
vH

>
dV
vV

(B) vH < vV and
dH
vH

>
dV
vV

(C) vH > vV and
dH
vH

<
dV
vV

(D) vH < vV and
dH
vH

<
dV
vV

(E) vH = vV ,
dH
vH

=
dV
vV

but not symmetric

(F) vH = vV ,
dH
vH

>
dV
vV

and symmetric. (F) is further illustrated in Fig. 10.

Lemma 3: If dH , dV < ∞ are currently the least safe
inter-vehicle distance of horizontal and vertical intersected
roads of an intersection respectively, then the intersection
could be steady if and only if there exist m̃, ñ ∈ N such that

dV
vV
= m̃

dH
vH

(13)

or

ñ
dV
vV
=
dH
vH
. (14)

Case A to case D in Fig. 9 illustrate all possible rela-
tions between vH , vV , dH and dV . The figure also shows
the intuition on its proof, which is left in the Appendix.
For fairness reason and to simplify the original problem,
vH = vV is required since none of the roads should work at
higher velocity. The following lemma states that under such a
setting, the efficiency is optimized when the passing pattern
is symmetric, i.e., every AV splits equally the inter-vehicle
distance of another road when it’s at the intersection point,
as shown in Fig. 10 and case E and case F in Fig. 9.
Lemma 4: Let dH < ∞ and dV < ∞ be the

current least safe inter-vehicle distance of the horizon-
tal road and the vertical road of an intersection, respec-
tively. Then if vV = vH and the intersection is steady,
it achieves optimum efficiency at velocity v if and only if
dV = dH = inf d ILS (v). Furthermore, any AV, when at the

FIGURE 10. The detail illustration of case F in Fig. 9.

intersection point, splits the inter-vehicle distance of another
road equally.

Lemma 3 guarantees that when the conditions in lemma 4
are met, the intersection could be steady since m̃ and ñ in this
case are both 1. Thus under the condition that vH = vV and
all the inter-vehicle distances on the same road are identical,
according to lemma 4, to obtain the optimum safe efficiency
of an intersection, it suffices to decide how close the safe
distances between AVs on the same road could be. Such
distance should be sufficient for the yielding AV to claim its
safeness by applying BER whenever the pure prioritized AV
has any emergency moves. In the following, we analyze the
least safe inter-vehicle distance inf d ILS (v, ·) when AVs in the
intersection are driving at velocity Vmin ≤ v ≤ VMax .

1) SAFE LONGITUDINAL DISTANCE (dILS)
By the symmetric setting, let the pure prioritized vehi-
cle ωp have the intersection distance dc, and the yielding
vehicle with the least intersection distance has the inter-
section distance dc +

dp
2 . For dc belongs to each of the

zones (ZI ,ZII , and ZIII ) shown in Fig. 8, we find the least
dp
2 so that dp could serve as d ILS for the yielding vehicle.
In ZI , if the prioritized vehicle ωp applies maximum braking
power amax , it stops before the intersection, and so we do
not need to set any constraint on the action space of the
yielding vehicle ωy. Thus the dc corresponds to ZI has the
range

dc ≥
v2

2amax
+

1
2
(W + L). (15)
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For the ZII case where the prioritized vehicle ωp stops
within the intersection so that the yielding vehicle ωy should
stop before the intersection. Thus dc should satisfy the fol-
lowing inequality

dc +
1
2
(W + L) ≥

v2

2amax
≥ dc −

1
2
(W + L). (16)

Therefore, the range of dc is

v2

2amax
−

1
2
(W + L) ≤ dc ≤

v2

2amax
+

1
2
(W + L). (17)

The inter-vehicle distance for ωy should be sufficient so that
after the response time, it could stop before the intersection.
For simplicity, we replaceW + L with e.

v2

2amax
+ vτ ≤

1
2
dp + dc −

e
2
. (18)

dp ≥
v2

amax
+ e− 2dc + vτ. (19)

Plugging-in the dc range for ZII , we have

dp ≥ 2(vτ + e). (20)

