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ABSTRACT Nowadays, depression has become a common mental disorder with high morbidity and
mortality. Due to the limitations of traditional interview-based depression detection, it has become an urgent
problem to realize objective, convenient and fast detection. This study is to explore ubiquitous methods of
depression detection based on combination learning and functional networks, using sleep physiological data.
Sleep physiological data were collected using a portable physiological data instrument, and then preprocess
and extract several related features. We applied combination learning to discover the best sleep stage,
the optimal features subset, and the most effective classifier, which are hidden behind physiological features,
to detect depression. Physiological features in the optimal feature subset based on Euclidean distance are
mapped to nodes to construct the functional network. The optimal feature subset was combined with the
functional network attributes as the input of the most effective classifier to get the ultimate performance
of depression detection. Controlled trials based on ubiquitous sleep physiological data were conducted on
different genders. Experiments show that the best results for male and female were derived from slow wave
sleep (SWS) and rapid eye movement (REM), with performances of 92.21% and 94.56%, AUC of 0.944 and
0.971, respectively. Thus, our study may provide an effective and ubiquitous method for detect depression.

INDEX TERMS Ubiquitous depression detection, functional networks, combination learning, sleep physi-
ological data.

I. INTRODUCTION
Depression is a common psychological disorder, which is
characterized by persistent slow thinking, impairment of
brain function and sleep disorder. According to the statis-
tics of World Health Organization (WHO), there are about
340 million people with depression in the worldwide [1].
It is estimated that about 8,000 people die each year due
to depression [2], and up to 53.7% of suicides suffer from
depression [3]. Currently, depression has quietly become
the number one killer of mental disorders due to its high
morbidity and mortality. In addition, compared with healthy
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people, patients with depression usually have a significantly
increased risk of cardiovascular, cancer, stroke and other dis-
eases [4]. Considering the predictable consequences of these
diseases, the potential harm of depression is also amazing.
Therefore, depression threatens the well-being of millions of
patients and their families.

Clinical proved that it is very difficult to completely cure
severe depression, so early diagnosis and early treatment to
avoid exacerbations over time is the most effective way to
deal with depression [5]. The traditional diagnosis methods
of depression are mainly based on face-to-face clinical inter-
views and structured questionnaires, such as Patient Health
Questionnaire (PHQ-9) [6], Beck’s Depression Inventory
(BDI) [7], and so on. However, the traditional diagnostic
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method is time-consuming and labor-intensive, which takes
about 30 minutes per patient [8]. In addition, due to the influ-
ence of subjective factors such as doctors’ experience and
patients’ concealment, misdiagnosis is easy to occur. Thus,
to explore an objective, effective and convenient method is
an urgent problem for depression detection.

Considerable studies shown that physiological electri-
cal signal, functional magnetic resonance imaging (fMRI),
facial expressions and sounds of patients with depression
have significantly changed compared with normal people.
Although these physiological and behavioral abnormalities
cannot directly help the treatment of depression, they pro-
vide a new perspective for the detection of depression. Then
many researches began to explore effective detection meth-
ods from the perspective of speech speed and volume [5],
facial dynamic analysis [9]. Other researchers focus more on
physiological electrical signals [10] and fMRI [11] to avoid
patients with depression deliberately concealing their real
reactions during behavioral measurement. The abnormality
of physiological electrical signals or fMRI is the external
manifestation of depression. fMRI has a high spatial reso-
lution, it is hampered by relatively low temporal resolution.
The higher temporal resolution of physiological electrical
signal, making up for the deficiency of fMRI. In addition,
considering the universality of depression detection based on
physiological electrical signal to overcome the inconvenience
of fMRI measurements, this study pays more attention to this
type of detection method.

Physiological electrical signals is the general term for the
potential difference between inside and outside themembrane
produced by human cells in quiet or external stimulation. Typ-
ical physiological electrical signals include electroencephalo-
gram (EEG), electrooculogram (EOG), chin electromyogram
(EMG) and electrocardiogram (ECG). Physiological electri-
cal signal acquisition has the advantages of non-camouflage,
non-invasive, safe and low cost. So it is widely used to
detect various diseases. EEG-based deep learning method is
applied to detect insomnia [12]. The severity of Parkinson’s
disease is detected by analyzing the instability of EMG on
both shoulders with wavelet analysis [13]. ECG detects emo-
tional changes via empirical mode decomposition is proposed
in [14]. Because of the non-camouflage of physiological elec-
trical signals, the research on the relationship between phys-
iological electrical signals and mental diseases, especially
depression [15]–[17], has gainedmore andmore attention and
has become a research hotspot in recent years.

To avoid the interference from other factors, the study of
depression generally uses resting state physiological electri-
cal signals such as EEG [18]. The essence of resting state is
state of quiet, relaxation, lucidity and closed eyes. Inspired
by the idea of resting state, considering that sleep is the
most basic need of human and other mammals, it is also a
state of quiet, relaxation and temporary separation from the
surrounding environment [19]. Sleep state can be regarded as
a steady state, even more stable than resting state. Modern
scientific shows that depression is closely related to change

of sleep structure and about 90% of patients with depres-
sion have sleep problems [20]. There are also many stud-
ies have demonstrated that sleep structure and state is one
of the important indicators to detect depression [21]–[23].
Therefore, the study of sleep physiological signals provides a
potentially feasible approach for the detection of depression.

