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ABSTRACT Mulch film is usually mixed in with cotton during machine-harvesting and processing, which
reduces the cotton quality. This paper presents a novel sorting algorithm for the online detection of film on
cotton using hyperspectral imaging with a spectral region of 1000 - 2500 nm. The sorting algorithm consists
of a group of stacked autoencoders, two optimization modules and an extreme learning machine (ELM)
classifier. The variable-weighted stacked autoencoders (VW-SAE) are constructed to extract the features
from hyperspectral images, and an artificial neural network (ANN), which is one optimization module,
is applied to optimize the parameters of the VW-SAE. Then, the extracted features are input in the ELM
to classify four types of objects: background, film on background, cotton and film on cotton. The ELM is
optimized by a new optimizer (grey wolf optimizer), which can adjust the hidden nodes and parameters
of the ELM simultaneously. A group of experiments was carried out to evaluate the performance of the
proposed sorting algorithm using cotton that was provided by a Xinjiang municipality cotton ginning
company. The experimental results show that the VW-SAE can improve the classification accuracies by
approximately 15 %. The overall recognition rate of the proposed algorithm is over 95 %, and its recognition
time is comparable to some state-of-the-art methods.

INDEX TERMS Cotton, sorting system, plastic film, deep learning, hyperspectral imaging, grey wolf
optimizer, variable-wise weighted stacked autoencoder.

I. INTRODUCTION
Cotton is one of the most important crops in the world.
As the main cotton-producing province in China, Xinjiang
has widely applied mulch film covering technology to retain
the soil moisture, to maintain the soil structure and to prevent
pests [1]. However, mulch film is oftenmixedwith cotton dur-
ing the machine-harvesting and machine-processing steps,
which results in reduced cotton quality. Some techniques
have been developed for detecting foreign matter in cotton,
such as electrostatic separation, ultrasonic detection and com-
puter vision detection [2], [3]. Electrostatic separation is a
rudimentary method that utilizes the charge characteristics
to distinguish the film from cotton. However, it is affected
by many uncertainties, such as voltage, and it results in
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poor stability and sensitivity, which limit its applications.
Ultrasonic sensors identify plastic film according to different
densities between plastic film and cotton. However, the rela-
tively low speed for ultrasonic transmission has resulted in
a slow identification process [4]. With the development of
computer technologies, computer vision techniques with the
advantages of low costs, fast speed and consistency have been
widely used in foreign matter detection [5]–[11]. Existing
computer vision techniques depend on the color differences to
distinguish foreign matter and cotton. However, it is difficult
to detect foreign matters such as plastic film, which has good
photopermeability.

Hyperspectral imaging is an emerging technology that inte-
grates spectroscopy and imaging to obtain both the spectral
and spatial information from objects simultaneously [12].
It can detect the chemical compositions and structural fea-
tures in the spatial domain simultaneously. Hyperspectral
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imaging has been applied in agricultural and food inspection
since 1990s, but few studies have reported on cotton quality
assessments using hyperspectral imaging. Guo [13], [14]
reported that hyperspectral imaging in reflectance mode
over the spectral range of 400-1000 nm was capable of
detecting white and transparent polypropylene fiber, black
human hair, and black and transparent PE mulching film
from cotton with overall recognition accuracies of 73.2 %
and 75.3 % for the training and testing sets, respectively.
Moreover, most of other studies employed a hyperspectral
imaging system covering a wavelength range longer than
1,000 nm. The Fortier Channel [15] applied Fourier trans-
form near-infrared (FT-NIR) spectroscopy with a wavelength
range of 1,100 – 2,400 nm to distinguish the individual types
of cotton trash with a 97 % overall prediction accuracy for
trash components. However, it is an offline algorithm that
focuses on cotton trash samples (hulls, leaves, seed coats,
and stems). On the other hand, this method indicates that
extending the detection wavelengths beyond 1,000 nm is
necessary in order to obtain more useful sample information
that is difficult to distinguish from similar color matters.

