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ABSTRACT In order to solve the problem that the standard extended Kalman filter (EKF) algorithm has
large errors in Unmanned Aerial Vehicle (UAV) multi-sensor fusion localization, this paper proposes a multi-
sensor fusion localization method based on adaptive error correction EKF algorithm. Firstly, a multi-sensor
navigation localization system is constructed by using gyroscopes, acceleration sensors, magnetic sensors
and mileage sensors. Then the information detected by the sensor is compared and adjusted, to reduce
the influence of error on the estimated value. The nonlinear observation equation is linearized by Taylor,
and the normal distribution hypothesis is carried out in two steps of prediction and correction respectively.
Finally, the parameters of system noise and measurement noise covariance in EKF are optimized by using
the evolutionary iteration mechanism of genetic algorithm. The adaptive degree is obtained according to
the absolute value of the difference between the estimated value and the real value of EKF. The individual
evaluation results of EKF algorithm parameters are used as the measurement standard for iteration to obtain
the optimal value of EKF algorithm parameters. Experimental simulation results show that the improved
algorithm proposed has higher real-time localization accuracy and higher robustness than those of the
standard EKF algorithm.

INDEX TERMS EKEF algorithm, smart sensing, distributed error correction, parameter optimization,

multi-sensor fusion, Internet of Things.

I. INTRODUCTION
Location Based Services (LBS) is a basic service that
obtains the current location and provides information
resources through various mobile location technolo-
gies [1]-[3]. At present, the most basic localization
technology generally uses GPS sensors for real-time local-
ization, but GPS signals are easily blocked, or interfered,
thus high-precision localization cannot be realized [4]-[6].
Therefore, based on a single data source, many research
institutions, universities, etc. use multi-source sensor data
fusion to complement each other’s advantages and realize
accurate localization [7]-[9].

The common multi-sensor fusion localization method
is to collect real-time data of gyroscopes, acceleration
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sensors, magnetic sensors, mileage sensors, inertial measure-
ment units, vision sensors and other sensors, and to use data
fusion for high-precision localization. Ghosh et al. [10] used
wheel tester, inertial measurement unit and rotating 2D laser
scanner to locate and correct the mobile robot in real time.
Nada et al. [11] took odometer, magnetic compass and
acceleration sensor data as inputs of Unscented Kalman
Filter (UKF) to realize data fusion and real-time local-
ization. Belmonte-Hernandez et al. [12] proposed a multi-
sensor fusion adaptive fingerprint (MUFAF) algorithm,
which uses interpolation to improve the responsiveness of
the algorithm to the environment. Shivanand ef al. [13] pro-
posed an asynchronous multi-rate multi-sensor state vector
fusion algorithm, which optimizes the localization accuracy
by eliminating the coupling between covariance terms.
Muniandi and Deenadayalan [14] used wheeled sensors,
radar and GNSS as data acquisition sensors, and constructed a
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nonlinear real-time localization model by probability weight-
ing method. Al-Sharman et al. [15] used Kalman innovation
sequence and covariance matching technology to continu-
ously adjust through fuzzy inference system, and proposed
real-time localization based on adaptive fuzzy Kalman
fusion algorithm (AFKF). Plangi et al. [16] proposed a
real-time localization algorithm based on Kalman filter algo-
rithm to solve the routing problem in real-time localization.
Kumar and Hegde [17] established a multi-sensor com-
bined attenuation model and adopted joint error optimiza-
tion for multi-sensor data to reduce localization error.
Gabela et al. [18] used GNSS and LPS as data sources
and improved the localization accuracy by combining
extended Kalman filter (EKF) and particle filter (PF).
Al Hage et al. [19] proposed an optimal thresholding method
based on Kullback-Leibury criterion (KLC), which improves
Kalman filter and realizes cooperative localization of robots.
Zsedrovits et al. [20] realized a real-time localization system
for unmanned aerial vehicles through airborne cameras and
avoidance systems, and useed inertial measurement units
and GPS. Ruotsalainen et al. [21] introduced the error
probability density function in particle filter, and used the
model fitting method to verify the measurement error, thus
improving the accuracy of multi-sensor fusion localization.
Hosseinyalamdary [22] optimized and improved the mea-
surement error of inertial measurement unit through deep
Kalman filter. Rodger [23] used Markov fuzzy, statistical,
artificial neural network and nearest neighbor prediction
methods to analyze multi-sensor indexes and used improved
Kalman filter method to reduce noise in the localization sys-
tem. Li et al. [24] converted the measured values of different
sensors into a set of measurement matrices, which are solved
by improving PHD filtering. Cappello et al. [25] implemented
a new hybrid controller using fuzzy logic and proportional-
integral-derivative (PID) technology and proposed a real-time
localization system based on improved unscented Kalman
filter.