So far, the pathological explanation of depression is not
completely clear. Meanwhile, the relationship between sleep
physiological signals and depression is still in the exploratory
stage. There is no uniform method best for depression detec-
tion based on physiological signals that is suitable in all situa-
tions [15]. In solving this problem, combination learning [24]
has the advantage and position of exclusiveness. In addition,
with the continuous deepening of functional network theory
[25] and wearable technology [26] in the research of mental
disease detection recently, it provides a new perspective for
the detection of depression. Based on the above literature
review and analysis, this paper takes universal sleep physio-
logical data as the starting point, and proposes a new method
of depression detection based on combinatorial learning and
functional network.

II. OVERVIEW OF UBIQUITOUS DEPRESSION DETECTION
To clarify the research ideas of this paper, Figure 1 shows
a ubiquitous depression detection framework. Its simplified
implementation process is as follows:
Step 1: The experiment is designed to collect sleep phys-

iological data from experimental subjects using a ubiquitous
physiological data instrument.
Step 2: Sleep physiological data was preprocessed and the

physiological features contained therein are extracted.
Step 3: Combination learning is adopted to explore the

core information needed for depression detection. This core
information includes three aspects: combination learning to
obtain the optimal feature subset of depression detection,
combination learning to excavate the most effective classifier
of depression detection, and combination learning to get the
best sleep stages of depression detection for different genders.
Step 4: The features of optimal feature subset are mapped

to the nodes, and these nodes were used to construct func-
tional network.
Step 5: Optimal feature subset combined with functional

network attribute as the input of the most effective classifier
to complete depression detection of different genders.

III. UBIQUITOUS EXPERIMENTS
A. UBIQUITOUS PHYSIOLOGICAL DATA INSTRUMENT
Traditional, sleep experiments basically adopt polysomnog-
raphy (PSG) [27] to collect physiological data. PSG is a
comprehensive record of concurrent physiological signal dur-
ing sleep, and its typical record includes EEG, EOG, chin
EMG, ECG, oxygen saturation (SpO2), respiration (Resp),
and rectal body temperature. During data acquisition, such
equipment not only needs to do a lot of preparatory work,
but also requires a professional doctor to operate due to the
complexity of the process, which is very time consuming,
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FIGURE 1. Simplified architecture diagram of ubiquitous depression detection.

and it usually takes more than half an hour to place all the
electrodes. In addition, due to the large number of PSGwires,
there are certain limitations, such aswire interferencewith the
normal sleep posture of the subjects, affect the normal sleep
state of the subjects. Based on the above reasons, the current
demand for new sleep physiology data acquisition equipment
is urgent.

On the premise of meeting the requirements of data acqui-
sition, the number of electrodes in the new sleep physi-
ological data acquisition equipment must be simplified to
achieve the goal of convenient, wireless, mobile, fast, and
low-cost ubiquitous data acquisition. In recent years, with
the development of sensor and ubiquitous electronic technol-
ogy, it is possible to achieve the above goal. In the experi-
ment, we used the ubiquitous physiological data acquisition
instrument, as shown in Figure 2(a), developed by UAIS
Laboratory of Lanzhou University. The instrument has the
advantages of small size, wireless data transmission, easy
electrode placement, and simple operation. Ordinary person-
nel can perform physiological data collection after simple
training. In addition, the accuracy and real-time performance
of the instrument has been verified in previous studies [2],
[28], [29].

B. ELECTRODE PLACEMENT
It is well known that the most relevant physiological signal
for sleep is EEG, followed by EOG [30]. Standard sleep EEG
electrodes [31], [32] include C3-A2, C4-A1, O1-A2, O2-A1,
where C3 and C4, and O1 and O2 are standby electrodes for
each other. Standard sleep EOG electrodes [31], [32] include
LOC-A2 (left outer canthus) and ROC-A1 (right outer can-
thus), where LOC and ROC is standby electrodes for each
other. In addition, it should be noted that the above A1 and
A2 are reference electrodes.

In general, as long as half of the standard sleep physio-
logical signals are collected, the experimental requirements
can be met. Therefore, in this experiment, the electrode
was simplified to achieve the goal of ubiquitous application
while ensuring sufficient physiological data was collected.
Finally, two types of physiological data were collected with
a sampling rate of 250Hz, including 2-channel EEG (C3-

A2 and O1-A2) and 1-channel EOG (LOC-A2). The specific
electrode placement is shown in Figure 2(b).

C. EXPERIMENT WORKFLOW
All the subjects involved in the experiment were determined
by the screening criteria, which were jointly formulated by
project researchers and sleep physicians using the interna-
tional general scale. These international general scalesmainly
include:

(1) Basic health screening: Cornell Medical Index (CMI)
self-assessment health questionnaire was used to screen phys-
ical health information of subjects.

(2) Sleep quality screening: Insomnia Severity Index (ISI)
and Pittsburgh Sleep Quality Index (PSQI) were used to
evaluate the sleep quality.