Currently, multivariate statistical methods and machine
learning methods, such as the partial least squares regres-
sion (PLSR) [16], the multiple linear regression (MLR) [17],
the support vector machine (SVM) [18] and the artificial
neural network (ANN) [19], are frequently used to improve
hyperspectral signal classification results. While the PLSR
and MLR conduct linear analysis between spectra and sam-
ples, they are not suitable for parsing complicated mapping
relationships, such as the nonlinearity between spectra and
samples. Although the SVM could establish nonlinear rela-
tionship for samples and spectra, its results depend on kernel
functions. The ANN was developed to extract the nonlinear
and complex features of samples. However, this method is
generally considered a shallow learning approach with a
model structure with one hidden layer [19]. Deep learning has
been developed to improve the conventional ANN [20]–[22].
It can more greatly learn the hierarchical feature represen-
tations and extract the input information layer by layer to
represent different levels of nonlinearities [23]–[25].

In this research, a hyperspectral imaging technique cou-
pled with deep learning was used to classify the film from
seed cotton. The proposed algorithm integrates an improved
weighted stacked autoencoder, the grey wolf optimizer and an
extreme learning machine (ELM) to build the classification
models for recognizing the seed cotton and film. Different
from the classic autoencoder architecture, in the weighted
stacked autoencoder, the self-encoded features wereweighted
based on their corresponding correlation with the network
output [20]. Next, the advanced features from the weighted
stacked autoencoder are used as the input for the ELM.
ELM is a single-hidden layer feedforward ANN. Instead of
using gradient descent algorithm, ELM utilizes the concept
of random mapping and Moore–Penrose generalized inverse
to optimize the network weight values. The establishedmodel
can ensure not only the smallest training error but also better

generalization ability compared to the conventional gradient
descent optimization algorithm. The corresponding training
time of ELM is dramatically decreased [26]. However, as an
ANN network, the number of hidden neurons of ELM and its
first layer parameters from randommapping indeed affect the
regression performance of the ELMmodel [27]. To select the
best combination of these parameters, the greywolf algorithm
is applied into our application which shows better ANN
optimization results compared to other classic metaheuristics
in previous studies [28], [29].

Specifically, the integrated model is used as the final clas-
sifier to identify the film and cotton. Therefore, the specific
objectives of current research include the following:
•Develop a sortingmachine for the online detection of film

from seed cotton based on hyperspectral imaging system and
deep learning;
• Develop a fuzzy factor to adjust the weights based on

the correlation coefficient of the inputs (original signal) and
the outputs of the stacked autoencoder to extract the more
representative features; and
•Use the grey wolf optimizer for the first time to determine

the neurons and weights of the extreme learning machine to
achieve higher classification accuracy.

FIGURE 1. Schematic of hyperspectral imaging and sorting system.

II. MATERIALS AND METHODS
A. MATERIALS AND DATA COLLECTION
A Xinjiang municipality cotton ginning company provided
approximately 10 kg of seed cotton that was mechanically
harvested from the south of the Xinjiang municipality, China.
Trained workers from the company picked out the film from
the unginned cotton. At last, 49 pieces of various sized films
were singled out. The mixture of films and seed cottons was
fed into our sorting machine/system, and they were used to
construct the experimental and testing datasets in this paper.
The schematic of our machine is shown in Figure 1. The
seed cotton is loaded from the top inlet of the feeding room.
To improve the efficiency and accuracy of plastic film sorting,
there are two kinds of rollers that are designed for seed cotton.
The main function of the top rollers is load bearing and cotton
feeding, and the shaft diameter is larger in order to achieve
higher strength and stiffness. During feeding, the rotation
speed is approximately 3-6 r/min with a slow but stable
conveyance. The aim of the bottom rollers is to disperse the
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FIGURE 2. Structural chart of sorting algorithm for detecting plastic film from cotton.

clusters of entangled cotton, and their rotation speed is set
as 200 r/min to achieve a better cleaning effect. Because
the teeth of the adjacent winding rollers interact with the
same ones of the top feeding rollers, the cotton is conveyed
layer by layer. The teeth on the winding rollers can pull seed
cotton from the top feeding rollers once the fiber is hooked
during high-speed rotation. Because of the centrifugal force,
the winding rollers will project cotton onto the black-rubber
conveyor belt. In the same way, some mixed films and cotton
are scattered by the impact of the teeth. Then, the seed cotton
is separated and transported on the black-rubber conveyor
belt. The width of the belt is approximately 2 m, and the
material of the belt is black rubber to minimize the back-
ground reflected light. A servo-motor drives the conveyor belt
at 2 m/s, and the encoder produces the speed pulse.