The contributions of this paper are as follows.

(1) Proposed a multi-sensor fusion localization based on
adaptive error correction EKF algorithm to improve the
real-time localization accuracy.

(2) Through the contrast adjustment of the sensor detection
information, the influence of the error on the estimated value
is reduced.

(3) In the two steps of prediction and correction, the nor-
mal distribution assumption is carried out twice, so that
the predicted value of EKF algorithm is closer to the real
value.

(4) Using GA algorithm to optimize EKF algorithm
parameters.

The rest of this paper is arranged as follows: Section 2 sum-
marizes the related work; Section 3 performs adaptive error
correction on the EKF algorithm; Section 4 performs simula-
tion testing on the improved algorithm; Section 5 summarizes
the paper.
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Il. PROBLEM DESCRIPTION
The multi-sensor navigation system [26]—[33] of unmanned
aerial vehicle (UAV) is taken as the research object in this
paper. Its main sensors are gyroscopes, acceleration sensors,
magnetic sensors, mileage sensors, etc. The above sensor data
is corrected and fused through the Extended Kalman Fil-
ter (EKF) algorithm [34]—[40] to obtain the real-time location
and attitude information of UAV, as shown in FIGURE 1.
The UAV is a dynamic motion process of six degrees
of freedom, and its motion state X can be expressed by
four elements of location vector P!, space motion speed
vector Ve’,, attitude representation g and gyroscope rotation

vector b;) of the space coordinate system.
=[Py Vi @ b,] M
P, V!

L, V%, g, and b, are obtained as:

Pétz[P; P; Pé]
Vett = [V; V; VZI]
a=[o0 a1 @ 4]
by = [blox by Dic]
Considering that ambient noise of the four elements in the
space motion velocity vector and the attitude representation
when the sensor collected data, it is necessary to perform
noise reduction processing first.

@

:Dfl'fb_i_gt_i_Dtgb
1 3
q_EQ q- (lb—bb+8b)

where, Sfl’ is the environmental noise when the acceleration
sensor is detected, f b is the specific force measurement value,
55) is the environmental noise when the gyroscope is mea-
sured, c?)fz is the measured value of the gyroscope, and 152) is
the measurement deviation correction value of the gyroscope.
The UAV state representation equation of Equation (1) can be
converted into .
X=[P, Vi 4 P)] @)
Set§ = 85 55" 5)'] as system noise, Equation (4) can
be simplified to

X=f(X,U0.5) )
Due to the nonlinear characteristics of UAV multi-sensor
fusion localization system, Equation (5) must be linearized.
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Firstly, Taylor series expansion is used and expressed by
Jacobian matrix.

- af(x,U,a)‘Xszk_l
aX §=0
6= LELDX =N ©®)
35 §=0
/A0 0
= Tox |4 T Akl

where, F is the external force vector, G is the acceleration
vector, and H is the horizontal direction vector.

The motion state can be taken as the state quantity by the
location vector P!, of the spatial coordinate system, the spa-
tial motion speed vector V/,, the four elements of the attitude
representation g and the gyro rotation vector l_az), and the
EKF algorithm is used for state estimation to obtain the
covariance matrix, which is used to correct the state parame-
ters. The process is shown in FIGURE 2.

Although EKF algorithm can better fuse and locate the data
collected by multi-sensors, there are still certain localization

errors. Therefore, it is necessary to further optimize it.

lll. ADAPTIVE ERROR CORRECTION EKF ALGORITHM
A. CONTRAST AND ADJUSTMENT OF PARAMETER ERROR
Due to the system noise in the process of multi-sensor fusion
localization, there is a certain error between the state estima-
tion value and the actual value of EKF algorithm. Therefore,
this paper compares and adjusts the information detected by
sensors to reduce the influence of the error on the estimation
value.

If the error of the state estimation value is W;, it can be
expressed as:

W, =X, —Z 11X 7

where, Z is the state transition matrix of the system, the error
of the ¢ time state estimation system is obtained to be

Wt = Gt)?t — &t (8)

where, g; is the observation value of the ¢ time and G; is
the observation matrix of the state estimation system. Adding
an adaptive adjustment factor o; to dynamically adjust the
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weight of the state observation parameters of the system
Wy=—P -

1 )
Wx, = ;PX,GZ i

where, P, is the covariance matrix of the system and
n; is Lagrange multiplier vector. The adaptive adjustment
factor oy is

1, |AW;| < Bo

Bo (B1— AW
r = , AW, < 10
o |AW,|< T ) Bo < 1AW/ < B (10)

0, B1 < AW

where, B and B are the experience values.