(3) Depression degree screening: Mini International Neu-
ropsychiatric Interview (MINI) and PHQ-9 were used to
evaluate the severity of depression.

Screening criteria were mainly used to investigate other
mental diseases and major physical diseases, so as to ensure
that the differences among the experimental subjects were
mainly caused by depression. After meeting the screening
criteria and signing informed consent, the subjects can partic-
ipate in the experiment. As the subjects were very sensitive
to external stimuli during sleep, the whole experiment was
conducted in a special room with quiet, non strong light,
moderate temperature and humidity, good ventilation and
no electromagnetic interference. All experiments were per-
formed at night and the total length of sleep was approxi-
mately 7 to 8 hours. Firstly, explain the experimental process
and precautions to the subjects. Then, the experimental staff
should wear the ubiquitous physiological data acquisition
instrument to the corresponding electrode position for the
subjects, and ensure that the electrode position is accurate,
the electrode contacts is good, and the subject is comfortable.
Next, the pretest collects data for at least 10minutes. After the
pretest data was all normal, the experiment formally started
and lasting for 7 to 8 hours. At the end of experiment, the
experimental staff save the data, and remove the instrument
of the subject. The whole experimental workflow is shown
in Figure 3.
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FIGURE 2. (a) Ubiquitous physiological data acquisition instrument. (b) Location of the electrodes placement.

FIGURE 3. Schematic diagram of experimental workflow.

In addition, it should be noted that irrelevant people cannot
enter the room during the experiment. Meanwhile, at any
stage of the experiment, the experiment is stopped as soon
as the subject asks or indicates that he or she is unwilling to
continue the experiment.

D. EXPERIMENTAL DATA ACQUISITION
All experiments were carried out in Tianshui Third People’s
Hospital, China. Based on research objectives and screening
criteria, a total of 40 subjects participated in this experiment.
Firstly, 20 subjects (female/male = 12:8, No: 03DP ∗∗∗∗∗)
who met the screening criteria of depression patients (DPs)
were selected from outpatients. Then, 20 normal control
subjects (NCs, female/male = 12:8, No: 03NC∗∗∗∗∗) were
recruited from Tianshui city, whose gender ratio, age, and
education background were basically matched with DPs.

Demographic variables such as age and gender exert strong
influences on sleep physiological data, andmust be controlled
in depressive sleep studies [33]. Meanwhile, to ensure the
accuracy and scientificity of the experimental data, partial
abnormal data were removed based on data quality and
matching between the two sets of data. Finally, 16 female
(DPs/ NCs = 1:1) and 16 male (DPs/ NCs = 1:1) were
retained for further study. Female group’ ages ranged from
26 to 49, while male group’ ages ranged from 31 to 52.
Table 1 lists means and standard deviations (SD) of age, edu-
cation background, and PHQ-9 score for the depression group
and normal group. In respect to age there are no significant

TABLE 1. Main information of depression group and normal group.

different between two groups. However, there are significant
differences in PHQ-9 score, which indicate that our study
predicts depression rather than age.

Before depression detection, the experimental data
of 32 subjects were divided by two experienced and indepen-
dent sleep physicians according to the new guidelines devel-
oped by the American Academy of sleep medicine (AASM)
[34]. Each 30 seconds of data segment was divided into
one of five sleep stages, which includes Wakefulness (WA),
Nonrapid eye movement (NREM) sleep stage 1 (NREN1),

NREM sleep stage 1 (NREN2), slow wave sleep (SWS),
and Rapid eye movement (REM). The corresponding results
will be adopted while the sleep staging were consistent
between the two sleep physicians. Table 2 summarizes the
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FIGURE 4. Data normalization for each channel.

number of physiological signal segment in the five sleep
stages that were used in this study.

IV. METHODOLOGY
A. DATA PREPROCESSING
Previous studies [35], [36] have shown that the frequency
range of depression related physiological signals mainly
exists between 0.5 Hz and 30 Hz. Therefore, a band-pass
Butterworth filter with a low cut-off frequency of 0.5 Hz and
a high cut-off frequency of 30 Hz is applied to eliminate low-
frequency breathing wave and high-frequency electromyog-
raphy wave in this study.

In order to ensure the reliability of subsequent studies and
reduce the impact of abnormal data, data normalization is
performed by scaling each channel’s signal before feature
extraction, as shown in Figure 4. The data of each subject
are normalized per channel in the range [0, 1] using the Min-
Max normalization and the calculation process is shown in
Formula 1. The above process helps to extract more compa-
rable features between subjects and ensure the variability of
different channels.

Xnorm =
x − min
max − min

(1)

where X represents the initial value of each data, X norm
represents the value of each data after normalization, min
represents the minimum value of all data in a channel, and
max represents the maximum value of all data in a channel.

B. FEATURE EXTRACTION
As is well known, delta (0.5-4 Hz) wave is the most common
during slow-wave sleep, and often occurs in the process of
dreaming. Theta (4-8 Hz) wave is a typical waveform of
drowsiness and early stage of sleep, Alpha (8-13 Hz) wave
mainly appears in the state of quiet and awake closed eyes,
but it disappears immediately after opening the eye. Beta
(13-30 Hz) wave is closely related to mental anxiety and
tension. Therefore, to extract more effective features, sleep
physiological signals were filtered using the Hanning filter
and the above-mentioned four bands delta, theta, alpha, and
beta were divided for further feature extraction.