The hyperspectral imaging system is placed on the belt.
The high-speed hyperspectral camera (Spectral Camera
SWIR, SPECIM Spectral Imaging Ltd., Finland) was used
to acquire the hyperspectral images. The spatial pixels of
the camera number 384, and the spectral range is 1000 to
2500 nm with 288 spectral bands. A 15-mm lens that was
designed for optimized performance from 900 to 2500 nm
was utilized to achieve about a 5.2-nm pixel resolution,
and the camera’s field-of-view was approximately 2 m. The
external illumination was equipped with two lines of dome
halogen lamps to light the scene, and the dome halogen
lamps can realize omnidirectional lighting to overcome the
darker areas that may result in occlusion. Before practical
use, a white reference plate was put on the belt to adjust the
white balance and to fix the brightness value. The acquisition
board on the computer was connected to the camera using
a Camera Link cable. The board receives the encoder pulses

and sends a trigger signal to synchronize the frame rate of the
camera with the speed of the belt. Normally, the frame rate is
approximately 390 fps with 2 m/s as the belt speed.

The sorting system is located in the front of the belt. The
high-speed valves with nozzles are arranged in a line, which
are exactly aligned with the belt. There are 48 nozzles, and
the width of each nozzle is approximately 41.6 mm. Under
normal conditions, the seed cotton can fly through the inlet
of the trash removal box into the storage box due to the effect
of inertia. In contrast, the separated films will be absorbed
into the trash removal box due to the combined action of big
air friction and small inertia. Once the computer recognizes
the films on the belt, it will count the number of pulses
of the encoder for synchronization. When the films are under
the valves, the computer will give a trigger signal to the
corresponding valves to eject the films, and the films will
be sucked in the trash removal box for vacuum aspiration.
The online recognition algorithm is performed on an Nvidia
GTX1060 GPU with 6 GB of DRAM.

B. SORTING ALGORITHM FOR FILM AND COTTON
The process of the proposed sorting algorithm is shown
in Figure 2, and it includes threemain parts: 1) the features are
extracted by the variable-wise weighted stacked autoencoder,
2) detection by the extreme learning machine with the grey
wolf optimizer, and 3) postprocessing.

1) VARIABLE-WISE WEIGHTED AUTOENCODER
The basic structure of an autoencoder is an unsupervised
neural network with one hidden layer, and it consists of an
input layer, a hidden layer and an output layer. The goal of
the autoencoder is to reconstruct the original input (xi) as
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accurately as possible in the output layer (x̃i). Here, we stack
a group of antoencoders to construct a deep network [30]
to reconstitute the inputs in order to extract the appropriate
spectral features (Y) from hyperspectral images. However,
in the spectrum analysis domain, it is well known that not
all wavelength variables have the same importance for the
output in the NIR spectra [31]. Some wavelength variables
even have a negative influence on the regression result [32].
Wavelength selection can, to some degree, eliminate the nega-
tive influence from these wavelengths, but there still are some
disadvantages. First, wavelength ranges with comparatively
high noise might carry useful relevant information for predic-
tion, and simply removing such wavelengths would spoil the
multichannel advantage of the model to some extent. Second,
some wavelength combinations might represent some data
information, and the selection of an individual wavelength
might cause the loss of useful information. Therefore, some
research developed variable-wise weighted methods to assign
continuous nonnegative values to wavelengths rather than
directly eliminating unimportant wavelengths [33]. Thus,
the method promises to preserve the useful information that is
hidden among the noise, to retain the multichannel advantage
and to reduce the influence of the negative features with small
positive or zero weights.