For ωp in ZIII , which corresponds to that even it brakes
with amax , it will still slide through the intersection and so
that as long as ωy arrives at the intersection later than ωp,
there will be no collision. There are two sub-phases here:
The first one is that dc is still sufficient so that after τ , ωy
is still before the intersection. Let the time ωy arrives at the
point (W + L)/2 before intersection be ty and the time ωp
arrives at the point (W + L)/2 after the intersection be tp,
we have

ty =
1

amax
{v− [v2 − 2amax(dm − vτ −

e
2
)]

1
2 } + τ.

tp =
1

amax
(v− [v2 − 2amax(dc +

e
2
)]

1
2 ).

Solving the valid range of dp, it suffices to have tp ≤ ty,
Let k be dm − vτ − e

2 and β = dc + e
2 , we have√

v2 − 2amaxk ≤
√
v2 − 2amaxβ + amaxτ. (21)

Squaring both sides and re-arranging the terms, we have

(β − k)−
amax
2
τ 2 ≤ τ

√
v2 − 2amaxβ. (22)

Squaring both sides again, we get

(β − k)2 − amaxτ 2(β − k)+
1
4
a2maxτ

4
≤ τ 2(v2 − 2amaxβ).

(23)

By β − k = − 1
2dp + e+ vτ and dc − dm = − 1

2dp, we have

(−
1
2
dp + e+ vτ )2 − amaxτ 2(−

1
2
dp + e+ vτ )+

1
4
a2maxτ

4

≤ τ 2(v2 − 2amax(dc +
e
2
)). (24)

Expanding and re-arranging the terms, we have

1
4
d2p + (

1
2
amaxτ 2 − e− vτ )dp

+ (2amaxτ 2dc + e2 + 2evτ +
1
4
a2maxτ

4
− amaxτ 3v) ≤ 0.

(25)

Solving the quadratic inequality of dp, we get

dp≥2e+ 2vτ − amaxτ 2 − 2τ
√
(v2 − amax(e+ 2dc)).

(26)

Since dc ≤ v2
2amax
−

e
2 and τ > 0, we have

dp ≥ 2e+ 2vτ − amaxτ 2. (27)

This is the second sub-phase for ZIII . In this sub-phase, ωy
will access the intersection during its response time. Similar
to the previous analysis, for ωy, we have

ty =
1
v
(dc +

1
2
dp −

e
2
)

and

tp =
1

amax
(v− [v2 − 2amax(dc +

e
2
)]

1
2 ).

By the requirements of this sub-phase, we have

τ ≥ ty ≥ tp. (28)

For the first inequality, we have

dp ≤ 2vτ − 2dc + e. (29)

Comparing the result with (20), since

2vτ − 2 dc + e < 2(vτ + e),

we know that the dp result in this sub-phase would be domi-
nated by the result in ZII as the case in ZIII − 1.

2) WORST CASE ANALYSIS AND GENERALIZED FAIRNESS
Safe driving requires the responding vehicle to take actions
according to the worst possible actions the AV in its front or
the AV on the contrary-lane of the intersection with priori-
tized status may take. In both ZII and ZIII , it makes sense to
say that ωp with braking power amax is the worse than with
any other a < aMax . Suppose it brakes with an a < amax ,
we have tp(a) < tp(amax), and thus ty > tp(amax) > tp(a).
It means that the dp derived in (20) and (27) are sufficient
to guarantee the safeness of ωy. In ZI , the worst action to
be presumed is not a = amax but 0 < a < amax because
braking with less a would force ωy to respond to the action
instead of doing nothing as discussed in Case ZI . However,
the derived dp in ZII is still sufficient for the safeness of ωy
since dc(ZI ) ≥ dc(ZII ). We plug-in this inequality into (18),
we can see that the inequality for dp still holds.

