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ABSTRACT A multistatic radar system can effectively improve the detection performance owing to its
spatial diversity property. However, the detection performance will degrade when there exist multipaths.
Time reversal has been proved to be able to transform the impact of the multipath into a favorable factor
by matching propagation channels to achieve space-time focusing in a monostatic radar system. Therefore,
we study the time reversal detection problem in a multistatic radar system with multipath environment in
this paper. We divide the detection problems into two scenarios according to whether the channel response
is known or not. In both scenarios, the time reversal detector and the conventional detector are derived
respectively. Monte-Carlo experiments are used to examine the performance of the four detectors. The
simulation results demonstrate that the time reversal detectors have a significant performance enhancement
over the conventional detectors for the multistatic radar in a multipath environment, andmoremultipaths lead
to better detection performance for the time reversal detectors. In addition, we also show that the detection
probability improves with the increase of the number of radar transceivers.

INDEX TERMS Detection, multistatic radar, time reversal.

I. INTRODUCTION
Radar cross section (RCS), which affects the radar detection
performance significantly, is associated with the radar obser-
vation angle. In a multistatic radar or a distributed multiple
input multiple output (MIMO) radar, the target is illuminated
from different directions to obtain spatial diversity which
can overcome RCS fluctuation [1], [2]. Compared with the
monostatic radar, the multistatic radar system utilizes spatial
diversity to improve the detection performance [3]–[6]. There
exist lots of multipaths for urban environments or low angle
target detection [7], [8], which severely reduces the detec-
tion probability [9]. In order to solve the multipath problem
in detection, the multistatic scattering model in multipath
environment was studied [10]. However, it is difficult to
build an accurate multipath channel model for a complex
propagation environment. For the situation where the wide-
sense noise covariance matrix is unknown, several detectors
are derived by using a subspace model and assuming the
persymmetric covariance structure [11]. In order to solve the
signal mismatch caused by multipath, two selective detectors

The associate editor coordinating the review of this manuscript and
approving it for publication was Mehmet Alper Uslu.

are proposed in [12]. In addition, a tunable detector [12] is
studied to overcome the problem of worse robustness caused
by selective detectors. In addition to reducing the adverse
effects of multipath on detector performance, it is also a good
idea to use multipath characteristics to improve detection
results. In [13], according to the behavior of the multipath
components, the prior knowledge of the environment is used
to divide the environment into three different regions, each
of which corresponds to a detector designed to improve
detection performance. Another multipath exploiting adap-
tive radar which is called Multipath Adaptive Matched Filter,
with the knowledge of the reflected steering vector for a
known actual direct-path steering vector is devised in [14].
The diffuse multipath exploitation detectors are designed
in [15] and [16] for point-like targets and range distributed
targets, respectively. Besides exploiting multipath energy as
in [14] and [15], multipath can also be utilized to increase
spatial diversity. The adaptive OFDM radar is proposed to
solve the problem of moving target detection in a multipath
environment [17].

The time reversal (TR) [18] is a technique that can trans-
form the influence of the multipaths into a favorable factor by
matching the propagation channels. Its processing is shown

93594 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7320-327X
https://orcid.org/0000-0002-9637-8088


Z. Zhang et al.: TR Detection in Multistatic Radar System

FIGURE 1. Configuration of time reversal process.

in Fig. 1. The radar receives the echo of a target as the con-
ventional radar does first. Then, it forms the new transmitted
signal by reversing the received data in the time domain (or
by doing phase conjugation in the frequency domain) and
normalizing energy. Subsequently, the new signal is transmit-
ted to the target through the same scattering channel environ-
ment [18]. Owing to that the retransmitted signal is matched
with the multipath propagation channel, it will refocus on the
target with more energy than the first transmission. Finally,
the radar receives the echoes of the target again, which is
denoted as the time reversal echo. Therefore, time reversal
does not require to construct the channel model in advance
and it can effectively utilize multipaths to realize spatial
and temporal focusing by matching channel response, which
helps to improve the radar detection probability. And also
more multipaths will bring more energy to the target, thus
leading to better detection performance [19]. Time reversal
was firstly proposed by Fink and applied to acoustics and
ultrasound [20], [21], and then it is demonstrated to have a
focusing effect on electromagnetic waves [22], [23]. Jin and
Fink have done a lot of works on the detection problems
using time reversal, such as the TR detection using a sin-
gle antenna [24], antenna arrays [25]. Essentially, the radars
in both papers are monostatic and do not have the advan-
tage of spatial diversity. Then the time reversal detector in
widely separatedMIMO radar is introduced in [26]. However,
the transmitted signals of each subarray or transmitter need to
guarantee strict orthogonality for the MIMO radar to achieve
channel separation by matched filtering. Therefore, to design
the transmission waveform more flexibly without orthogo-
nality, we extend the time reversal detection algorithm to a
general multistatic radar system in this paper.

In the multistatic radar system, several spatially distributed
transceivers are assumed. Each transceiver has one reciprocal
antenna. We construct the signal for the multistatic radar and
derive the TR detectors as well as conventional detectors.
We consider two scenarios, the ideal case and the realistic
case [24], [25], in which the channel response is known
and unknown, respectively. In both scenarios, we derive the
conventional detectors and the time reversal detectors, respec-
tively. Under the ideal case, the time reversal transmitting
signal is calculated according to the channel response. And
we can analyse the detection probability, the false alarm
probability and the detection threshold using the theoretical

results. For the realistic scenario, the channel response is
unknown. We estimate the channel response by applying a
maximum likelihood method to the received signals. Then a
generalized likelihood ratio test (GLRT) detector is derived
to determine whether there is a target or not. We use Monte-
Carlo experiments to analyse the detection performance of the
detectors. Compared with the conventional detectors, the TR
detectors obtain higher detection probabilities in both the
ideal and the realistic cases.

