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ABSTRACT Machine learning techniques are becoming mainstream in intrusion detection systems as they
allow real-time response and have the ability to learn and adapt. By using a comprehensive dataset with
multiple attack types, a well-trained model can be created to improve the anomaly detection performance.
However, high dimensional data present a significant challenge for machine learning techniques. Processing
similar features that provide redundant information increases the computational time, which is a critical
problem especially for users with constrained resources (battery, energy). In this paper, we propose two
models for intrusion detection and classification scheme Trust-based Intrusion Detection and Classification
System (TIDCS) and Trust-based Intrusion Detection and Classification System- Accelerated (TIDCS-A) for
secure network. TIDCS reduces the number of features in the input data based on a new algorithm for feature
selection. Initially, the features are grouped randomly to increase the probability of making them participating
in the generation of different groups, and sorted based on their accuracy scores. Only the high ranked
features are then selected to obtain a classification for any received packet from the nodes in the network,
which is saved as part of the node’s past performance. TIDCS proposes a periodic system cleansing where
trust relationships between participant nodes are evaluated and renewed periodically. TIDCS-A proposes a
dynamic algorithm to compute the exact time for nodes cleansing states and restricts the exposure window
of the nodes. The final classification decision for both models is estimated by incorporating the node’s
past behavior with the machine learning algorithm. Any detected attack reduces the trustworthiness of the
nodes involved, leading to a dynamic system cleansing. An evaluation of TIDCS and TIDCS-A using the
NSL-KDD and UNSW datasets shows that both models can detect malicious behaviors providing higher
accuracy, detection rates, and lower false alarm than state-of-art techniques. For instance, for UNSW dataset,
the accuracy detection is 91% for TICDS, 83.47%by using online AODE, 88% for CADF, 90% for EDM,
90% for TANN and 69.6% for NB. Consequently, TICDS has better performance than the state of art
techniques in terms of accuracy detection, while providing good detection and false alarm rates.

INDEX TERMS Cloud security, node past behavior, feature selection, trustworthiness, system cleansing,
machine learning techniques.

I. INTRODUCTION

Cloud computing offers a reliable and cost-efficient model
to provide internet-based services that are highly scalable ’as
a service’. However, this model has several open issues that
impact its credibility and applicability especially for dynamic
networks, namely vehicular clouds and fog network [1].
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In particular, the cloud applications require distribution,
location-awareness, and mobility support, which increase the
number of cyberattacks and complicate the trust situation [2].
For example, the rogue fog node is a node that pretends to
have legitimate access and coaxes the network nodes to con-
nect to it. In an insider attack (.i.e. where the attacker can steal
property or information for a personal gain), a fog adminis-
trator, who can manage fog instances, can instantiate a rogue
fog instance rather than a legitimate one. The existence of
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fake fog node presents a big threat to personal data privacy
and security [3]. Furthermore, the virtual machine instances
are dynamically created/added/removed which makes it hard
to maintain a blacklist of rogue nodes and to establish long-
term trust between nodes. on the other hand, making a node
online for extended periods can offer more time to attackers to
explore and understand the server configuration. Therefore,
a node that has been online and exposed to attacks can be
assumed compromised. Despite the significant advantages
of dynamic networks, they require a more demanding and
dynamic resource constraint environment, which increases
the security concerns and the number of attacks [4].

Several researchers proposed network intrusion detec-
tion systems (NIDS) to protect cloud environments from
cyber-attacks.

IDS systems in IoT environment are extremely timely as
we expect the unprecedented volume of attacks on various
critical infrastructures [5]. The majority of proposed NIDS
solutions are signature-based techniques that have some limi-
tations [6]. For example, behavioral changes need to be easily
detected, analyzed and attributable to specific elements of a
network ( e.g. operating system versions, protocols or individ-
ual users). However, the number of protocols and the diversity
of data traversing through modern networks introduce high-
levels of difficulty and complexity for NIDS in intrusion
detection [7]. It increases the difficulty in establishing an
accurate norm for attack detection where the state of an
online node must be periodically evaluated to detect any
abnormal behavior. Moreover, there are concerns related to
some of these systems regarding the increasing levels of
required human interaction which impact their efficiency.

Recently, machine learning techniques for intrusion detec-
tion have proven their efficiency. In [8], the authors proposed
a new system for a secure network using machine learning
techniques combined with the node’s past behaviors. The use
of past information about each participant node improves
the trustworthiness in the network. However, the proposed
model does not consider the fast change in node behavior,
where the relationship between the participant nodes changes
rapidly. The state of a node must be periodically evaluated
with a periodic system cleaning. Another problem is the used
datasets, which may include a great number of challenges
such as the noisy data and the huge number of irrelevant
features. The training and the validation of the learning model
have to go through all these features increasing the computa-
tional complexity, the time consumption, and cause an over-
fitting issue [9]. These problems are critical for all applica-
tions as the systems need to rapidly detect any attack with a
small run-time delay and low resource utilization. In partic-
ular, the limitations of the Internet of Things (IoT) systems
make the previously mentioned problem more pronounced as
the nodes need to consume a limited amount of resources
while detecting attacks. To address the above limitations,
the selection of significant features [10] while improving the
detection accuracy is proposed. Many researchers studied the
feature selection issue with high dimensionality problem, but
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generally, the proposed solutions suffer from an increase in
the miss-detection rate [11].