In this paper, a variable-wise weighted stacked autoen-
coder [20] is adopted to extract the high-level features and
to reduce the dimensions of the data. To extract the more
representative features, a fuzzy factor, which is different from
that in [20], is used to adjust the weights based on the cor-
relation coefficient of the inputs (original signal, xi(j)) and
outputs (reconstructed signal, x̃i(j)) of the weighted stacked
autoencoder, which is named the VW-AE. Therefore, the
target (loss function, Jλ) of the VW-AE can be expressed as
follows:

Jλ(A, Ã, b, b̃) =
1
2N

∑N

i=1

∑d

j=1
λj(xi(j)−x̃i(j))2 (1)

where Ã is a d × dh weight matrix, b̃ is the bias vector for the
output layer, and λ(j) is the weight of the j-th variable. λ(j) is
set as follows:

λ(j) =
f (
∣∣CC(j)∣∣)× ∣∣CC(j)∣∣
|CC|max

(2)

where f (
∣∣CC(j)∣∣) is a unipolar sigmoid function of

∣∣CC(j)∣∣,
which is assigned a fuzzy weight to adjust the scale of∣∣CC(j)∣∣. ∣∣CC(j)∣∣ is the correlation coefficient of the j-th vari-
able, and it is calculated as follows:

|CC(j)| =

N∑
i=1

(xi(j) − x̄j)(yi − ȳ)

/√√√√ N∑
i=1

(xi(j) − x̄j)2
n∑
i=1

(yi − ȳ)2

|CC|min = Min{|CC(j)|} j = 1, 2, . . . , d

|CC|max = Max{|CC(j)|} j = 1, 2, . . . , d (3)

where x̄j and ȳ are the means of the j-th variable and the
output, respectively, and Y= [y1, y2, · · ·yN ]′ is the output that
is connected with the input X.

In equation (2), the variables that are highly related to the
output are given large weights, and the fuzzy weight assigns
the large

∣∣CC(j)∣∣ a corresponding larger weight and the small∣∣CC(j)∣∣ a much smaller weight, which is different from the
normalization in [20]. By training the VW-AE, the recon-
struction should be more accurate for the output-relevant
variables, and the hidden features are more relevant to the
output.

2) EXTREME LEARNING MACHINE OPTIMIZED
BY THE GREY WOLF OPTIMIZER
Compared with traditional classification algorithms, an ELM
has the advantages of a strong generalization ability and fast
learning speed [34]. Some scholars have applied ELMs to
hyperspectral image classification and achieved better per-
formance than other classification algorithms [35]. An ELM
usually uses a single-layer feedforward network. Its basic
structure includes an input layer, a hidden layer and an output
layer, as shown in Figure 3.

FIGURE 3. Structure of an ELM.

A single hidden layer neural network can be expressed as
follows:∑L

i=1
βig

(
Wi · Xj + bi

)
= oj, j = 1, 2, . . . ,N (4)

where Xi = [xi1, xi2, . . . , xin]T is the input for ELM, which
is the extracted features from VW-SAE in our experiments, L
is the number of hidden nodes, N is the number of training
samples, Wi = [wi1,wi2, . . . ,win]T is the weights of the
inputs, βi is the weight of the outputs, bi is the bias of the
i-th hidden node, g(x) is an activation function, and oi is the
output of the ELM. In the experiment, the range ofWi is [−1,
1], and the range of bi is [0, 1]. The learning process achieves
the lowest errors between the true values (or targets) ti and
outputs oi, which is expressed as follows:∑N

j=1
||oj − tj|| = 0 (5)

In other words, it finds the parameters, including βi,
Wi and bi, that make equation (5) tenable.∑L

i=1
βig

(
Wi · Xj + bi

)
= tj, j = 1, 2, . . . ,N (6)
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Assuming H is the output of the hidden nodes, and β is the
weight of the outputs, equation (6) can also be expressed as
follows:

Hβ = T (7)

where T is the expected output.

H (W1, . . . ,WL , b1, . . . , bL ,X1, . . . ,XN )

=

 g(W1.X1 + b1) · · · g(WL .X1 + bL)
...

. . .
...

g(W1.XN + b1) · · · g(WL .XN + bL)


N×L

(8)

β

=

 β
T
1
...