B. DISTRIBUTED ERROR SECONDARY CORRECTION

In order to make the predicted value obtained by EKF algo-
rithm closer to the real value, this paper also assumes that it
is normal distribution twice in the two steps of prediction and
correction respectively. Set the filtering value of the system is
(x¢—1, 0), the observation value is g(x;, v;), and the predicted
value is (X;,—1,0) at 7 time, then the Taylor expansion is
approximately

X = f(%—1,0) + M1 X1 + Nr—1w—g (11)
8t = g()ACt,t—ls 0) + Otjél,t—l + Orvy (12)

The sum of M,_, N;_1, Oy, and Q, are Jacobian matrices,
and their values are obtained by

JY T WA S V)
= 8)%[_1 8)([_1 (xl—lswt—l) :()2'[_1,0)
(13)
N — -1 of (e—1, wi—1)
= 3171/;_1 aW[_l (-x[—13wt—1) 2(55[_1,0)
(14)
08 9g(x;, vi)
0; = = ~ 15
! 8)%[,[_] 3x; (-xtv vl) = (-xl,t—lv O) ( )
08 9g(x;, vi)
= = N 16
Qt 8\3[’[71 8\/[ (xt’ Vl) = (xl,lflv O) ( )

Then, in the prediction phase of the EKF algorithm,
the error covariance matrix P;,—; predicted by the
EKF algorithm is

Py = Mt—]Pr—lMtT_l +Nt71Qt—1NtT_1 (17)

Then the gain matrix of the state estimation system can be
expressed as

1
Y= P! (HiPuoH )+ R (1)

where, R; is the probability matrix of the system. In the
correction phase of the EKF, error correction is performed
on the system observation values

W, = Wig - x1.—1 (19)

The system state prediction equation can be expressed as
X =1+ YW, (20)
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C. PARAMETER OPTIMIZATION OF EKF ALGORITHM
BASED ON GA

In order to quickly and accurately find the optimal value
of EKF algorithm parameters P,, G;, and W;, this paper
introduces Genetic Algorithm (GA) to find the optimal value
of EKF algorithm.

Taking EKF algorithm parameters P;, G;, and W; as indi-
viduals of GA algorithm, and setting the absolute value p of
the difference between EKF estimation value and real value
as the standard of measurement performance, the smaller
the p, the more accurate the prediction value of EKF algo-
rithm and the smaller the localization error of the system.

The parameter optimization process of EKF algorithm
based on GA is shown in FIGURE 3.

Firstly, the individual is initialized, i.e. the parameters
P;, G;, and W, are assigned values. Then, according to the
absolute value of the difference between EKF estimation
value and real value, the adaptability is obtained to realize
individual evaluation. Through the replication, crossover and
mutation processes of GA algorithm, parameter iteration is
carried out, and evaluation function p values are compared to
obtain the parameter P;, G; and W, When p is the smallest.

IV. PERFORMANCE SIMULATION

In order to verify the algorithm proposed in this paper, the
performance simulation of the improved EKF algorithm is
carried out in the environment of experiment 1. Set the sam-
pling period is T = 0.2, the total number of simulations is
N = 50, the random number [0, 1] of environmental noise §”
when the acceleration sensor detects and the random number
[0, 2] of environmental noise SZ when the gyroscope detects,
and randomly set two localization targets D1 and D2.

A. EKF ALGORITHM SIMULATION TEST
The comparison results of EKF-based state parameter estima-
tion values are shown in FIGURE 4 and FIGURE 5.

From the results in Figure 4, the parameter estimation tends
to the actual value and its error is reduced.

In the above experiment, the multi-sensor fusion local-
ization error is counted, and the results are shown
in FIGURE 5.

From the results of simulation experiments, although
EKEF algorithm can better fuse and locate the data collected by
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FIGURE 4. Comparison results of estimated state parameters of
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FIGURE 6. Comparison results of estimated state parameters of
localization targets.

multi-sensors, better fit between actual and estimated values,
there are still certain localization errors.

B. RESULTS WITH PARAMETER ERROR COMPARISON
AND ADJUSTMENT

After the standard EKF is optimized by parameter error
comparison adjustment proposed in this paper, the compar-

ison results of state parameter estimation values are shown
in FIGURE 6.
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FIGURE 8. Comparison results of estimated state parameters of
localization targets.

From the results in Figure 6, the parameter estimation tends
to the actual value and its error is reduced.

The error result of multi-sensor fusion localization is
shown in FIGURE 7.

As the information detected by the sensor is compared and
adjusted, the influence of the error on the estimated value is
reduced, so the localization error is reduced by comparing the
results of FIGURE 7 and FIGURE 5.

C. RESULTS WITH DISTRIBUTED ERROR SECONDARY
CORRECTION

Based on parameter error comparison and adjustment,
the optimization is carried out through the distributed error
secondary correction strategy proposed in this paper, and the
comparison results of state parameter estimation values are
shown in FIGURE 8.