In this paper, we propose two novel schemes called Trust-
based Intrusion Detection and Classification System
(TIDCS) (see figure 1) and Trust-based Intrusion Detec-
tion and Classification System- Accelerated (TIDCS-A)
for secure network. The proposed systems introduce the
idea of periodic system cleansing where trust relationships
between participant nodes are evaluated and renewed periodi-
cally. The process involves removing irrelevant and redundant
features utilizing a new algorithm for feature selection. The
proposed algorithm generates the features subset randomly,
which can reduce the time consumption compared to exhaus-
tive and heuristic search by managing the number of itera-
tions. Hence, multiple feature groups are selected randomly
and the performance of the classifier is used as an evaluation
criterion. The groups’ selection is based on better exploitation
of the best features that will be grouped together to be used
by the machine learning algorithm. The use of a supervised
machine learning algorithm is combined with the past infor-
mation to improve the intrusion detection performance and
the trustworthiness between the network nodes while avoid-
ing the problems of low training data and dynamic behavioral
node changes. TIDCS and TIDCS-A use the best-selected
features to create a well-trained model used for an initial
attack classification decision. Basically, each received packet
goes through the trained model to get an attack classification
decision. This decision is then saved in a secure database as
node past information and explored during the final system
classification. TIDCS applies periodic trust updates based on
the node’s past information. This period presents the number
of considered past decisions called also Time Variable Status
Unit (TVSU) and it is fixed depending on the network require-
ments (complexity, security level). Basically, in a dynamic
network with massive data and high mobility, TVSU should
have small values for a fast update. However, there are some
standard closed cloud settings, namely private cloud, where

Cloud

T'DCS% Qo

—7L—
Printer / % gtop
E] ‘ Mobile
o W]

Malicious nodes

6&

. W

FIGURE 1. TIDCS system model.
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nodes do not change their behaviors frequently, which causes
the network to be mostly stable. In this case, TVSU can be
relatively large. TIDCS-A proposes a dynamic algorithm to
compute the exact time for nodes cleansing states and restricts
the exposure window of the nodes called also the windows
past decision size (WPS). The WPS is dynamically updated
according to the node behavior to reduce the time it takes to
detect the threat.

In the following, we highlight the major contributions pro-

posed in this paper:

1) Designing a new algorithm for features selection using
the random search combined with wrapper and filter
techniques.

2) Designing a novel secure soft combination scheme
based on machine learning algorithm and node behav-
iors to evaluate the trustworthiness of every node.

3) Developing a cleansing intrusion model using an auto-
matic and periodic cleansing of the nodes based on their
past behaviors.

4) Designing a new dynamic algorithm to determine
the exposure window of the nodes according to its
behavior.

5) Performing various simulations to evaluate the pro-
posed solution, strengthen the theoretical analysis and
compare the proposed model with the state-of-the-art
techniques.

The rest of this paper is organized as follows: Section II
provides a summary of the relevant work carried out in the
area. Sections III, IV and VI describe the proposed schemes.
Experimental results are presented in Section V. Section VII
concludes the paper.

Il. RELATED WORK
In this section, the proposed solutions for feature selection
and network intrusion detection are presented.

A. FEATURE SELECTION METHODS

Feature selection and feature extraction are two general
approaches for dimensionality reduction. Feature extraction
methods transform existing features into a lower-dimensional
space. During this process, new features are created based on
linear or nonlinear combinations of features from the original
set. Linear discriminant analysis (LDA) [12] and Principal
Component Analysis (PCA) [13] are two popular techniques
used for feature extraction and dimension reduction.

Feature selection is considered as a special case of feature
extraction where the selection of a subset from the existing
features is done without any transformation [14]. The feature
selection techniques solve and minimize many problems that
can be found in a typical machine learning problem such
as noisy data and the huge number of irrelevant features.
Feature selection is proposed in many works. In [15], the
authors proposed feature selection methods based on mutual
information. The optimal feature subset is defined using the
relevance, redundancy and complimentary of the features.
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The idea is to find the feature subset that minimizes the
cardinality while preserving the information contained in the
whole set of features.