Sleep is not a unified state, the physiological signals in
the process shows time-sensitive, non-stationary and weak
characteristic, etc. The analysis of sleep physiological signals

found that they exhibit different linear features, as described
in the literature [30]. The importance of the physiological
signals time-series analysis, which exhibits typically complex
dynamics, has long been recognized in the area of non-linear
feature research [37]. Efforts have been made in determining
non-linear features such as entropy and Lyapunov exponent
for pathological signals, which are shown as useful indicators
of pathologies [35], [38]. Finally, on the basis of existing
research, combined with the objectives of this study, the
following features are selected for extraction.

1) LINEAR FEATURE
Linear feature consist of frequency-domain feature and time-
domain feature [39].

a: FREQUENCY-DOMAIN FEATURE
Auto regression (AR) model is a linear model of station-
ary time series, while sleep physiological signal is typical
non-stationary signal. Getting the more accurate frequency-
domain feature, an adaptive ARmodel is adopted to calculate
the power spectral features. AR model is a common method
of sleep physiological signal processing [40], but existing
studies mostly used fixed order AR model [41] rather than
adaptive AR model. The coefficients of fixed order AR mod-
eling can reflect the change of physiological signal state.
Fixed order AR modeling represents the current signal x(t)
as the weighted sum of its previous values x(t − i) and the
standard deviation of the residuals ε(t) as shown in Formula
(2):

x(t) =
∑p

i=1
aix(t − i)+ ε(t) (2)

where ai is the ARmodel coefficients, and p is the fixed order
of AR model.

In this study, Akaikes information criterion (AIC) [42] is
used to adaptively obtain the best order p of the adaptive AR
model in each 30 seconds segment, so as to calculate more
accurate power spectrum features. The calculation of the best
order p is shown in the following algorithm (Table 3).

Finally, frequency-domain features obtained by the adap-
tive AR model include: absolute power spectrum, relative
power spectrum, max power spectrum, and center power
spectrum.

b: TIME-DOMAIN FEATURE
Time-domain feature is the most intuitive external map-
ping form of physiological signal. Therefore, the author
extracted time-domain features closely related to depression
and pathologies [43], [44], including peak-to-peak amplitude,
variance, skewness, kurtosis, and Hjorth parameters.

Peak to peak amplitude: the difference between the max-
imum and minimum amplitudes within a segment, which is
calculated by:

P(X ) = max(X )− min(X ) (3)

where X = {x1, x2, . . . , xn} denotes a set of signal amplitudes
in a segment.
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TABLE 2. The number of physiological signal segment in the five sleep stages (unit: segment).

Hjorth parameters are statistical index proposed by Hjorth
in 1970 [45] for time-domain physiological signal processing
and one of the original aims of this parameter is to solve sleep
related problems. Hjorth parameters provide dynamic tem-
poral information of the sleep physiological signals, which
mainly include activity, mobility, and complexity. Among
them, activity implies the signal power and the variance of
time function. Mobility implies the mean frequency of stan-
dard deviation of the power spectrum. Complexity implies
the change in frequency. The simplified calculation process
of these three parameters is as follows:

act =
1

n− 1

∑n

i=1
(x(i)− var)2 (4)

mob =

√
(1/(n− 2))

∑n
i=2 (xd (i)− vard )2

(1/(n− 1))
∑n

i=1 (x(i)− var)2
(5)

cpx =

√
(1/(n− 3))

∑n
i=3 (xdd (i)− vardd )2

(1/(n− 1))
∑n

i=1 (x(i)− var)2
(6)

2) NONLINEAR FEATURE
As a supplement to linear features, the following nonlinear
features were extracted for analysis in this study.

Correlation dimension: this feature is an important param-
eter to characterize the non-linear dynamic complexity of
physiological signals. There are significant differences in
the correlation dimensions of different mental states, so the
magnitude of their values can be used to characterize and
distinguish pathological states. The calculation process of this
feature is as follows:

TABLE 3. Algorithm for finding the best order p using AR model.

Let the physiological signal be a time series {xt |t = 1,
2,. . . , N}, and embed it into m-dimensional space to obtain
a vector or point set, denoted as:

Xn(m,L, J )

= [x1+(n−1)J , x1+(n−1)J+L , . . . , x1+(n−1)J+(m−1)L] (7)

where L is the time delay, J is the time lag, n = 1,2,. . . , Nm.
Nm is the dimension of reconstruction vector, which satisfies:

Nm = [
(N − 1)− (m− 1)L

J
+ 1] (8)

Select any point Xi from Nm, and calculate the distance from
this point to the remaining Nm −1 point:

rij = d(Xi,Xj) =

√∑m−1

t=0
(xi+k×l − xj+k×l)2 (9)
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Repeat this process for all points in Nm to obtain the
correlation integral function:

Cm(r) =
1

Nm(Nm−1)