In our intersection settings, we let an AV from one lane to
access the intersection after the AV from the contrary-lane has
accessed it, and so on so forth. In this 1-1 manner, we say the
intersection is fair since the priority level is only determined
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by the intersection distancewhen twoAVs are exposed.When
both lanes are full of vehicles, AVs from both lanes will
take turns accessing the intersection. Now we generalize the
fairness concept as follows. Let AVs crossing the intersection
in a similar inter-laced manner, but now, M AVs after M
AVs. Here M ≥ 1 is a positive integer. In the long run,
the intersection is still fair in terms of theAVs passing through
it from both lanes. Now we analyze the efficiency of the
generalization. From (35), we are able to treat the M AVs
on the same lane as a larger vehicle with identical width W
but longer length L ′ = (M − 1)(vτ + L) + L. Let’s call the
M -consecutive AVs a M -group. By the intersection results
obtained, in order to achieve SDT, the inter-group distance
should at least be 2(vτ +L ′+W ). The average time required
for a M-group to pass through the intersection is

( 32M −
1
2 )VMaxτ + ( 32M −

1
2 )L +W

MVMax
≥
VMaxτ + L +W

VMax
.

(30)

We can analyze the SDC similarly. Since the average
inter-vehicle (inter-group) distance increases forM > 1. That
is, for integers M1 and M2 with the relation 1 ≤ M1 < M2,
the safe efficiencies of M1-group always outperforms the
M2-group provided the measuring time T of SDT and the
measuring distance M̂ of SDC be sufficient.
For insufficient measuring time or distance, there may be

cases where the efficiency of M2-group is better than the
M1-group’s. In this case the intersection is degenerated into a
road and not the scenario that we would liked to focus on.

Finally, by combining (20), (27), and inf dRLS . One could
discover that 2(vτ + e) > 2vτ + 2e− amaxτ 2. The minimum
inter-vehicle distance to keep in a steady intersection is

inf d ILS (v, ·) =max{inf dRLS (v, ·), 2(vτ + e)} (31)

(31) means that for any ωi with current intersection dis-
tance dc, the AV on the contrary-lane, ωj, with intersection
distance greater than dc + 1

2 min d ILS , could be in safe state
before ωi crosses the intersection. And similar argument
could be applied to ωk , the AV in ωj’s front which has
intersection distance dc − 1

2 inf d
I
LS (v, ·) ≥ 0. To ωi, since ωk

is its prioritized vehicle. The difference in their intersection
distance, 12 inf d

I
LS (v, ·), is sufficient, and thus ωi is safe. Now

by (7), (8) and (31), we have the following lemma.
Lemma 5: When an intersection is steady, we have

VMax
inf d ILS (VMax , ·)

≥
( v

inf d ILS (v, ·)

)
(32)

and∑
ωi∈I

inf d ILS [ωi] ≥ inf
(∑
ωi∈I

d ILS
)
= |I | inf d ILS (Vmin, ·).

(33)

By (11), (12), and lemma 5, we have the following theorem.

TABLE 1. Straight road and intersection notations.

Theorem 2: The SDCI of an steady intersection inter-
sected by 2 Ṁ -meter single-lane roads is

SDCI (Ṁ ) = 2b
(Ṁ )

max{inf dRLS (v, ·), 2(vτ + e)}
c (34)

and similarly, the SDTI of the intersection is

SDTI (T ) = 2b
(VMaxT )

2(VMaxτ + e)
c. (35)

The SDCI and SDTI under different Vmin, VMax , and τ ,
is given in Fig. 11 and Fig. 12. As the figures indicate,
the lower response time τ results in higher safe efficiencies.
Also, at v = Vmin, the SDCI is achieved for all τ . At v =
VMax , the SDTI is achieved for all τ .

C. CITY (mc (LcV ),nc (LcH ))
We extend the measure of safe efficiencies to Manhattan-like
city, as illustrated in Fig. 13. Since a city is a combination
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FIGURE 11. The SDCI under different Vmin and τ .

FIGURE 12. The SDTI under different τ and VMax .