βTL


L×m

(9)

T

=

 T
T
1
...

T TN


N×m

(10)

Once the input weights Wi and bias bi of the ELM are deter-
mined, the output matrix of the hidden nodes H is definite.
In this way, the ELM model with one hidden layer can be
transformed into a linear system Hβ = T , and the weights of
outputs β can be calculated as follows:

β̂ = H+T (11)

whereH+ is the generalized inverse of matrixH , and T is the
expected output.

FIGURE 4. Flow chart of GWO optimization process.

Since both the number of hidden nodes and weights impact
the entire performance of an ELM with one hidden layer,
the grey wolf optimizer (GWO) is used to simultaneously
optimize the number of hidden nodes and weights of the ELM
in order to achieve higher classification accuracy. The overall
workflow of GWO optimization process is shown in Figure 4.

There are two main steps of the GWO: 1) encircling prey
and 2) hunting by imitating the grey wolf in nature. When
encircling prey, the first three attacking wolves (GWα , GWβ

and GWδ) can move to any place in order to guarantee they
are around the target, which means that the three attaching
wolves are those transversal vectors in P which make the
corresponding ELMs achieve the first three best performance.
Then, the rest of the other wolves update their positions
according the best three. In other words, the other transver-
sal vectors (rows) in P are updated and closer to the three
selected wolves. The details of the GWO are introduced
in reference [36]. Note that the neuron existence flag vec-
tor in [36] has been simplified into a numerical variable L
in the array (P), because that the performance of ELM is
only related to the number of hidden neurons, instead of
its existence flag ordering in the binary coding. The best
three wolves are selected based on the objective function
introduced the next paragraph.

The biggest advantage of the GWO is that the maintained
strategy of handling the exploration and exploitation in the
search process ensures that the most appropriate parameters
and number of hidden nodes of the ELM can be found at the
same time with the objective function (F) as:

F = (1− acc)+ γ
L − LD
LU − LD

(12)

where acc is the whole accuracy of classification, L is the
number of the hidden nodes, LU is the upper limit of the
number of the hidden nodes, LD is the lower limit of the num-
ber of the hidden nodes, and γ is the parameter for adjust-
ing accuracy and model complexity. γ , LU and LD are set
as 0.76, 5, and 200 in our experiments. More specifically,
the objective function consists of two parts: 1) the first
term is the classification accuracy and 2) the second term
means the complexity of the ELM. The fewer hidden nodes
mean the simpler ELM. Therefore, the final target is to
achieve the least F , which meets the higher accuracy and the
fewer number of hidden nodes at the same time. The ELM
that is optimized by the GWO is named the GWO-ELM in
this paper.

3) POSTPROCESSING
The output of the GWO-ELM can generate four probability
matrixes, which represent the classification probability for
‘Film on Background’, ‘Cotton’, ‘Film on Cotton’ and ‘Back-
ground’. Considering illumination variations, imaging noise,
and dirt on the cotton, some pixels will be misclassified.
In this postprocessing step, we will simply combine the spa-
tial information to achieve better classification performance
than the pixelwise method. The detailed steps are as follows.
For the probability map of each class, a 5× 5 uniform kernel
will be used to convolute with the map. It based on the
classification probability of each pixel being highly related
to its neighboring probability information. Considering that
no prior knowledge of cotton/film shapes was available in
practice, in the application, a simple and fixed filter kernel
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was used. The four updated probability maps will be normal-
ized to ensure that the sum of the classification probability of
each pixel equals one. The pixel label will be determined as
the class with the maximized normalized probability.

III. RESULTS AND DISCUSSION
A. DETERMINATION OF MODEL PARAMETERS
AND STRUCTURE
To construct and test the proposed sorting model, 107 hyper-
spectral images with the size of 538 × 384 × 288 (height ×
width×wavelength) were collected. 21 hyperspectral images
were randomly selected to construct the training set and the
remaining images were used as the testing set. All the pixels
in each image were labeled as one of four categories: back-
ground, film on background, seed cotton and film on seed
cotton. Each pixel in any hyperspectral image corresponds
to 288-dimensional data of spectral information, which was
set as a sample. Finally, 223872 samples were labeled, which
meant that there were 55968 samples for each type in the
training set, which were used to determine the parameters and
structure of the proposed sorting model.