∑Nm

i=1

∑Nm

j=1
θ(r − rij), i 6= j (10)

where θ is Heaviside function [46]. When the r→ 0, The cor-
relation integral is approximately equivalent to the following
formula:

lnCm(r) = lnC + CD(m) ln r (11)

According to Equation (11), the reconstructed correlation
dimension can be expressed as below:

CD(m) = limr→0
lnCm(r)
ln r

(12)

Kolmogorov Entropy: this feature can reveal the loss rate
of physiological signals in unit time. In the nonlinear system,
the larger the K entropy indicates is the greater the infor-
mation loss rate, and the more complex the corresponding
system. Therefore, its value can also be used to characterize
and distinguish pathological states. Kolmogorov entropy is
defined as:

KoE = − lim
1t→∞

lim
ε→∞

lim
n→∞

×

∑m

i=0
P(i0, i1, · · · in) lnP(i0, i1, · · · in) (13)

C0-complexity: this feature reveals the proportion of
non-linear components in the original physiological signal.
Therefore, the pathological state can be characterized and
distinguished by analyzing the proportion of non-linear com-
ponents in the signal. Assume that the time series of the
original physiological signal is {x(n)|n = 1,2,. . . , N}, the
calculation process of C0-complexity is as follows:

Perform Fast Fourier Transform (FFT) on the signal x(n):

X (k) =
1
N

∑N

n=1
x(n)e−j(2kπn/N ) (14)

Then, the average amplitude of X (k) is computed:

M =
1
N

∑N

k=1
|X (k)|2 (15)

X (k) less than or equal to M is replaced by 0, and get a new
spectrum sequence:

Y (k) =

{
X (k) |X (k)|2 > M
0 |X (k)|2 ≤ M

(16)

The inverse FFT (IFFT) processing on Y (k) to get a y(n),
and the C0-complexity is obtained as follows:

C0 =
A1
A0
=

∑N
n=1 |Y (n)− X (n)|

2∑N
n=1 |X (n)|2

(17)

where A0 is the measurement of the non-linear components
of the physiological signal, A0 is the measurement of the all
physiological signal.

Shannon entropy: this feature reveals the uncertainty of
physiological signal in non-linear system, which is defined
by:

ShE(X ) = −
∑n

i=1
p(xi) log p(xi) (18)

Largest Lyapunov Exponent: Lyapunov exponent [47] is
an indicator of the speed of divergence or convergence of two
trajectories in a relative space. The n-dimensional data signal
has n Lyapunov exponent, the largest of which is called the
largest Lyapunov exponent. Largest Lyapunov exponent is an
important index to distinguish the differences of physiologi-
cal signals. In this study, this feature is used to characterize
and differentiate pathological state, and its calculation for-
mula is as follows:

λmax =
1

tn − t0

∑n

i=1
log

L(ti)
L(ti − 1)

(19)

where L(ti) represents the shortest distance from the 0 point
at time ti.
In conclusion, this study focuses on the linear and nonlin-

ear features of ubiquitous physiological signal, and extracted
a total of 240 features (16 basic features × 5 frequencies ×
3 electrodes) from delta, theta, alpha, beta, and full-band of
three electrodes. These features are shown in Table 4.

C. COMBINATION LEARNING TO EXPLORE THE RELATED
INFORMATION OF DEPRESSION
There are differences in sleep structure of depression patients
of different genders [48], [49], but it is unclear which
sleep stage is the most effective in recognizing depression,
and there are no identified physiological feature or feature
combinations that can accurately distinguish the differences
between depression patients and normal controls, as well as
identified depression recognition model. In order to solve this
problem, combination learning was adopted to explore the
related information of depression detection.

Combinatorial learning has been widely applied in many
biomedical research fields. In this study, four classical corre-
lation analysis methods were tried in combination learning:
Relief, gain ratio, principal component analysis (PCA) and
correlation-based feature selection (CFS). Because of these
correlations analysis methods were widely acknowledged in
the depression research area [50], [51]. Considering the time
complexity, feasibility and previous application situation of
different classification mechanisms in depression studies, we
tried five representative classification algorithms in combi-
nation learning: Bayesian network (BN) based on proba-
bility graph model, support vector machine (SVM) based
on statistical learning, K-nearest neighbor (KNN) based on
distance, an improved random forest (RFimp) algorithm [52]
and Multilayer perceptron (MLP) based on artificial neural
network.

Pair-wise combination tests were performed on four cor-
relation analysis methods and five classification algorithms
(Figure 5) to calculate depression detection rates of different
gender’s subjects in the five sleep stages. After all the test
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TABLE 4. Features extracted from ubiquitous physiological signal.

FIGURE 5. Schematic diagram of combinatorial learning in test process.

results are obtained, the differences of depression detection
in different sleep stages were analyzed, and determine the
best sleep stage of depression detection in different genders.
Meanwhile, the corresponding optimal feature subset and the
corresponding effective classifier were generated in the best
sleep stage.