FIGURE 13. A Manhattan-like city with 2 horizontal roads (nc = 2)
intersected by 3 vertical roads (mc = 3).

of intersections and straight roads, as in the previous cases,
we first define the steadiness of a city. We say a city is steady
if all the roads and intersections within the city are steady.
By maximum flow min cut theory, if all of them are steady
with maximum safe driving efficiencies, the city achieves its
optimum efficiency. However, the inter-intersection distance
may bring dependencies to the intersections. We use the
following lemma to state the condition required to make all
the intersections steady as if there are no dependencies.
Lemma 6 (Achievability): If all the AVs in a city are driv-

ing with velocity v and their inter-vehicle distances are iden-
tically dC ≥ inf d ILS (v, ·), then it could always be steady.
If the conditions specified in lemma 6 ismet, we could have

the following theorem for SDCC and SDTC .

TABLE 2. Manhattan-city notations.

Theorem 3: If all the inter-intersection distance of a city is
greater than the constant spacing inter-vehicle distance dc ≥
d ILS , then its SDCC is

SDCC (mc(LcV ), nc(LcH ))

= mcb
(LcV )

inf d ILS (Vmin, ·)
c + ncb

(LcH )

inf d ILS (Vmin, ·)
c, (36)

and its SDTC

SDTC (mc, nc,T ) = (mc + nc)b
(VMaxT )

2(VMaxτ +W + L)
c. (37)

Lemma 6 and Theorem 3 state that if all the AVs keep
the constant spacing between one another and this spacing
distance is greater than the minimum safe inter-vehicle dis-
tance required for the intersection to work in steady-state,
also, the inter-intersection distance is sufficient. We could
always make the city steady, and the SDC and SDT of the
city could be acquired from the modification of the result
of a single intersection. The resulted SDCC represents the
maximum number of AVs driving within the valid velocity
range that could be safe in terms of responsibility. In other
words, when any of the AV brakes with maximum braking
power, there would be no collisions. The resulted SDTC gives
the number of AVs that could pass through the city with the
same safety guarantee.

IV. DISCUSSIONS
We organize the SDC and SDT results in Table 3. These
results imply that the upper and lower-speed limits set by
the roads (Vmin and VMax) have a direct impact on the safe
driving efficiency bounds. Furthermore, the results obtained
show a clear relationship on how the parameters of an AV
affect the overall safe efficiencies. These equations not only
answer the safe efficiencies of the traffic configurations but
also reveal the AV requirements when a city is asked to reach
certain safe traffic efficiencies. The following corollaries are
the immediate consequence of Theorem 3, and thus their
proofs are omitted.
Corollary 1: Given a city of size (mc(LcV ), nc(LcH )) and

all the AVs driving within to have maximum braking
amax > 0 and maximum response time τ . If the city is
required to have throughput no less than ρ̃C, the upper-
speed limit VMax set by the city should be no less than

2ρ̃C(L+W )
(mc+nc)T−2ρ̃Cτ

; On the other hand, if the city is required to

have a capacity of no less than C̃, the lower-speed limit set
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TABLE 3. Summary of all SDC and SDT results.

by the city Vmin should be no greater than 1
τ
(mcLcV+ncLcH

C̃
−

L −W ).
Corollary 2: Given a city of size (mc(LcV ), nc(LcH )) with

speed limits [Vmin,VMax] and all the AVs within to have
maximum braking amax > 0. If the city is required to have
throughput no less than ρ̃C, the response time τ of the AVs
should not exceed (mc+nc)T

2ρ̃C
−

(W+L)
VMax

; If the city is required to

have capacity no less than C̃, then the response time τ should
be no greater than 1

v (
mcLcV+ncLcH

2C̃
− L −W ).

Both Corollary 1 and Corollary 2 are based on the implicit
assumption that

inf dRLS (Vmin, ·) < 2(Vminτ +W + L).

And thus we have

inf d ILS (Vmin, ·) = 2(Vminτ + L +W ).