The paper is organized as follows. Section II introduces
the signal model including both the conventional one and the
time reversal one, and analyses their statistical characteris-
tics. Section III derives the conventional and time reversal
detectors under the condition that the channel response is
known and unknown, respectively. Section IV conducts sim-
ulation results and compares themwith the theoretical results.
Finally, Section V summarizes this paper.
Notation:Uppercase and lowercase blackface letters rep-

resent matrices and vectors, respectively. The symbol (·)T

stands for transpose; (·)∗ denotes conjugate; (·)H represents
Hermitian transpose. The character ∼ is used to indicate
statistical distribution. CN (µ, σ 2) and N (µ, σ 2) stand for
complex Gaussian and Gaussian distributions with param-
eters µ and σ 2, respectively. Tr(·) represents the trace of
the matrix. The symbol diag(·) represents a diagonal matrix
whose diagonal elements are vectors in brackets. <(xxx) is the
real part of vector xxx. The symbol AAA+ means Moore-Penrose
inverse matrix of AAA.

II. SIGNAL MODEL
A rich multipath environment is considered in this paper,
such as low angle, indoor and urban scenes. We focus on
the stationary or slow moving target detection problem of the
multistatic radar system based on time reversal and ignore the
clutters in this paper. But the multipaths cannot be eliminated
because they are related to the target [27]. Hence, we consider
the signal model that only includes the target echo and the
multipaths. The target is stationary or moves slowly, therefore
the Doppler frequency has little effect on target detection and
we do not consider the Doppler frequency in the following
analysis. We assume that the radar system is constructed by
N distributed transceivers as shown in Fig. 2. All transceivers
can both transmit and receive signals. Unlike the TR-
MIMO radar, there is no need to ensure the orthogonality of
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FIGURE 2. Configuration of a multistatic radar system.

transmitted signals to achieve channel separation by matched
filtering in the multistatic radar. The transmitted wideband
signal of each distributed transceiver is fn(t) and they have the
same the timewidth Tp and the bandwidthB. Them-th discrete
time domain sample of fn(t) is fn(m), m = 0, · · · ,Q− 1. The
discrete Fourier transform of fn(m) is Fn(ωq), ωq = q(B/(Q−
1)) + ωqs , q = 0, 1, · · · ,Q − 1 and ωqs is the starting fre-
quency of signal, and n = 1, · · · ,N . The transmitted singal
power of the n-th transceiver is En = 1/Q

∑Q−1
q=0 |Fn(ωq)|

2.
The time reversal of transmitted signal is f ∗n (−t), which the
discrete sample is f ∗n (−m). The discrete Fourier transform
of f ∗n (−m) is F

∗
n (ωq). Specially, for real-valued transmitted

signal fn(−t) = f ∗n (−t), therefore the discrete Fourier trans-
form of the time reversed signal corresponding to fn(m) is
F∗(ωq). Since rich multipaths cause difficulties for signal
processing, in this article, we analyse signals in the frequency
domain and consider the multipath effect as a channel as a
whole, instead of considering the impact of each multipath on
detection. Besides, according to the Parseval theorem, there
is no energy loss when the signal is transformed from the
time domain to the frequency domain. Hence, it is feasible to
solve the problem in the frequency domain, which has been
demonstrated by [19], [28], [29].

The channel response matrix at frequency ωq is HHH(ωq),
where the element Hij(ωq) represents the channel response
from the j-th transmitter to the i-th receiver. Channel response
is the product of two Green’s functions. Let G(rrr, rrr′;ωq) be
the Green’ function of the backgroundmedium between loca-
tions rrr′ and rrr at frequency ωq. The channel response is given
by [30]

Hij(ωq) = τ (xxxt ;ωq)G(xxxt , rrrj;ωq)G(rrri,xxxt ;ωq), (1)

where τ (xxxt ;ωq) is the complex reflectivity of the point
target at location xxxt and rrri is the location of the i-th
transceiver. Because of the reciprocity relation of the Green’s
function, we obtain

G(rrr, rrr′;ωq) = G(rrr′, rrr;ωq). (2)

Since we assume that the target is stationary or moves slowly,
the scattering environment can be considered unchanged,

which results in HHH(ωq) being a symmetric matrix

Hij(ωq) = Hji(ωq), HHH(ωq) = HHHT (ωq). (3)

The signal is processed in the frequency domain, hence chan-
nel HHH(ωq) for each frequency point ωq is a superposition of
all multipaths.

In order to show the advantages of time reversal target
detection, we compare it with the conventional target detec-
tion. First, we give the conventional and time reversal signal
models in this section.

A. CONVENTIONAL SIGNAL MODEL
For the l-th snapshot, l = 1, · · · ,L, being similar to the array
antennas received signal in [25], the echo of n-th transceiver
at frequency ωq is Yl,n(ωq)

Yl,n(ωq) =
N∑
j=1

Hn,j(ωq)Fj(ωq)+ Vl,n(ωq). (4)

In this article, receiving one conventional echo is defined as
one snapshot. The received signals of all N transceivers at
the l-th snapshot and frequency ωq are written in the form of
N × 1 dimensional vector

yyyl(ωq) = [Yl,1(ωq), · · · ,Yl,N (ωq)]T

= HHH(ωq)f(ωq)+ vvvl(ωq), (5)

f(ωq) = [F1(ωq), · · · ,FN (ωq)]T , (6)

vvvl(ωq) = [Vl,1(ωq), · · · ,Vl,N (ωq)]T , (7)

where f(ωq) is theN×1 dimensional transmitted signal vector
ofN transceivers at frequencyωq. vvvl(ωq) is the noise vector of
N transceivers at the l-th snapshot and frequencyωq. Vl,n(ωq)
is the additive complex Gaussian white noise with zero mean
and diagonal covariance σ 2

v . The received signals of the Q-th
frequency points are stacked into NQ×1 dimensional vector,
which represents a snapshot data

yyyl = [yyyTl (ω0), · · · ,yyyTl (ωQ−1)]
T

= HHHf+ vvvl, (8)

where

HHH = diag[HHH(ω0), · · · ,HHH(ωQ−1)]NQ×NQ, (9)

f = [fT (ω0), · · · , fT (ωQ−1)]TNQ×1, (10)

vvvl = [vvvTl (ω0), · · · ,vvvTl (ωQ−1)]
T
NQ×1. (11)

In (9), diagonal elements of HHH are block matrices.
Finally, L snapshots data are collected and written as NQ×

L dimensional matrix

YYY = [yyy1, · · · ,yyyL]. (12)