D. CONSTRUCTION OF FUNCTIONAL NETWORKS
A function network can be represented by a graph consisting
of nodes and edges between nodes. In this study, the basic
unit of sleep staging was 30 seconds, so each physiological
feature in the optimal feature subset within 30 seconds was
defined as an n-dimensional node, as shown in Figure 6. Each
node represents a time series of feature. Each edge represents
the correlation strength between nodes. To define the edges,

FIGURE 6. Node definitions of functional network.

we should first the time series of features were transformed
into geometric space, and then discuss the correlation strength
of between nodes. Typical calculation methods of correlation
include: distance metric and correlation coefficient metric.
Due to distance metric is more suitable for geometric space,
so Euclidean distance [53] was used to measure correlation
strength. Euclidean distance between any nodes in geometric
space is defined as:

d(A,B) =

√∑n

i=1
(a[i]− b[i])2 (20)

whereA = (a [1], a [2], . . . , a [n]),B = (b [1], b [2],. . . , b [n]).
The correlation strength between different nodes is deter-
mined by its Euclidean distance and threshold δ. If d(A,B) ≤
δ, there is an edge between nodes A and B, otherwise it does
not exist. In this study, δ is determined by the connectivity
between nodes, and the calculation process is shown in the
algorithm 2 in Table 5.
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FIGURE 7. An example of constructing functional network and its adjacency matrix.

Figure 7(1) gives a simple example of functional network
generated based on Euclidean distance and threshold δ. In this
example, the two optimal connectivity rates are 0.25 and 0.30,
that is, 25% (e = 9) to 30% (e = 10). Finally, the upper limit
of the connectivity rate is selected to obtain δbest =10.
The statistical attributes of the network are only related

to connectivity between nodes, but not to the edge weight.
Therefore, the connectivity between nodes can be represented
by Formula 21, in which 1 represents there is an edge between
nodes, and 0 represents there is no edge. According to for-
mula 21, the adjacency matrix of Figure 7(1) is obtained as
figure 7(2).

d(vi, vj) =

{
1, d(vi, vj) ≤ δ
0, otherwise

(21)

E. STATISTICAL ATTRIBUTES OF FUNCTIONAL NETWORKS
Human body is considered to be the most complex func-
tional network system in the universe [55] and attempts to
understand its intricate system structure is one of the most
challenging areas in modern science. Statistical attributes of
functional networks may contain valuable information for
depression detection. Meanwhile, the statistical attributes of
functional networks be obtained from the adjacency matrix
of functional networks. Therefore, the following statistical
attributes were calculated and used for further depression
detection in this study.

(1) Degree distribution (DD): degree refers to the number
of edges connected with a node in the network, which is
one of the most important attributes of the network. Degree
distribution [56] refers to a probability distribution of the
node degree in a network, which is reflects the dispersion
of node degrees. The calculation and results of the degree
distribution of adjacency matrix 7(2) are shown in Figure
8(1).

(2) Clustering coefficient (CC): this attribute is frequently
used to describe the local or global structures of the functional
network [57]. The clustering coefficient of a network node
refers to the proportion of adjacent nodes that are adjacent to
each other, and clustering coefficient of the whole network is

the average of the clustering coefficients of all nodes in the
network. In this study, the clustering coefficient of the whole
network is used to explore the closeness of the neighborhood.
The clustering coefficient of the whole network for adjacency
matrix 7(2) is shown in Figure 8(2).

(3) Jaccard similarity coefficient (JSC): this attribute
reflects the similarity between two nodes in a finite sample set
of functional network. It is calculated as the set of the inter-
section neighbors between two nodes divided by the neighbor
set of the union of the two nodes. The jaccard similarity
coefficient of adjacency matrix 7(2) is shown in Figure 8(3).

F. PERFORMANCE EVALUATION
In this paper, k-fold cross-validation, and area under receiver
operating characteristic (ROC) curve (AUC) are used to eval-
uation the performances of the proposed method.

(1) k-fold cross-validation: it is a popular and classical
method to evaluate the performance of classification algo-
rithm. Each dataset is stratified into k folds, of which k-
1 folds are used as a training sample and the remaining 1 fold
is used as a testing sample. This process is repeated k-times
so that all subsets are tested, and it is defined as:

prefomance =
1
k

∑k

i=1
ACk (22)

where AC is the accuracy, that is, the proportion of correctly
predicted number to total number. Its definition is as follows:

AC =
TP+ TN

TP+ TN + FP+ FN
(23)

Among them, TP is the number of true positives, TN is the
number of true negatives, FP is the number of false positives,
and FN is the number of false negatives.

(2) Area under receiver operating characteristic curve: it is
usually considered as an indicator to measure advantages and
disadvantages of prediction model. The closer of AUC is to
1.0, the prediction model is better.

V. RESULTS AND DISCUSSIONS
The experimental data analysis of this study is implemented
in MATLAB 2017b, and the experimental hardware and soft-
ware configuration is shown in Table 6.
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TABLE 5. Calculation process of threshold δ.

FIGURE 8. Statistical attributes of functional networks.
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TABLE 6. Hardware and software configuration of experimental.

A. STATISTICAL ANALYSIS RESULTS OF COMBINATION
LEARNING
240 physiological features extracted from the data of the
ubiquitous experiment were used as the input of combined
learning, and then the combination learning applied four cor-
relation analysis methods and five classification algorithms
pair-wise to the detection of depression in WA, NREM1,
NREM2, SWS and REM for male and female, respectively.
To obtain an unbiased result, 10-fold cross-validation was
adopted to evaluate the detection performance in this study.
In addition, in order to get a statistically meaningful result,
100 times of 10-fold cross-validation are executed inde-
pendently. This means that the classification is executed
1000 times, and the average value is taken as the result in
finally.