Corollary 1 shows that if a certain safe traffic efficiency
is to be achieved, then the speed limits set by the traffic
configurations would have some requirements. Corollary 2
states similarly but in a reverse way: When the speed limits
and vehicle capabilities except the maximum response time
τ are fixed, if the city is required to achieve a certain level of
efficiency in terms of either capacity or throughput, then there
exists a minimum requirement on the response time of AVs
so that only when all the AVs could respond to emergencies
in a sufficiently short time that is less than a threshold could
the required efficiencies be achieved.

V. CONCLUSIONS
In this work, the concepts of SDC and SDT are proposed.
They measure the capacity and throughput of AVs base on
the safe driving policies that guarantee all the abiding AVs to
be free of liability even when an accident happens. We cir-
cumvent the multi-agent difficulty by defining steady-state
of the traffic configurations so that closed-form results of
SDC and SDT under several traffic configurations could be
obtained. They are organized in Table 3. We also show the
implication of the derived results in the discussion section
that these formulae not only reveal the optimum safe effi-
ciencies but also give the least requirements on either velocity

constraints of the traffic configurations or the least response
time required for the AVs. To conclude, this work shows that,
on the one hand, to maximize safe transportation efficiency,
the AVs should drive as fast as possible and drive as close to
other AVs as possible. On the other hand, the AVs need to
keep the minimum distance to other AVs for driving safety
base on the responsibility settings.

APPENDIX
A. PROOF OF LEMMA 1
Given a road R with |R| AVs ω1, ω2, . . . , ω|R| within with
velocities Vmin ≤ v1, v2, . . . , v|R| ≤ VMax . Suppose the
very first AV that has no front vehicle is ω|R| with velocity
v|R| 6= VMax , and the road R has length LR. We sequentially
makeωi for i from 1 to |R|−1 to do the following: If vi ≤ vi+1,
ωi accelerates until vi = vi+1. On the other hand, if vi > vi+1,
we make ωi decelerate with a where 0 < a ≤ amax so that
when d(ωi, ωi+1) becomes inf dRLS (vf , ·), it has the velocity
vi+1. When this procedure terminates, all the AVs would have
velocities v|R|. The time required to terminate, Tsteady, could
be written as

Tsteady ≤
|R|−1∑
i

tsteady[i] (38)

tsteady[i] is the time required for the ith AV to finish the
procedure and the inequality comes from the fact that the time
for a procedure might overlap with another. Now it suffices
to bound each tsteady[i] in the summation term. Since for all
ωi and ωi+1, their speed difference would be no more than
VMax−Vmin, each tsteady[i] would be bounded by

2(VMax−Vmin)
max{a,u} .

So the LHS of (38) could be bounded as

Tsteady ≤
|R|−1∑
i

tsteady[i] ≤
2(VMax − Vmin)|R|

max{a, u}
<∞ (39)

Thus we complete the proof. �
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B. PROOF OF LEMMA 2 AND THEOREM 1
For (7), to check whether at v = VMax would be the supre-

mum, we differentiate
inf dRLS (v,·)

v with respect to v

∂

∂v

dRLS (v, ·)

v
=
−1
v2

{τ 2u2
amax

+
τ 2u
2
+ L

}
≤ 0 (40)

and thus for Vmin ≤ vi ≤ vj ≤ VMax − uτ , we have

inf dRLS (vi, ·)

vi
≥

inf dRLS (vj, ·)

vj
(41)

So at v = VMax−uτ ,
inf dRLS (v,·)

v is minimized and its recipro-
cal, v

dRLS (v,·)
, is maximized. For velocity v in [VMax−u,VMax],

since we have

inf dRLS (v, ·)

v
≥

inf dRLS (v,VMax)

v
≥

inf dRLS (VMax , ·)

VMax
(42)

It’s clear that VMax
inf dRLS (VMax ,·)

is the supremum for all v within
[Vmin,VMax]. Since SDTR is proportional to this reciprocal,
we know that SDTR is maximized when v = VMax and
thus we complete the proof of (7) and (10). For (8), the first
inequality is simply by the fact that local optimum would not
be better than the global optimum. For the equality part, since
all the AVs have identical velocity for R is steady, they have
identical least safe inter-vehicle distance. This distance is a
function of their steady-state velocity v. To check whether at
v = Vmin would be the infimum, we differentiate dRLS (v, ·)
with respect to v