From the results in Figure 8, the parameter estimation tends
to the actual value and its error is reduced.The error result of
multi-sensor fusion localization is shown in FIGURE 9.

Since the normal distribution assumption is carried out
twice in the prediction and correction steps, the predicted
value obtained by the improved EKF algorithm is closer to
the real value. Compared with the results of FIGURE 9 and
FIGURE 7, the localization accuracy is further enhanced.
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FIGURE 10. Comparison results of state parameter estimation values of
localization targets.

D. RESULTS WITH GA PARAMETER OPTIMIZATION

Based on distributed error secondary correction, the
optimization is carried out through the GA-based parameter
optimization processing strategy proposed in this paper, and
the comparison results of state parameter estimation values
are shown in FIGURE 10.

From the results in Figure 10, the parameter estimation
tends to the actual value and its error is reduced.

The error result of multi-sensor fusion localization is
shown in FIGURE 11.

As GA algorithm is used to optimize the parameters,
the multi-sensor fusion localization error is further reduced.
Comparing the results of FIGURE 11 and FIGURE 9,
the improved algorithm has better localization accuracy.

V. UAV REAL-TIME LOCALIZATION TEST

In order to verify the application effect of the improved
algorithm in the actual system, this paper constructs a
multi-sensor UAV real-time localization system for simula-
tion tests. The UAV sensor MCU uses STM32F405 chip,
the inertial measurement unit uses MPU6050 chip (integrat-
ing accelerometer and gyroscope at the same time), and the
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TABLE 2. Statistics of experimental environment 2.
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FIGURE 11. Error results of multi-sensor fusion localization. TABLE 3. Statistics of experimental environment 3.
. Position Standard Deviation/m
TABLE 1. Statistics of experimental environment 1. Time/s
Error/% X Y
. Position Standard Deviation/m 1 0.0211 0.0818 0.0575
Time/s Error/% x v 50 0.1842 0.1791 0.1429
1 0.0020 0.0083 0.0997 100 0.1573 0.2883 0.1512
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150 0.2002 02148 0.3071 250 0.4337 0.1907 0.1315
200 0.1624 0.1298 0.2863 300 0.4404 0.1639 0.1827
250 02322 0.1469 0.2087 350 0.2879 0.1148 0.1476
300 0.2250 0.1186 0.1455 400 0.0451 0.1204 0.1060
350 0.1543 0.2378 0.1534 450 0.2324 0.1352 0.1142
400 0.2008 0.2033 0.1980 500 0.2831 0.1819 0.1306
450 0.0744 0.1345 0.2798
500 0.1750 0.1162 0.1920 M ' ]
Fos| -
u% 04l
° é 03l
& oaly f
[ J 01 R
[ DD S‘D WILJD 1;D ZILJD 2;D :\E‘DD 3;0 AI'.IiD 4;0 500
Time (s)

Three locating points

Six locating points Nine locating points

FIGURE 12. Schematic diagram of experimental environment.
magnetometer uses LSM303D chip. The state estimation
equation shown in Equation (1) is constructed, and 5, 10 and

15 localization points are respectively set in the experimental
area (10 x 10) (FIGURE 12).

93216

Standard Deviation/m

0.4 T T

X-axis deviation
Y-axis deviation

0 50 100 150 200 250 300 350 400 450 500
Time (s)

FIGURE 13. Simulation test results of experimental environment 1.

In the experimental environment 1, the actual localization

error statistical results of the improved EKF algorithm pro-

po

sed in this paper are as follows.
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FIGURE 15. Simulation test results of experimental environment 3.

In the experimental environment 2, the actual localization
error statistical results of the improved EKF algorithm pro-
posed in this paper are as follows.

In the experimental environment 3, the actual localization
error statistical results of the improved EKF algorithm pro-
posed in this paper are as follows.

From the results of Figure 13 and table 1, the average posi-
tioning error is 0.1936 for three positioning points, 0.2324 for
six positioning points and 0.2421 for nine positioning points.
Therefore, the following conclusions can be drawn, with
the continuous increase of localization points, the improved
algorithm proposed in this paper still maintains a certain
localization accuracy and has strong robustness.

VI. CONCLUSION
The traditional single sensor localization method cannot meet
the requirements of high precision and high reliability for
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moving objects. However, the fusion localization method
based on multi-sensor information avoids the deficiency of
single sensor and has been studied and applied more and
more. In this paper, a multi-sensor fusion localization method
based on adaptive error correction EKF algorithm is proposed
to solve the problem that the standard extended Kalman
filter algorithm has large errors in UAV multi-sensor fusion
localization. Experimental simulation results show that the
improved algorithm proposed in this paper has higher real-
time localization accuracy and higher robustness than the
standard EKF algorithm.
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