Tables 7 and 8 show the average performance and average
feature number obtained from combination learning of differ-
ent sleep stages for different gender. Due to one of the main
purposes of this study is to explore the most significantly
sleep stage to detect depression, thus combination learning
were also applied to WA, NREM1, NREM2, SWS and REM
respectively. In two tables: (1) AgP: average performance of
five classifiers (BN, SVM, KNN, RFimp and MLP) detecting
depression subjects and normal controls. (2) AgN: average
feature number represents the average number of needed
features that five classifiers get highest performance using
each correlation analysis method. (3) None: indicates that no
feature selection algorithm was used.

From tables 7 and 8, it can be seen that the best sleep stage
for male and female are SWS and REM, with average perfor-
mances of 84.62% and 85.72%, respectively. These results
suggest that SWS stage in male and REM stage in female
are closely related to depression state detection. Despite it
is still an open question whether sleep structure difference
are state or trait marker of depression. However, previous
studies have indicated close relationship among sleep struc-
ture, depression, and gender, furthermore there are significant
differences in sleep structure between depression group and
normal group [58]. Researchers [33], [59], [60] indicated that
there were significant changes in SWS and REM between
depressive patients and normal controls. To some extent, this
conclusion is consistent with our results. The percentage of
SWS stage did not differentiate between different genders
in normal controls [61], while male had significantly less
SWS counts than female in depression group [48]. These two

FIGURE 9. Basic principles of CFS calculating optimal feature subsets.

studies indirectly explain our findings: why SWS stage is
most effective in the detection of male depression.

In addition, it can also be observed from tables 7 and 8 that
the highest average performance of depression detection in
both genders is related to CFS. Why the CFS is superior to
other correlation analysis methods? We believe that the main
reason can be attributed to as follows: CFS [62] calculates the
optimal feature subset based on heuristic evaluation function.
This function tends to subsets that contain features that are
highly correlated with the class and uncorrelated with each
other. Irrelevant features should be screened out due to they
have a low correlation with class. Redundant features should
be removed as they will be highly correlated with remaining
features. The Basic principle of CFS calculating optimal
feature subsets is shown in Figure 9. It is based on the above
advantages that the CFS method is widely recognized and
applied to related fields such as depression detection [63] and
sleep disorder recognition [64].

Table 9 lists the optimal feature subset of depression detec-
tion based on the CFS. For male optimal feature subset is
mainly derived from delta wave of EEG. For female optimal
feature subset, except for EOG, it mainly derived from alpha
wave, beta wave and theta wave of EEG. The new guidelines
developed by AASM [34] point out that delta wave of EEG is
the main basis of SWS stage determination, and alpha wave,
beta wave and theta wave of EEG, as well as the amplitude
of EOG is the main basis of REM stage determination. The
criteria of this guideline coincide with the results of optimal
feature subset in Table 9. It is further verified from the per-
spective of sleep medicine that the SWS and REM are the
best sleep stages for depression detection in male and female,
respectively.

In the above sections, for different genders we analyzed
the best sleep stages for depression detection using corre-
lation analysis methods in combination learning. However,
we cannot clearly point out which classification algorithm in
combination learning has a greater effect on depression detec-
tion. Therefore, based on CFS, we further analyze the most
effective classifiers for depression detection of different gen-
ders in specific sleep stages. The results of different classifier
for performance and ROC curve are shown in Figures 10 and
11. From Figure 10, it can observe that performance derived
from SVM and RFimp is very closer whether male or female,
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TABLE 7. Experimental results of combination learning for male.

TABLE 8. Experimental results of combination learning for female.

FIGURE 10. CFS-based performance comparison of depression detection in different classifiers.

FIGURE 11. CFS-based AUC comparison of depression detection in different classifiers.

and it is higher than 86.5%. And moreover, from Figure 11,
it can observe that AUC of SVM and RFimp is very closer, and
both exceed 0.920. Comprehensive consideration the factors

of performance, AUC, training time of SVM and RFimp
(Table 10), this study ultimately uses RFimp to complete
further depression detection.
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TABLE 9. CFS-based optimal feature subset for different genders.

TABLE 10. Trainings time of SVM and RFimp for depression detection
(unit: second).

Why RFimp is superior to other classifiers? We believe the
main reasons can be summarized as follows:

(1) In this study, the corresponding experimental data
are used only when the sleep staging results of two sleep
physicians are consistent. In other words, the data used
in this study are not continuous and just an integration
of sleep physiology data throughout the night. This data
usage strategy conforms to the random sampling mecha-
nism of RFimp [52], which enables RFimp have strong gen-
eralization ability and can dig out the hidden information
behind the data, to obtain a higher depression detection
performance.

(2) Decision trees are independent and highly paral-
lel in the process of RFimp training [65], so the train-
ing time of RFimp is shorter than other classification
algorithms.