∂

∂v
{inf dRLS (v, ·)} =

uτ
amax

+ τ > 0. (43)

And thus it’s true that at v = Vmin, the infimum is achieved
for (8). Base on (43), for velocity Vmin ≤ vi ≤ vj ≤ VMax and
any positive constant c, we have

c

inf dRLS (vj, ·)
≤

c

inf dRLS (vi, ·)
(44)

Thus (9) could be proved by substituting cwith M̂ , the length
of measure of SDCR. Now we complete all the proofs. �

C. PROOF OF LEMMA 3
Suppose dV

vV
< dH

vH
but vV dH

dV vH
is not an integer, also without

loss of generality, we assume at t = t0 = 0, there is an AV
belongs to the horizontal road at the intersection point. Since
dV and dH are the least safe inter-vehicle distance on each
lane, the inter-vehicle distance between the first AV waiting
to pass through the intersection on the vertical lane and the
AV from the vertical lane that had just passed through the
intersection (at t < 0) cannot be smaller. Similarly, the sec-
ond AV in the horizontal lane that has current intersection
distance dH (since the first AV in this lane is currently at the
intersection point) cannot be further closer to the intersection.
Let the current intersection distance of the first AV to pass the
intersection in the vertical lane be γ dH where 0 < γ < 1.
At time t = dH

vH
when the second AV from the horizontal lane

is at the intersection point, the second AV from the vertical
lane would have the intersection distance d [2]H (t = dH

vH
) where

d [2]H (t =
dH
vH

) = (1+ γ )dV −
dH
vH

dH < γ dV (45)

If d [2]H (t = dH
vH

) ≥ 0, then it indicates such distance is
not sufficient to claim the safeness. Now shall we abuse the
notation by allowing the intersection distance of an AV to
be negative if it has passed through the intersection. Then if
(γ − 1)dV < d [2]H (t = dH

vH
) < 0, it must mean that the second

AV on the vertical lane who is at the intersection point at
t = dH

vH
might have some time that is unsafe for t < dH

vH
.

For those d [2]H (t = dH
vH

) 6= (γ − κ)dV , κ ∈ N+, we could
draw similar conclusions for either the horizontal AV or the
vertical AV would be unsafe. For the case dV

vV
< dH

vH
which

corresponds to (14), the proof above could also be applied by
simply swapping all the subscripts V with H . Since only the
integer cases could result in steady-state, the only if direction
is proved and the lemma is proved. �

D. PROOF OF LEMMA 4
When vV = vH , if m̃ > 1 is an integer, then with d ′V =

dV
m̃ ,

one could enhance the efficiency of the vertical road while
still keep all the AVs safe in responsibility. If ñ > 1 is an
integer, then with d ′H =

dH
ñ , one could similarly enhance the

efficiency of the horizontal lane. If none of m̃, ñ is an integer,
then by the previous lemma, the intersection won’t even stay
steady. Base on the result, now we have dH = dV as the
necessary condition for optimality. For symmetry, let δl and δr
be the distance between itself and the AV at its left and right
respectively when it’s at the intersection point. Suppose an
AV doesn’t split equally the inter- vehicle distance of another
road, then we have δl + δr = dH = dV but δl 6= δr . If in
the steady-state δl > δr could make AVs be safe, then it
implies that δr is sufficient to be the difference in intersection
distance of two AVs on intersected roads of the intersection.
Thus the symmetric setting with inter-vehicle distance 2δr
is sufficient to be safe while keep steady. Similarly for the
case δl < δr . Thus if δl 6= δr , the one with smaller value
indicates a way to enhance the traffic efficiency and only
when δl = δr = 1