TABLE 1. Classification results of the GWO-ELM with different feature
extraction methods.

First, the weights and biases of the VW-SAE were ran-
domly generated. The weights and biases of the VW-SAE
in each layer were updated using layer-by-layer pretraining
technology and the gradient descent algorithm based on the
root mean square error loss function, and their parameters
were determined by the 10-fold cross-validation method.
After each layer of the VW-SAE’s training was completed,
a two-layer neural network was used as an optimizer to
fine-tune the VW-SAE as a whole. Through the experiments,
we found that the proposed VW-SAE was composed of
three VW-AEs with 144, 72 and 36 neurons, respectively.
The sigmoid was used as the activation function in order to
acquire the ideal spectral features for classification. Finally,
36 high-level features are extracted by theVW-SAE and set as
inputs of the ELM. Table 1 lists the results of the GWO-ELM
with the feature inputs extracted from hyperspectral image
based on the VW-SAE and the traditional minimum redun-
dancy maximum relevance algorithm (mRMR) [37]. For the
mRMR, the highest classification accuracy is acquired when
10 features are extracted from 288wavelengths, whose results
are listed in the table. Detailed mRMR experiment results
are listed in the supplementary material. In comparison,
VW-SAV can extract more appropriate information than the

mRMR, especially for distinguishing film on background and
cotton.

Here, the ELM adopted a single hidden layer neural net-
work, and the activation function was the sigmoid in order
to conduct nonlinear classification. The weights, biases and
number of hidden nodes of the ELM were simultaneously
optimized by the GWO algorithm. Recent studies show bet-
ter optimization performance of GWO for training percep-
trons [28]. In the experiment, the number of hidden layer
neurons of the ELMwas set to 14. A comparative experiment
was carried out to further valid the optimization results, and
Table 2 lists the results with different number of hidden nodes
of the ELM. It is clear that the ELMwith 14 hidden nodes can
achieve the best classification results, especially the type of
film on background.

TABLE 2. Classification results of the different number of hidden nodes
of the ELM.

To further prove effectiveness of GWO method to our
specific dataset, we compared its results with two classical
optimization algorithms, genetic algorithm (GA) and particle
swarm optimization (PSO) algorithm. The final comparison
results are shown in Table 3, and GWO performs the best
among the three optimization algorithms.

TABLE 3. Comparison results for different optimization algorithms.

B. SPECTRAL ANALYSIS AND PROCESSING
Figure 5 shows the relative reflectance for the four types
of objects (film on cotton, background, cotton and film on
background), where the dotted line represent the actual spec-
tral range of every type, and solid line represents its mean,
respectively. The patterns for the relative mean reflectance for
film on cotton and cotton and for the background and film
on background were similar throughout the entire spectral
region because of theweak reflectance of the transparent film.
There is a noticeable difference between the relative mean
reflectance for the cotton and background, which suggests
that it may be easy to recognize cotton on the black belt.
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FIGURE 5. The relative reflectances for the four types of sample, where
dotted lines represent the actual spectral ranges for four types, and solid
lines represent their means, respectively.

However, it is clear that the spectral scale of film on cotton
covers the whole spectral scale of cotton, and that there is
overlap between the spectral scales of film on background
and background in Figure 5. Therefore, it is hard to sort the
film only with specific reflectance.

Since the spectra of the film on cotton and film on back-
ground hugely differ, the samples are first classified into four
types in our work: film on cotton, film on background, cotton
and background. Table 4 lists the classification results of the
different models for the four types and the three types (film,
cotton and background). Obviously, the results of the four
types from the different models are better than those of the
three types.

TABLE 4. Classification results of the different models for four types or
three types.