B. TR SIGNAL MODEL
The time reversal data are analysed on the basis of conven-
tional received data. The received conventional signal of each
transceiver for each snapshot is time reversed (or frequency
domain conjugation), energy normalized, and retransmitted.
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In the time reversal process, each time a conventional echo
is received, and the corresponding time reversal echo is also
received. However, these two echoes are uniformly called one
snapshot. In other words, the snapshots of the time reversal
and the conventional signal models are uniformly defined as
the number of times of conventional signal yyyl received. For
the l-th snapshot, time reversal signal at frequencyωq is given
by

xxxl(ωq) = HHH(ωq)UUUlyyy∗l (ωq)+wwwl(ωq)

= HHH(ωq)UUUlHHH∗(ωq)f∗(ωq)

+HHH(ωq)UUUlvvv∗l (ωq)+wwwl(ωq), (13)

where

UUUl = diag[ul,1, · · · , ul,N ]N×N , (14)

wwwl(ωq) = [Wl,1(ωq), · · · ,Wl,N (ωq)]T . (15)

ul,n is the normalized factor of the n-th transceiver, l-th
snapshot

ul,n =

√√√√ ∑Q−1
q=0 |Fn(ωq)|

2∑Q−1
q=0 |Yl,n(ωq)|

2
. (16)

ul,n is used to ensure that the power of the time reversal
transmitted signal is the same as the power of the conventional
transmitted signal, i.e. En. Although the power of the received
conventional echo yyyl in each snapshot is different, the power
of the time reversal transmitted signal remains the same
after energy normalization. Wl,n(ωq) is an additive circular
complex zero mean white Gaussian noise with variance σ 2

w
of n-th transceiver received at the l-th snapshot.
NQ × 1 dimensional vector of time reversal signal at l-th

snapshot is described as

xxxl = HHHUUUlHHH∗f∗ +HHHUUUlvvv∗ +wwwl, (17)

UUUl = diag[UUUl, · · · ,UUUl]NQ×NQ, (18)

wwwl = [wwwT
l (ω0), · · · ,wwwT

l (ωQ−1)]
T . (19)

Just like [25], for the TR target detection, yyy∗l and xxxl are
combined to get more information

zzzl =
[
(yyy∗l )

T xxxTl
]T
. (20)

Similar to (12), all received data can be written as a matrix ZZZ,
which is defined as

ZZZ = [zzz1, · · · ,zzzL]. (21)

C. STATISTICAL CHARACTERISTIC
In this section, we analyse the statistical properties of the time
reversal and the conventional signals. Because Vl,n(ωq) and
Wl,n(ωq) satisfy complex Gaussian distribution, hence vvvl and
wwwl are circular complex Gaussian random vectors

vvvl ∼ CN (0, σ 2
v IIINQ), (22)

wwwl ∼ CN (0, σ 2
wIIINQ). (23)

Note that vvvl and wwwl are the additive complex white Gaussian
noise of the conventional and the time reversed received

signal, respectively. In the time reversal step, the conventional
received signal is transmitted first, which including noise vvvl .
vvvl and wwwl are independent of the target response and on the
other hand, they are statistically independent. Based on this
statistical characteristic, the received signals satisfy

yyyl ∼ CN (HHHf, σ 2
v IIINQ), (24)

xxxl ∼ CN (HHHUUUHHH∗f∗, σ 2
vHHHUUUUUUHHH

H
+ σ 2

wIIINQ). (25)

III. DETECTORS
In this subsection, binary hypothesis test is used for the TR
detection and the conventional detection problems. Under the
null hypothesisH0, there is no target while under the hypoth-
esis H1 the target signal exists. For these detection prob-
lems, we consider two scenarios [24], [25]. One is defined
as the ideal scenario where channel response HHH is known.
And the other is referred to as the realistic scenario where
channel response HHH is unknown. For both the ideal and the
realistic scenarios, the main difference is whether the channel
response is known or not, which leads to different detectors.
When designing the ideal detectors, the channel response can
be considered constant because it is known. For the realistic
detectors, since the channel response is unknown, the max-
imum likelihood (ML) estimation of the channel response
is needed when designing the generalized likelihood ratio
test (GLRT) detectors. In the following, four detectors are
described in detail:

1) the conventional detector with known channel response
(short as ideal-CD)

2) the time reversal detector with known channel response
(short as ideal-TR)

3) the conventional detector with unknown channel
response (short as CD-GLRT)

4) the time reversal detector with unknown channel
response (short as TR-GLRT)

In the conventional detection method, a binary hypothesis
test is directly performed on the received echo, and multi-
path information is not exploited, which often reduces the
performance of the detector and increases the false alarm rate.
In contrast, although the time reversal detection method also
uses a binary hypothesis test, the time reversal echo is a signal
after spatial and temporal focusing, that is, channel matching
is achieved and multipath information is exploited.

A. CONVENTIONAL DETECTOR WITH KNOWN CHANNEL
RESPONSE
For the ideal conventional detection problem, the binary
hypothesis test, the false alarm probability and the detection
probability are derived. The binary hypothesis test is given by

H1 : yyyl = HHHf+ vvvl
H0 : yyyl = vvvl . (26)

In this scenario,HHH is known, and on the other hand,yyyl satisfies
complex Gaussian distribution based on (24). The probability
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density functions (pdfs) under hypothesis H1 and H0 are

p(YYY|H1) =
1

(πσ 2
v )NQL

exp
{
−

L∑
l=1

||yyyl −HHHf||2

σ 2
v

}
, (27)

p(YYY|H0) =
1

(πσ 2
v )NQL

exp
{
−

L∑
l=1

||yyyl ||2

σ 2
v

}
. (28)

The likelihood ratio can be obtained by dividing (27) with
(28)

`(YYY) =
p(YYY|H1)
p(YYY|H0)

. (29)

Then we take the logarithm of (29) and discard the constant
terms. And since channel responseHHH is known, the logarithm
result of (29) can be normalized with 2σv||HHHf||, which is a
constant being calculated in advance. The likelihood ratio test
of conventional ideal detector is

`ideal-CD(YYY) = <
{
(HHHf)H

∑L
l=1 yyyl

σv||HHHf||

}
. (30)

In the ideal scenario, HHH and f are determined. Under
hypothesis H0, yyyl = vvvl , and vvvl is distributed as in (22).
`ideal-CD is a complex random variable. It is straightforward
to know ( (HHHf)H ∑L

l=1 vvvl
σv||HHHf||

)
∼ CN (0,L), (31)