2 inf d
I
LS (v, ·) could the optimum efficiency

be reached. �

E. PROOF OF LEMMA 5 AND THEOREM 2
For (33), to check whether at v = VMax would be the
supremum, we differentiate

inf dRLS (v,·)
v with respect to v

∂

∂v

inf d ILS (v, ·)

v
=
−(W + L)

v2
≤ 0. (46)

Thus for Vmin ≤ vi ≤ vj ≤ VMax , we have

inf d ILS (vi, ·)

vi
≥

inf d ILS (vj, ·)

vj
. (47)

So at v = VMax ,
inf d ILS (v,·)

v is minimized and its reciprocal,
v

inf d ILS (v,·)
, is maximized. Since SDTR is proportional to this
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FIGURE 14. The illustration for the proof of Lemma 6.

reciprocal, by (12) and (47), we complete the proof for SDTI
in (35). For (32), the first inequality is simply by the fact that
local optimum would not be better than the global optimum.
For the equality part, since all the AVs have identical velocity
for the intersection is steady, they have identical least safe
inter-vehicle distance. This distance is a function of their
steady-state velocity v. To check whether at v = Vmin would
be the infimum, we differentiate d ILS (v, ·) with respect to v

∂

∂v
{inf d ILS (v, ·)} = 2τ > 0. (48)

and thus it’s true that at v = Vmin, the infimum is achieved
for (32). Base on (11), for velocity Vmin ≤ vi ≤ vj ≤ VMax
and any positive constant c, we have

c

inf d ILS (vj, ·)
≤

c

inf d ILS (vi, ·)
. (49)

Thus (34) is proved by simply substitute c with M̂ , the length
of measure of SDCI . Now we complete all the proofs. �

F. PROOF OF LEMMA 6
Since we know the AVs entering Iij comes from Ii−1 j and
Iij−1. If both Ii−1 j and Iij−1 are in steady-state, then Iij must
satisfy some constraint so that all the AVs from Ii−1 j and Iij−1
could still pass through Iij without changing their behaviours.
To prove the lemma, we introduce the concept of phase.
Noticing that for everymc ≥ 2 by nc ≥ 2 roads city, we could
always split the city into ((mc − 1)× (nc − 1)) 2 by 2 blocks
as shown in Fig. 15. There would be 4 intersections in any of
the block: I11, I12, I21, I22 as shown in Fig. 14. We define the
phase of I11 as

8(I11) =
(d̃s − d

(11)
iH )

d̃s
π. (50)

Here d̃s represents half of the constant spacing between
AVs that should be greater or equal to inf 1

2d
I
LS (v, ·), and d

(11)
iH

is the intersection distance of the first AV in the horizontal
lane that’s going to pass through I11. Without loss of gener-
ality, let d (11)iH = d̃s and so 8(I11) =

(d̃s−d̃s)
d̃s

π = 0. Now we
extend the definition of intersection distance so that the AV,
which has passed the intersection, has a negative intersection

distance. By lemma 4, we know that in order to achieve
optimum efficiency, the first AV in the vertical road to cross
I11 should have its intersection distance diV = 0. Similarly,
we have the equivalent phase representation measuring from
the vertical intersection distance diV

8(I11) =
(2d̃s − d

(11)
iV )

d̃s
π. (51)

Let ζ ∗(1121) = argmaxζ∈N
(
1[DH − (2ζ + 1)d̃s ≥ 0] −

0.5
)−1

ζ where DH is the distance between I11 and I12. DH
is presumed to be greater than 2d̃s. By (50), we have

8(I21) =
(d̃s − d

(11)
iH )

d̃s
π =

d̃s − DH + (2ζ ∗(1121) + 1)d̃s

d̃s
π.