C. ANALYSIS OF MODEL PERFORMANCE
Table 5 summarize the classification results for background,
film on background, cotton and film on cotton using five com-
binations of mathematical models and a traditional machine
learning model (ANN). Overall, both the grey wolf optimiza-
tion extreme learning machine (GWO-ELM) and the artifi-
cial neural network (ANN) coupled with the combination of
variable weighting and the stacked autoencoder (VW-SAE)
can recognize the objects very well except for film on
background that had a recognition rate of 0.8628 for the

VW-SAE+GWO-ELM and 0.8506 for the VW-SAE+ANN.
When the variable weighting was not used, for either the
GWO-ELMor theANNmodels coupledwith stacked autoen-
coders, each corresponding object obtained lower recognition
rates excluding the background. Notably, the classification
results for film on background achieved an almost 6 % reduc-
tion using the SAV+GWO-ELM model and the recognition
rate achieved about 18 % reduction using the SAV+ANN
model, which suggest that the variable weighting algorithms
have significant effects for different models, but they have no
influence on the background classification results. In addi-
tion, the identification of film on background achieved a
classification accuracy of 0.4178 for the GWO-ELM model
and the identification achieved a classification accuracy
of 0.5794 for the ANN model. In other words, when the
variable weighting coupled with a stacked autoencoder algo-
rithm was used, the classification results for each of the
objects could be improved over those of the GWO-ELM
model and ANN model. Meanwhile, comparing to the ANN
model, the variable-weighted stacked autoencoder algorithm
has more effect on improving the classification accuracy
of film on background for GWO-ELM model. In addition,
Table 5 also shows that the single ANN model achieved the
optimal recognition rate for film on background compared to
other models. Overall, for all combinations of discrimination
models, the recognition rate for background and film on cot-
ton could reach approximately 0.99, while for the recognition
of film on background, the variable-weighted stacked autoen-
coder algorithm could improve the classification results over
those of the single GWO-ELM and ANN models.

To intuitively observe the recognition results, the estab-
lished models in Table 5 are used to classify each pixel for
a hyperspectral image with the size of 538 × 384 × 288
(height×width×wavelength). Figure 6(a) showed that three
pieces of film in the raw picture can be observed. Each model
can recognize the background very well, which may be due
to the large spectral differences. As shown in Figure 6(h) and
6(g), the ANN and GWO-ELM cannot well recognize the
film on the background, and the GWO-ELMmodel also can-
not ideally identify the film on cotton. After using the stacked
autoencoder algorithm, the recognition rates for film on back-
ground and film on cotton both significantly improve, shown
as Figure 6(e) and 6(f). Meanwhile, combining the VW-SAE
with the GWO-ELM and ANN models can enhance the
recognition performances for film on background, as shown
in Figure 6(c) and 6(d). It can be observed that the generated
pseudocolor maps have the same conclusion with Table 5,
which indicates that the established models are reliable for
online detection.

Table 6 presents the recognition accumulative time and
overall classification accuracy for each model. The stacked
autoencoder algorithm can improve the overall classification
accuracy by 4.3 % for the ANN and by 11.2 % for the
GWO-ELM, while the combination of variable weighting
and the stacked autoencoder can further improve the clas-
sification results by 4.25% and 2.48 % for the SAE+ANN
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TABLE 5. Classification results of different models for the four types: background, film on background, cotton and film on cotton.

and SAE+GWO-ELM, respectively. These results demon-
strate that the algorithm that combines variable weighting
and the stacked autoencoder provides a significant and posi-
tive improvement over both the ANN and GWO-ELM mod-
els. Although the classification accuracy improved using
the combination of variable weighting and the stacked
autoencoder, the process time increased by 45.5 % for the
GWO-ELM with an accumulative recognition time of 1.44 s
for an image with the size of 538 × 384 × 288. However,
compared with the ANN, the accumulative recognition time
could decrease by 35.4 % for the combination of the vari-
able weighting and the stacked autoencoder coupled with the
GWO-ELM, which can be used for online detection.

Finally, the classification results of the VW-SAE+GWO-
ELM are combined as film and nonfilm, as shown

in Figure 7(c). These results will trigger the valve to separate
the film from cotton.