`ideal-CD(YYY) ∼ N (0,
L
2
). (32)

The false alarm probability Pfa,CD is obtained by integrat-
ing `ideal-CD from threshold to infinity under H0

Pfa,CD =
∫
∞

ηCD

1
√
2πL/2

e
−

x2

2L/2 dx

=

∫
∞

ηCD
√
L

1
√
π
e−x

2
dx

=
1
2

(
1− erf

(ηCD
√
L

))
(33)

ηCD =
√
Lerf−1(1− 2Pfa), (34)

where ηCD is the detection threshold. erf(·) is the error func-
tion and erf−1(·) is the inverse error function.
Under hypothesisH1, the received data consist of the target

signal and noise. The test statistic `ideal-CD(YYY) is equivalent to

`ideal-CD(YYY) = <
{
(HHHf)H

∑L
l=1(HHHf+ vvvl)

σv||HHHf||

}
= L
||HHHf||
σv
+<

{
(HHHf)H

∑L
l=1 vvvl

σv||HHHf||

}
= µCD +<

{
(HHHf)H

∑L
l=1 vvvl

σv||HHHf||

}
, (35)

where µCD is the mean value

µCD = L
||HHHf||
σv

. (36)

The probability density function of the test statistic
`ideal-CD(YYY) under H1 is

`ideal-CD(YYY) ∼ N (µCD,
L
2
). (37)

The detection probability Pd,CD is

Pd,CD =
∫
∞

ηCD

1
√
2πL/2

e
−

(x − µCD)2

2L/2 dx

=
1
2

(
1− erf

(ηCD − µCD
√
L

))
. (38)

B. TIME REVERSAL DETECTOR WITH KNOWN CHANNEL
RESPONSE
In this section, the binary hypothesis test, the false alarm
probability and the detection probability about ideal time
reversal detection problem are derived.

It is straightforward to compute the transmitted signal of
time reversal because HHH is known. The essence of time rever-
sal is channel matching. Under the ideal scenario, the channel
response is known, so it is not necessary to transmit f to
obtain the channel information, just to transmit HHHf directly.
vvvl is assumed to be zero, i.e., conventional transmitting is
considered a virtual transmitting. The conventional received
signal of the l-th snapshot, the n-th transceiver is

Yl,n(ωq) =
N∑
j=1

Hn,j(ωq)Fj(ωq). (39)

Without noise vvvl , the normalized factor ul,n of each snapshot
is equal to

ul,n ≡ un =

√√√√ ∑Q−1
q=0 |Fn(ωq)|

2∑Q−1
q=0 |Yl,n(ωq)|

2
, (40)

UUUl ≡ UUU = diag[u1, · · · , uN ], (41)

UUUl ≡ UUU = diag[UUU, · · · ,UUU]. (42)

For the ideal TR detection problem, the binary hypothesis
test is given by

H1 : xxxl = HHHUUUHHH∗f∗ +wwwl

H0 : xxxl = wwwl . (43)

The data pdfs under H1 and H0 are, respectively

p(XXX|H1)=
1

(πσ 2
w)NQL

exp
{
−

L∑
l=1

||xxxl−HHHUUUHHH∗f∗||2

σ 2
w

}
, (44)

p(XXX|H0)=
1

(πσ 2
w)NQL

exp
{
−

L∑
l=1

||xxxl ||2

σ 2
w

}
. (45)

The likelihood ratio is derived by dividing (44) with
(45), then taking the logarithm of the result, ignoring the
known constant terms, finally, normalizing the result with
2σw||HHHUUUHHH∗f∗||

`ideal-TR(XXX) = <
{
(HHHUUUHHH∗f∗)H

∑L
l=1 xxxl

σw||HHHUUUHHH∗f∗||

}
. (46)
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Under hypothesis H0, the received signal is noise, xxxl = wwwl ,
and xxxl is a complex Gaussian random vector. On the other
hand, HHH,UUU and f are known and determined, which can be
assumed constant. Hence `ideal-TR(XXX) is a random variable( (HHHUUUHHH∗f∗)H ∑L

l=1wwwl

σw||HHHUUUHHH∗f∗||

)
∼ CN (0,L), (47)

`ideal-TR(XXX) ∼ N (0,
L
2
). (48)

The false alarm probability of TR detection Pfa,TR is
obtained by integrating `ideal-TR(XXX) from threshold ηTR to
infinity under hypothesis H0

Pfa,TR =
∫
∞

ηTR

1
√
2πL/2

e
−

x2

2L/2 dx

=

∫
∞

ηTR
√
L

1
√
π
e−x

2
dx

=
1
2

(
1− erf

(ηTR
√
L

))
, (49)

ηTR =
√
Lerf−1(1− 2Pfa). (50)

Under hypothesisH1, the received data consist of the target
signal and noise. The test statistic `ideal-TR(XXX) is equivalent to

`ideal-TR(XXX)

= <

{
(HHHUUUHHH∗f∗)H

∑L
l=1(HHHUUUHHH

∗f∗ +wwwl)

σw||HHHUUUHHH∗f∗||

}
= L
||HHHUUUHHH∗f∗||

σw
+<

{
(HHHUUUHHH∗f∗)H

∑L
l=1wwwl

σw||HHHUUUHHH∗f∗||

}
= µTR +<

{
(HHHUUUHHH∗f∗)H

∑L
l=1wwwl

σw||HHHUUUHHH∗f∗||

}
, (51)

where µTR is the mean value

µTR = L
||HHHUUUHHH∗f∗||

σw
. (52)

Compared with (36), although f and UUUHHH∗f∗ have the same
power, µCD and µTR are different, even if σv is equal to σw.
Since it is not guaranteed that each corresponding element of
f and UUUHHH∗f∗ is always the same.

The probability density function of the `ideal-TR(XXX) under
hypothesis H1 is

`ideal-TR(XXX) ∼ N (µTR,
L
2
). (53)

The detection probability is given by

Pd,TR =
∫
∞

ηTR

1
√
2πL/2

e
−

(x − µTR)2

2πL/2 dx

=
1
2

(
1− erf

(ηTR − µTR
√
L

))
. (54)

C. CONVENTIONAL DETECTOR WITH UNKNOWN
CHANNEL RESPONSE
In the realistic conventional scenario, the channel response
HHH is unknown, which is obtained by maximum likelihood
estimation. The detection problem is equivalent to a con-
ventional detection generalized likelihood ratio test problem
(CD-GLRT). The binary hypothesis test for the realistic con-
ventional detection is derived in the following.