(52)

Suppose

d (21)iH = DH − (2ζ ∗(1121) + 1)d̃s < d̃s, (53)

we have

d (21)iV = DH − (2ζ ∗(1121))d̃s. (54)

Let ζ ∗(2122) = argmaxζ∈N
(
1[DV − (2ζ d̃s − d

(21)
iV ) ≥ 0] −

0.5
)−1

ζ , whereDV is the distance between I11 and I12 so that

d (22)iV = DV + DH − (2ζ ∗(1121))d̃s − (2ζ ∗(2122))d̃s. (55)

By (51), we then have the phase of I22

8(I22)=
2d̃s−(DV + DH )+ (2ζ ∗(1121) + 2ζ ∗(2122))d̃s

d̃s
π. (56)

With similar procedure, we can have the phase of I12

8(I12) =
DV − 2ζ ∗(1112)d̃s

d̃s
π. (57)

Here ζ ∗(1112) = argmaxζ∈N
(
1[DV − (2ζ d̃s) ≥ 0]−0.5

)−1
ζ

Suppose

d (12)iV = DV − (2ζ ∗(1112))d̃s < d̃s, (58)

we have d (12)iH = DV − (2ζ ∗(1112) − 1)d̃s. Now let

ζ ∗(1222)=argmaxζ∈N
(
1[DH− (2ζ d̃s−d

(12)
iH ) ≥ 0]−0.5

)−1
ζ

We have

d (22)iH = DH + d
(12)
iH − 2ζ ∗(1222)d̃s. (59)

8(I22) =
d̃s − d

(22)
iH

d̃s
π

=
d̃s − DH − d

(12)
iH + 2ζ ∗(1222)d̃s

d̃s
π

=
−(DH + DV )+ 2(ζ ∗(1112) + ζ

∗

(1222))d̃s

d̃s
π. (60)
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FIGURE 15. Decompose the city into 2 by 2 blocks (yellow box) and then
generalize the result into the case of mc by nc roads. (The illustration
here is the case of mc = 3 and nc = 3).

Since the phase derived in (56) should meet with the one
in (60) to have the city steady, equating (56) and (60),
we have

1 = ζ ∗(1112) − ζ
∗

(2122) + ζ
∗

(1222) − ζ
∗

(1121). (61)

Similarly, if we consider different conditions in (53) and (58),
that is, the other 3 possible conditions: d (21)iH ≥ d̃s and d

(12)
iV ≥

d̃s; d
(21)
iH ≥ d̃s and d

(12)
iV < d̃s; d

(21)
iH < d̃s and d

(12)
iV ≥ d̃s,

following the similar procedure by equating their phase at I22,
we have the following two more results:

0 = ζ ∗(1112) − ζ
∗

(2122) + ζ
∗

(1222) − ζ
∗

(1121) (62)

and

−1 = ζ ∗(1112) − ζ
∗

(2122) + ζ
∗

(1222) − ζ
∗

(1121). (63)

Since (61), (62), and (63) cover all the possible results of
ζ ∗(1112) − ζ

∗

(2122) + ζ
∗

(1222) − ζ
∗

(1121) and they’re all irrelevant
to DH and DV , we can conclude that for any 2 by 2 case as
shown in Fig. 14. If I11, I12 and I21 are and could be properly
controlled so that they are all steady, then as long as DH and
DV are greater than the constant spacing kept by the AVs, I22
would always be steady. Now in order to generalize the result
into anymc by nc city wheremc ≥ 2 and nc ≥ 2, we first label
all the intersections in the similar manner as in Fig. 14. Then
for any intersection Iij,∀ i, j s.t. 1 < i ≤ mc and 1 < j ≤ mc,
if Ii−1 j, Ii j−1, and Ii−1 j−1 are steady, Iij is steady according
to the result above. For those boundary intersections Iij where
at least one of i or j is 1, they could always be made steady
since we can control the time the AVs enter the city. Thus,
as shown in Fig. 15, we can finish the generalization simply
by induction and we complete the proof. �

G. PROOF OF THEOREM 3
By lemma 6, when all the intersections are steady with opti-
mum efficiency, they have identical inf d ILS (v, ·) and thus the
SDCC and SDTC could simply be written in the form that
treat all the roads within the city as if they are independent
with inter-vehicle distances inf d ILS (v, ·). �
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