The study demonstrates that the variable-weighted stacked
autoencoder algorithm coupled with the GWO-ELM can
achieve better classification results with limited computa-
tional time increases, which could meet the online detection
requirement. As shown in Figure 5, the spectra that were
obtained from hyperspectral imaging had similar absorption
peaks to other studies [38]. Nevertheless, it is slightly tough
to visually identify cotton and film on cotton, as well as
background and film on background, since the patterns of
their spectra were similar, which encouraged us to develop
a new algorithm to recognize these four objects. The stacked
autoencoder algorithm can enhance the classification results
for the four types of objects based on a single GWO-ELM
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FIGURE 6. Classification results for each model based on pseudocolor
maps.

TABLE 6. Accumulative recognition time and averaged recognition rates
for each of the models with a 538 × 384 × 288 image.

FIGURE 7. Final outputs of the proposed sorting algorithm.

or ANN model. However, the variable-weighted stacked
autoencoder algorithm could obviously improve the over-
all recognition results. The recognition rates for film on
background for all of models were relatively low, which
could be due to the influence of the strong absorption of the
black background. Although the variable-weighted stacked
autoencoder coupled with the GWO-ELM provided sim-
ilar results to the variable-weighted stacked autoencoder

FIGURE 8. Sorting system and process for cotton.

coupled with the ANN, the recognition time for each pixel
was faster, which could assess cotton more efficiently
and save costs. Moreover, the average recognition rate for
the variable-weighted stacked autoencoder coupled with
the GWO-ELM model was also comparable to Mengyun
Zhang’s [32] and Ruoyu Zhang’s [38] laboratory studies.
These studies applied hyperspectral imaging in the trans-
mittance and reflectance modes over the spectral range
of 900 - 1700 nm to inspect foreign matter on the surface of
cotton. However, the thin films in our studies are much hard
to detect compared to the foreign matters, such as plant bract
and leaves.

D. APPLICATION OF PROPOSED SORTING SYSTEM
The proposed method has been integrated into the sort-
ing system with a Nvidia GTX1060 GPU and tested by
two companies from Shandong Province, China and put
into production in Xinjiang municipality, China. The algo-
rithm is implemented by deep learning library Keras sup-
ported with Nvidia parallel computing platform CUDA,
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and the GPU-accelerated library cuDNN. The mixture of
films and seed cottons was fed into our proposed sorting
machine/system (Figure 8(a)), and as shown in Figure 8,
the machine can separate the films and seed cottons in real
time. It should be noted that 384 pixels in a hyperspectral
image is about 2m of the conveyor belt in Figure 8(b). In
practice, considering the hyperspectral camera is the line scan
camera, the position of its illumination light is removeable
as shown in Figure 8(b). We can easily reduce the distance
between the lights and the nozzles and then adjust accord-
ingly the height of hyperspectral images to achieve better
sorting result. After several field experimentations, the dis-
tance between the camera and the sorting nozzle is set as
about 1m as shown in Figure 8(b). Figure 8(c) and (d) show
the clear cotton and plastic film separated by the sorting sys-
tem. In-field running results show that the proposed machine
can process 3 tons of mixtures per hour, and sorting accuracy
can achieve up to 95%.

IV. CONCLUSION
The study has developed a new sorting algorithm for the
online detection of film on cotton using hyperspectral imag-
ing over the spectral range of 1000 - 2500 nm. The results
showed that the single ANN and GWO-ELM cannot rec-
ognize film on background, and using variable-weighted
stacked autoencoder algorithms to extract features can pro-
vide positive effects for both the GWO-ELM and ANN by
recognizing film on background at up to 86 % accuracy. The
recognition rates for film on background are relatively low
for all of the models, which may be due to the influence
of the absorption of the dark background. The combination
of variable weighting and the stacked autoencoder coupled
with the GWO-ELM is determined to be the optimal model
with an overall classification accuracy of 95.58 % for online
detection due to the lower recognition time of 1.44 s per
image. The proposed method has great potential to achieve
online detection for the recognition of film on cotton.

On the other hand, the facility costs of this proposed sorting
system is a little expensive, due to the integrated GPU for
computation acceleration. With the future hardware develop-
ments, the equipment cost is expected to be further reduced.
The proposed algorithm has a good application prospect and
the similar idea can be applied into other fields, such as wheat
and stalk separations.
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