In the realistic case, the detection problem is similar
to (26), except HHH is unknown while HHH is assumed known in
the ideal scenario. Then the generalized likelihood ratio test
is derived. The pdfs p(YYY|H1) and p(YYY|H0) are given by

p(YYY|H1)=
Q−1∏
q=0

1
(πσ 2

v )NL

× exp
{
−

L∑
l=1

||yyyl(ωq)−HHH(ωq)f(ωq)||2

σ 2
v

}
, (55)

p(YYY|H0)=
Q−1∏
q=0

1
(πσ 2

v )NL
exp

{
−

L∑
l=1

||yyyl(ωq)||
σ 2
v

}
. (56)

Generalized likelihood ratio test is used in this detection prob-
lem.Unlike (30), here the constant term ||HHH(ωq)f(ωq)|| cannot
be discarded because of unknown HHH. In (29), the numerator
and the denominator are replaced by (55) and (56), respec-
tively. Then taking the logarithm of the result in (29) and
discarding the constant terms, the test statistic is given by

`CD-GLRT(YYY) = ln p(YYY|H1)− ln p(YYY|H0)

=
1
σ 2
v

L∑
l=1

Q−1∑
q=0

{
||yyyl(ωq)||2

− ||yyyl(ωq)−HHH(ωq)f(ωq)||2
}

=
1
σ 2
v

L∑
l=1

Q−1∑
q=0

{
2<[yyyHl (ωq)HHH(ωq)f(ωq)]

− ||HHH(ωq)f(ωq)||2
}

=
1
σ 2
v

Q−1∑
q=0

{
2<{ Tr[HHHH (ωq)BBB(ωq)]}

− Tr[HHHH (ωq)HHH(ωq)AAA(ωq)]
}
, (57)

where

AAA(ωq) = Lf(ωq)fH (ωq), (58)

BBB(ωq) =
L∑
l=1

yyyl(ωq)fH (ωq). (59)

Because of the unknown channel responseHHH(ωq), the max-
imum likelihood estimation ĤHH(ωq) is obtained by taking the
partial derivative of ln p(YYY|H1) with respect to HHH∗(ωq)

∂ ln[p(YYY|H1)]
∂HHH∗(ωq)
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=
∂

∂HHH∗(ωq)

L∑
l=1

Q−1∑
q=0

1
σ 2
v

{
− ||yyyl(ωq)||2

− ||HHH(ωq)f(ωq)||2 + 2<{yyyl(ωq)HHH(ωq)f(ωq)}
}

=
∂

∂HHH∗(ωq)

Q−1∑
q=0

1
σ 2
v

{
− ||yyyl(ωq)||2

− Tr[HHHH (ωq)HHH(ωq)AAA(ωq)]

+ 2<{ Tr[HHHH (ωq)BBB(ωq)]}
}
. (60)

According to the conjugate gradient of trace
function [31]

∂ Tr(RHT)
∂R∗

= T, (61)

(60) is equivalent to

∂ ln[p(YYY|H1)]
∂HHH∗(ωq)

= BBB(ωq)−HHH(ωq)AAA(ωq). (62)

The maximum likelihood estimation ĤHH(ωq) is calculated by
letting (62) equal to zero

ĤHH(ωq) = BBB(ωq)AAA+(ωq). (63)

Finally, the channel response estimation ĤHH is obtained

ĤHH = diag[ĤHH(ωq), · · · , ĤHH(ωq)]. (64)

Unlike the ideal conventional detector, it is difficult to
analyse the theoretical values of the detection probability
and the false alarm probability according to the test statistic
`CD-GLRT, and therefore the Monte-Carlo experiments are
used to study the detector performance in the following anal-
ysis in section IV.

D. TIME REVERSAL DETECTOR WITH UNKNOWN
CHANNEL RESPONSE
In this scenario, the time reversal generalized likeli-
hood ratio test (TR-GLRT) is used to solve the detec-
tion problem with ĤHH(ωq) obtained by maximum likelihood
estimation.

The time reversal detection problem is

H1 : zzzl =
[

HHH∗f∗

HHHUUUlHHH∗f∗

]
+

[
vvv∗

HHHUUUlvvv∗ +www

]
H0 : zzzl =

[
vvv∗

www

]
. (65)

Next, the pdfs under H1 and H0 are derived. The covariance
matrix of zzzl(ωq) is

3(q) =
[

σ 2
v IIIN σ 2

vUUUlHHHH (ωq)
σ 2
vHHH(ωq)UUUl σ 2

vHHH(ωq)UUU
2
lHHH

H (ωq)+ σ 2
wIIIN

]
.

(66)

According to the inversion criterion of block matrices
and formula for determinants of block matrices [31],

the inverse matrix and the determinant of 3(q) are
given by

3−1(q)

=


1
σ 2
v
IIIN +

1
σ 2
w
UUUlHHHH (ωq)HHH(ωq)UUUl −

1
σ 2
w
UUUlHHHH (ωq)

−
1
σ 2
w
HHH(ωq)UUUl

1
σ 2
w
IIIN

 ,
(67)

|3(q)|

= |σ 2
v IIIN ||σ

2
wIIIN | = (σ 2

v σ
2
w)
N . (68)

The pdfs p(ZZZ|H1) and p(ZZZ|H0) are given by

p(ZZZ|H1)

=

Q−1∏
q=0

1
(π |3(q)|)L

exp
{
−

L∑
l=1[

yyy∗l −HHH∗(ωq)f∗(ωq)
xxxl(ωq)−HHH(ωq)UUUlHHH∗(ωq)f∗(ωq)

]H
3−1(q)

[
yyy∗l −HHH∗(ωq)f∗(ωq)

xxxl(ωq)−HHH(ωq)UUUlHHH∗(ωq)f∗(ωq)