B. STATISTICAL ANALYSIS RESULTS BASED ON
FUNCTIONAL NETWORKS
To investigate the performance effect of functional networks
for depression detection, the method based on Section 4.4,
the optimal feature subsets in Table 9 are used to con-
struct functional networks of different gender. Then two
sets of controlled trial are designed for functional net-
works and conducted statistical analysis of experimental data.
In the first set of experiments, only three functional net-
work attributes, such as degree distribution, clustering coef-
ficient and jacard similarity coefficient, are used to detect
depression. In the second set of experiments, the optimal
feature subset in Table 1 is combined with three attributes
of functional network to detect depression. The follow-
ing is a detailed description of the specific process and
results:

FIGURE 12. Detection performance based on functional network
attributes.

1) ANALYSIS AND COMPARISON BASED ON FUNCTIONAL
NETWORK ATTRIBUTES
On the basis of the results in Section 5.1, analyze and compare
the depression detection performance of functional network
attributes in the following four scenarios:
Scenario 1: degree distribution is calculated and used as

input of RFimp.
Scenario 2: clustering coefficient is calculated and used as

input of RFimp.
Scenario 3: jacard similarity coefficient is calculated and

used as input of RFimp.
Scenario 4: degree distribution, clustering coefficient and

jacard similarity coefficient are used together as inputs to
RFimp.
According to the experimental statistical results shown

in Figure 12, we can observe that the depression detection
ability of jacard similarity coefficient is significantly lower
than degree distribution and clustering coefficient for whether
male or female. We believe that this result is due to the
significant difference of degree distribution and clustering
coefficient between depression patients and normal controls,
which improves the detection ability of these two functional
network attributes. Similar conclusions have been mentioned
in depression studies based on network attributes. The study
in [66] report that the degree distribution of functional net-
works in patients with depression clearly tends to be homo-
geneous. Hu’s team [67] found that the clustering coefficients
of depression patients were significantly lower than those of
healthy controls. Sun et al. [18] reported the clustering coeffi-
cient was significantly negatively correlated with depressive
level. In summary, jacard similarity coefficient can’t be used
as a key core attribute to detection depression probably due to
overlaps in network similarities. However, the combination of
three functional network attributes can improve the detection
performance to some extent.

2) ANALYSIS AND COMPARISON BASED ON OPTIMAL
FEATURE SUBSET AND FUNCTIONAL NETWORK ATTRIBUTES
On the basis of previous section, analyze and compare the
depression detection performance in the following three sce-
narios:
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FIGURE 13. Detection performance based on OPS and functional network
attributes.

TABLE 11. The best detection results of depression.

Scenario 1: optimal feature subsets (OFS) in Table 9 used
as the input of RFimp.
Scenario 2: three attributes of functional network are com-

bined as the input of RFimp.
Scenario 3:OFS and three attributes of functional network

are combined as the input of RFimp.
Figure 13 illustrates the comparison results of the above

three scenarios. Meanwhile, the best detection results are
shown in Table 11. Based on the results, we can observe that:
the optimal features set, as a key factor, can effectively detec-
tion depression. Functional network attributes, as a secondary
factor, can be further improving the detection performance
of depression. These findings reveal: (1) the relationship
between sleep physiological features and depression, that is
the relationship between features and classes, plays a dom-
inant role in depression detection. Because CFS focuses on
selecting features based on the correlation between features
and classes. (2) The relationship between sleep physiological
features plays a secondary position in the detection of depres-
sion. Due to sleep physiological feature is the basis of the
construction of functional networks.

C. DETECTION PERFORMANCE AND THE NUMBER OF
PHYSIOLOGICAL SIGNAL SEGMENTS
In this section, the relationship between detection perfor-
mance of depression and the number of physiological signal
segments is evaluated and analyzed. The OPS and functional
network attributes are used as input of RFimp, the detection
performance of depression is compared from the following
the number of physiological signal segments: 1000, 2000,
3000, and 4000.

Figure 14 shows the detection performance derived from
four physiological signal segments of different gender.
According to the comparison results, it can be seen that

FIGURE 14. Comparison of automatic diagnosis accuracies for four
different sleep segments.

increasing the number of physiological signal segments will
improve the detection performance, but when the segment is
more than 3000, the improvement degree is relatively small.
Therefore, it is suggested that the number of physiological
signal segments should be larger than 3000 when applying
the proposed method to detect depression.

VI. CONCLUSION
To explore convenient, fast, objective and reliable meth-
ods for detecting depression, this study conducted automatic
detection and discrimination of DPs fromNCs based on com-
bination learning and functional networks using ubiquitous
physiological data. We found that the best sleep stage of
male and female are derived from SWS and REM, which
have different best feature subsets, and the most effective
classifier is RFimp, via combination learning. Applying func-
tional network attributes to further improve the detection
performance for DPs, we found functional network attributes
as a supplement to the optimal feature subset can improve
detection performance by at least 4.6%. In addition, we have
also investigated the relationships between detection perfor-
mance and the number of physiological signal segments. The
experimental results show that the detection performance is
almost unchanged when the number of physiological signal
segments is greater than 3000. In conclusion, these findings
provided insights and detection tools for our understanding
of depression.
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