]}

=

Q−1∏
q=0

1
(π |3(q)|)L

exp
{ L∑
l=1

−
||yyyl(ωq)||2

σ 2
v

−
||xxxl(ωq)||2

σ 2
w

+2<
{yyyTl (ωq)HHH∗(ωq)f∗(ωq)

σ 2
v

+
yyyTl (ωq)UUUlHHHH (ωq)f(ωq)

σ 2
w

}
−
||HHH∗(ωq)f∗(ωq)||2

σ 2
v

−
||HHH(ωq)UUUlyyy∗l (ωq)||

2

σ 2
w

}
, (69)

p(ZZZ|H0)

=

Q−1∏
q=0

1
πL(σ 2

v σ
2
w)NL

exp
{
−

L∑
l=1

||yyyl(ωq)||2

σ 2
v

}

× exp
{
−

L∑
l=1

||xxxl(ωq)||2

σ 2
w

}
. (70)

Take the logarithm of (69) and (70), respectively, and the
test statistic is derived by ln p(ZZZ|H1) − ln p(ZZZ|H0) with the
maximum likelihood estimation of ĤHH(ωq)

`TR-GLRT(ZZZ)

= ln p(ZZZ|H1)− ln p(ZZZ|H0)

=

Q−1∑
q=0

L∑
l=1

{
2<
{yyyTl (ωq)ĤHH∗(ωq)f∗(ωq)

σ 2
v

+
yyyTl (ωq)UUUlĤHH

H
(ωq)xxxl(ωq)

σ 2
w

}
−
||ĤHH
∗

(ωq)f∗(ωq)||2

σ 2
v

−
||ĤHH(ωq)UUUlyyy∗l (ωq)||

2

σ 2
w

}
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=

Q−1∑
q=0

{
2<
{
Tr[ĤHH

H
(ωq)AAA(ωq)]+ Tr[ĤHH

∗

(ωq)BBB(ωq)]
}

− Tr[ĤHH
T
(ωq)ĤHH

∗

(ωq)CCC(ωq)]

− Tr[ĤHH
H
(ωq)ĤHH(ωq)DDD(ωq)]

}
, (71)

where

AAA(ωq) =
L∑
l=1

1
σ 2
w
xxxl(ωq)yyyTl (ωq)UUUl, (72)

BBB(ωq) =
L∑
l=1

1
σ 2
v
yyy∗l (ωq)f

T (ωq), (73)

CCC(ωq) =
L
σ 2
v
f∗(ωq)fT (ωq), (74)

DDD(ωq) =
L∑
l=1

1
σ 2
w
UUUlyyy∗l (ωq)yyy

T
l (ωq)UUUl . (75)

Next, the maximum likelihood estimation ĤHH(ωq) is derived
by taking the partial derivative of ln p(ZZZ|H1) with respect to
HHH∗(ωq) and ignoring the constant terms

∂ ln p(ZZZ|H1)
∂HHH∗(ωq)

=
∂

∂HHH∗(ωq)

Q−1∑
q=0

L∑
l=1

{
−
||yyyl(ωq)||2

σ 2
v

−
||xxxl(ωq)||2

σ 2
w

+ 2<
{yyyTl (ωq)HHH∗(ωq)f∗(ωq)

σ 2
v

+
yyyTl (ωq)UUUlHHHH (ωq)xxxl(ωq)

σ 2
w

}
−
||HHH∗(ωq)f∗(ωq)||2

σ 2
v

−
||HHH(ωq)UUUlyyy∗l (ωq)||

2

σ 2
w

}

=
∂

∂HHH∗(ωq)

Q−1∑
q=0

L∑
l=1

{
−
||yyyl(ωq)||2

σ 2
v

−
||xxxl(ωq)||2

σ 2
w

+ 2<
{
Tr[HHHH (ωq)AAA(ωq)]+ Tr[HHH∗(ωq)BBB(ωq)]

}
− Tr[HHHT (ωq)HHH∗(ωq)CCC(ωq)]

− Tr[HHHH (ωq)HHH(ωq)DDD(ωq)]
}
. (76)

Utilizing (61), Eq. (76) is simplified to

∂ ln p(ZZZ|H1)
∂HHH∗(ωq)

=AAA(ωq)+BBB(ωq)−CCC(ωq)HHHT (ωq)−HHH(ωq)DDD(ωq). (77)

According to (3), HHH(ωq) is a symmetric matrix. And letting
(81) equate to zero, we obtain

CCC(ωq)ĤHH(ωq)+ ĤHH(ωq)DDD(ωq) = AAA(ωq)+BBB(ωq), (78)

which is solved by Hessenberg-Schur method [32]. Finally,
the channel response estimation is

ĤHH = diag[ĤHH(ω0), · · · , ĤHH(ωQ−1)]. (79)

In section IV, the threshold, the false alarm probability
and the detection probability are analysed using Monte-Carlo
simulations.

IV. SIMULATIONS
In this section, we study the performance of the detectors
using Monte-Carlo experiments where the channel response
data are simulated using electromagnetic software FEKO.
Two different models are considered in our simulations to
analyse the influence of multipath environment complexity
on the detection performance. Detection simulations include
two cases. In the conventional case, we use the received
echo for detection. In the time reversal case, time reversal
is performed on the conventional received signal, and the
time reversal echo is used to detect the target. The channel
response is the superposition of the target response and the
multipath response.

A. SIMULATION SETUP
In order to generate different multipath scattering environ-
ments to analyse the performance of different detectors,
we construct two scattering models, where the target is a
cube located at the origin with the side length of 8 meters
and some six-meters spheres are used to produce multipaths.
The model I, which is shown in Fig. 3(a), has 13 spheres.
Model II has 2 spheres, which are shown in Fig. 3(b). And
Fig. 3(c) is a top view schematic which illustrates the location
relationship of target and radar transceivers. The symbols θ
and φ in Fig. 3 are pitch and azimuth angle, respectively.
Fig. 4 shows the monostatic RCS of the simulated model I.
RCS is significantly large when the illumination direction φ
is 90◦. However, it is difficult to always detect the target at
the angle with large RCS. Just like Fig. 3(c), in the following
simulations usingmodel I andmodel II, all pitch angles are set
0 degrees. Three transceivers are set and their azimuth angles
are 0◦, 20◦ and 40◦, respectively.
The transmitted signal is an LFM pulse with the bandwidth

of 20MHz, the timewidth 10µs and the center frequency
of 3GHz. The number of sampling points in the frequency
domain is Q = 101. We use Monte-Carlo experiments
to illustrate the detection performance. In the case where
there is no target, that is, the echo contains only noise.
Monte-Carlo experiments are performed, and the detection
threshold is calculated based on the false alarm probability.
Then, the echo with the target is constructed, and the test
statistics are calculated to obtain the detection probability.
We run 100,000 independent experiments and compute the
test statistics ` when there is no target. Then we sort these
test statistics in descending order. The detection threshold is
determined by the value in the sorted test statistics sequence,
which located at the product of the number of Monte-Carlo
experiments and the false alarm probability. For example,
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FIGURE 3. (a) Model I. (b)Model II. (c) Top view schematic of model I. The
model simulated in FEKO. Target is a cube and spheres produce multipath
environments.

when the false alarm probability is 0.01 and Monte-Carlo
experiments number is 100,000, the detection threshold is
the 1000-th value in the test statistics sequence arranged in
descending order. When the target exists, an echo is con-
structed according to (8) or (17). Then 100,000 Monte-Carlo
experiments are run to calculate the test statistics and sub-
sequently compared to the detection threshold to determine
whether the target exists or not.When the test statistic exceeds
the detection threshold, the target is considered to exist. The
detection probability Pd is defined as the ratio of the number
of experiments that target is detected to the total number of
Monte-Carlo experiments.

The channel response data simulated by FEKO are noise
free. Noise with different signal-to-noise ratio (SNR) is added
to the data to study the relationship between the detection

FIGURE 4. The monostatic RCS of simulated model I. The number markers
represent RCS values in the fan diagram. The azimuth angle is from 0◦ to
180◦, and the pitch angle is 0◦. Frequency range is from
2.99 GHz to 3.01 GHz.

probability and the SNR. For the j-th transmitter and the
i-th receiver, the SNR is defined as

SNRij =

∑Q−1
q=0 |Hij(ωq)Fj(ωq)|

2

Qσ 2
v

. (80)

Note that the definition of SNR in (80) is different from
the definition of a point target. In our paper, the ratio of
average target power to noise in the detection window is
used as the SNR. Generally, the radar working environment
does not change in a short time, which causes the noise
power to be constant. Here, we assume σ 2

v = σ 2
w = 1.

SNR is defined based on the echo signal in the conventional
case. According to (80), SNR is changed by adjusting the
transmitted signal power with the determined noise power
and the channel response. In the ideal TR situation, although
in the conventional step, the virtual transmission is performed
because the channel response is known, the power of the
transmitted signal can still be calculated by the SNR defini-
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FIGURE 5. The detection probability Pd versus SNR under ideal scenario
when SNR of each channel is different. We use the scattering model I with
two transceivers and four propagation channels. In order to unify the
representation, the average SNR of all channels are used as the x-axis.

tion in (80), which is consistent with the ideal conventional
situation. In the realistic time reversal case, the radar receives
echoes twice, each of which contains different noises. In this
case, SNR is defined using conventional echo.

We set the false alarm probability Pfa = 0.01. For the
single transceiver radar, it is set at the location of φ = 20◦.
When the number of transceivers is 2, transceivers locate at
φ = 0◦ and φ = 20◦. And when the transceivers number is 3,
transceivers with φ = 0◦, 20◦, 40◦ are used.We utilize digital
sequences 1, 2 and 3 to indicate the number of transceivers.
In the following description, the CD is used to represent the
conventional method and TR is used to represent the time
reversal method. For the ideal scenario, the snapshot is 1. For
the realistic scenario, we use 1 snapshot data to analyse the
TR detectors performance and 2 snapshots data to analyse the
conventional detectors. For the ideal scenario, lines represent
theoretical values while markers refer to Monte-Carle results.
For the realistic scenario, Monte-Carlo results are depicted.

B. SIMULATION RESULTS
1) IDEAL SCENARIO
Fig. 5 shows the detection probability curve versus SNR
with two distributed transceivers used. For multistatic radars,
the channels corresponding to each transceiver are usually
inconsistent, which results in different multipath scattering
environments for each channel and causes differences in SNR
between the channels. The scattering model I is used in this
simulation. Two cases are considered to study the relationship
between SNR of the channels and the detection probability.
In case 1, we assume that SNR is the same for each channel.
In case 2, we assume that SNR is different with respect to the
different channels, specifically, SNR11 = SNR22 = SNR12
−3 dB = SNR21 − 3dB. In order to uniformly represent
the detectors performance of different SNR of channels, the

x-axis in Fig. 5 is expressed by the average of all chan-
nels SNR. The Monte-Carlo results are consistent with the
theoretical results. For case 2 with different channel SNR,
because half of the number of channels have higher SNR
than the other case, better detection performance is achieved.
TR detector in case 2 has a SNR gain about 6 dB over the
detector in case 1, which is consistent with the difference
of the channel SNR. For case 1, i.e. the same channel SNR
situation, comparing with conventional detector, SNR gain of
time reversal detector is about 4.9 dB. And for case 2 with
different channel SNR, time reversal detector has SNR gain
about 7.2 dB.When themultipath scattering of some channels
is more intense, the corresponding channel SNR will also
improve, which results in a higher detection probability with
more multipath exploited.

Fig. 6 displays the results of the different number of
transceivers when SNR of each channel is the same. For a
single transceiver, its derivation is described in [24]. It is obvi-
ous that as the number of transceivers increases, the detection
probability improves because more transceivers bring more
target information. Compared with the conventional detector,
SNR gain for TR detector of the single transceiver is about
2.7 dB and for 2 transceivers and 3 transceivers, SNR gain
are about 4.9 dB and 3.8 dB, respectively. SNR gain is related
to the channel response. However, SNR gain is not directly
proportional to the number of radar transceivers. Since differ-
ent transceivers corresponding to their respective multipath
scattering environments, this results in the inconsistency of
the multipath that each transceiver can be exploited.

Fig. 7 illustrates the influence of different multipath envi-
ronments on the performance of detectors. For the TR detec-
tor, the detection probability under model I which has more
scatters is higher than the detection probability under model
II. For the conventional detector, the detection probability
under model II is higher than the other model. Compared with
conventional detectors, the corresponding SNR gains of the
TR detectors in model I and model II are 3.8 dB and 3.6 dB,
respectively. This phenomenon indicates that multipaths have
a detrimental effect on the conventional detectionmethod. TR
detector can take advantage of this adverse impact and con-
vert the multipath influence into favorable factors to improve
the detection probability.

Although according to our definition at a low SNR, the tar-
get energy in the detection window can be accumulated of
multiple frequency points and multiple channels to achieve
detection.

2) REALISTIC SCENARIO
Fig. 8 depicts the detection probability curves for the TR-
GLRT and CD-GLRT detection problems when the number
of transceivers is two. SNR is consistent with the situations
in Fig. 5 with two cases. Compared with the conventional
detector, TR detector has a gain about 2.5 dB in case1 and
3.2 dB in case 2. SNR gain of realistic scenario is less
than ideal scenario because channel response is unknown.
Then we analyse the TR detector performance of two cases.
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FIGURE 6. The detection probability Pd versus SNR under ideal scenario
while the number of transceivers is different. We use scattering model I
to analyse. The number of transceivers are 1, 2 and 3, respectively. SNR of
each channel is the same.

FIGURE 7. The detection probability Pd versus SNR under different
scattering models. The number of transceivers is three. SNR of each
channel is the same.

Although the average SNR difference of each channel is
1.5 dB, the difference between two TR detection results is
about 1.2 dB. In the realistic scenario, the multipath cannot
be fully utilized for the channel obtained by the maximum
likelihood estimation, which is not as good as when the
channel is known in the ideal scenario.

Fig. 9 illustrates the curves of the detection probabil-
ity versus SNR under the realistic scenario when the num-
ber of transceivers is different. The derivation of a single
transceiver is introduced in [24]. The results show that more
transceivers lead to higher detection probability. For the num-
ber of transceivers of 1, 2 and 3, the SNR gain are 0.9 dB,
3.5 dB and 1.5 dB, respectively. Though the channel response
is the same as Fig. 6, SNR gain is less than the ideal scenario

FIGURE 8. The detection probability Pd versus SNR under realistic
scenario when the SNR of channels are different. Model I with two
transceivers is used in this simulation analysis. We use the average SNR
of all channels as the x-axis.

FIGURE 9. The detection probability Pd versus SNR under realistic
scenario for different number of transceivers. We use Model I to analyse.
The number of transceivers are 1, 2 and 3. Each of channel SNR is the
same.

because maximum likelihood estimation is used to detect
the target in the realistic scenario. Notice that SNR gain has
no relationship with the number of radar transceivers, but is
related to the channel response, i.e. the situation of multipath
exploitation.

Fig. 10 shows that different multipath environments affect
the detection performance in the realistic scenario. Compared
with the ideal scenario in Fig. 7, the difference of TR detector
performance is more obvious between different models. For
model I, SNR gain of TR detector over conventional detector
is about 1.5 dB. For the other model, SNR gain is about 1 dB.
The TR detector in model I has a 0.2 dB SNR gain over the
other model. However, the performance of the conventional
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FIGURE 10. The detection probability Pd versus SNR under realistic
scenario for different scattering models when the number of radar
transceivers is three. We use Model I and model II to analyse. Each of
channel SNR is the same.

FIGURE 11. The detection probability Pd versus SNR under realistic
scenario for different snapshots when the number of radar transceivers is
two. We use Model I to analyse. Each of channel SNR is the same.

detector is 0.3 dB lower than the detector in model II. More
multipaths exploitation will improve the TR detection proba-
bility and degrade the performance of conventional detector.

Fig. 11 depicts the effect of the number of snapshots on the
detection probability. It is obvious that more snapshots will
improve the detection performance since more multipaths are
utilized.

3) DETECTION PERFORMANCE GAIN
Although Fig. 7 and Fig. 10 demonstrate that multipath has
a beneficial effect on TR detection, we also use a numerical
method to illustrate the detection performance gain due to the
exploitation of multipath by TR. We study the performance
gain of the TR detector over the conventional detector when

FIGURE 12. The performance gain versus multipath variance. Two
transceivers are employed.

FIGURE 13. The difference of detection probability Pd versus multipath
intensity.

the channel response is known. The TR and conventional
detectors are shown in (30) and (46), respectively, which
have similar forms. The detection probability of these two
detectors is only controlled by µCD and µTR with the same
false alarm probability and noise power. Therefore, we can
compare the performance of two detectors by calculating the
ratio of µ2

TR and µ2
CD [24]

µ2
TR

µ2
CD

=
||HHHUUUHHH∗f∗||2

||HfHfHf ||2
≥ 1. (81)

Considering a special case of a point target, and there is no
multipath in the scattering environment, that is, the amplitude
of each channel is a constant, i.e. ∀q, |H (ωq)| = α, α ≥ 0.
Under this condition, the equal sign holds in (81). A rich mul-
tipath environment can cause large variances in the channel
response, which will lead to the TR detector to outperform
the conventional detector [24].
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We generate a random channel that satisfies the complex
Gaussian distribution to study the effect of multipath on the
performance gain of the TR detector. We define that [26]

H (ωq) ∼ CN (α, γ 2), (82)

where γ 2 represents the intensity of the multipath scatter-
ing. Fig. 12 depicts the performance of TR and conven-
tional detectors with varying multipath intensity. Fig. 13
illustrates the difference of the detection probability of TR
and conventional detectors, i.e. the y-axis is defined as
1Pd = Pd,TR − Pd,CD. It is straightforward to know that as
the multipath intensity increases, the detection performance
improves significantly.

V. CONCLUSION
In this paper, the time reversal detection problem in the
multistatic radar system with multipaths has been studied.
We have derived the conventional detectors and the time
reversal detectors for both the ideal and the realistic scenarios.
The TR detectors utilize the time reversal technique to realize
the spatial and temporal focusing by matching propagation
channels and obtain better detection performance than the
conventional detectors. We have constructed two scattering
models with different channel responses and used Monte-
Carlo experiments to validate the detection problem. The
experiment results show the superiority of the TR detectors.
And more complex multipath environments produce more
multipaths, which bring to a higher detection probability.
In addition, the results show that more radar transceivers will
bring more target information and therefore lead to better
detection performance.
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