The LogitBoost-Based algorithm has been presented
in [16] as an intrusion detection system using an ensemble
classification approach called silent features. The proposed
model reduces the number of features using both the filter
and wrapper approaches to remove the redundant and irrel-
evant features. The LogitBoost-Based algorithm applies a
heuristic search technique and chooses a genetic algorithm
as the search function to define the relationship between the
features. However, once the groups are generated, they will
not be updated which may reduce the selection performance.
The LogitBoost uses ensemble classification method based
on a boosting algorithm. While boosting algorithm improves
the classification performance, it is time consuming and com-
putation expensive

Random Forests are popular to be used in feature selec-
tions [17] besides its main purpose for classification and
regression. They provide an easy technique to rank the orig-
inal set of features based on their ability to measure the
importance score of each feature to obtain a subset whose
performance is either equal or even better compared with the
performance given by the complete original feature set. They
are based on combining the idea of bagging with a random
selection of features to build several decision trees and choose
randomly at each node a subset of the features to split on.

The performance of the feature selection methods can be
measured using many different metrics such as computer
resources (memory and time), accuracy, the ratio of features
selected, etc. According to [18], the evaluation of the pro-
duced subset can be done by filter and wrapper methods.

« Filter methods: Those methods evaluate the subset based
on the uniqueness of the data using some statistical
and ranking techniques that are independent of the used
learning algorithm. This gave them the advantage of
providing a subset that is created only once and can be
used with different classifiers. Moreover, they are con-
sidered fast, efficient, less prone to overfitting and have
a good generalization property. On the other hand, they
do not consider the relationship between the different
features and the performance of the subset varies from
one used learning model to another. Some examples
of filter-based algorithms are chi-squared, information
gain, fast correlation-based filter, INTERACT, and a fast
clustering-based feature subset selection [19].

o Wrapper methods: The evaluation of the subset depends
on the used learning algorithm as it uses the performance
accuracy of the classifier as an evaluation criterion and
chooses the subset that gives the highest accuracy with
the classifier. The advantages include having better per-
formance and being able to consider the correlation
between different features. On the other hand, they have
a higher chance of being over-fitted and there is always
a need to re-evaluate the feature selection process in
case of using different learning algorithms. They are

VOLUME 8, 2020



Z. Chkirbene et al.: TIDCS: Dynamic Intrusion Detection and Classification System

IEEE Access

classified into two types which are a sequential selection
algorithms and heuristic search algorithms such as the
Genetic Algorithms [19].

B. NETWORK INTRUSION DETECTION SYSTEMS

Intrusion Detection Systems based-signature play a crucial
role in defending computer networks [20]. An IDS signature
library has to be continually updated to detect the latest
threats. Moreover, an IDS accuracy depends on the network
address [21]. An attacker could falsify its IP address so that
the IDS becomes unable to stop the intrusions to the network
from taking place [22] which may reduce the attack detec-
tion efficiency. In [23], the authors presented the IDS as a
combination of devices and software applications capable of
detecting malicious activities and generating the correspond-
ing report. In many cases, false positives reports are more
frequent than actual threats [23]. So, the real attacks can slip
through false reports or be ignored.

Collaborative anomaly detection framework (CADF) [24]
comprises capturing and logging network data, pre-
processing it to be handled at the decision engine sensor using
the Gaussian Mixture Model (GMM) and interquartile range
for identifying abnormal patterns. Moreover, the architecture
for deploying this framework as Software as a Service (SaaS)
is produced to be easily installed in cloud computing systems.
The GMM can produce non-convex clusters that can be
controlled with the variance of the distribution. However,
GMM is not so trivial for optimizing the loss function, since
it is not a convex function.

Euclidean Distance Map (EDM) for anomaly detection
using sequential algorithms was presented in [25]. The sys-
tem analyzes the network traffic and uses the distance maps to
extract second-order statistics. These second-order statistics
are exploited for new features generation which improves
detection accuracy.

C. USE OF PAST INFORMATION

In [26], the authors proposed a weighted decision fusion
scheme using past information. The model uses the local and
global decisions of users to determine the reliability of each
detector. However, these solutions do not take into consid-
eration that principal-agent can be run by an untrusted ser-
vice provider. To overcome this problem, the authors in [27]
proposed that the users submit their encrypted data to the
receiver which can only obtain the sum of the reports without
learning each individual value. However, in the proposed
model, the user location has to be continually updated for
keys generation.

D. TRUST TECHNIQUES

In [28], the authors proposed a cluster and forward based
on the trust cooperative spectrum sensing. The secondary
users are divided into clusters and only the most trusted ones
are selected for the sensing phase. The proposed solution
reduces energy and delays transmission while improving the
spectrum sensing performance. Also, the authors presented
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a solution for data injection attacks in [29] using trusted
anchors detectors. It evaluates the instantaneous trustworthi-
ness of mobile detectors based on reputation scores. However,
this model requires a lot of resources to work (trusted anchors,
GPS information) and it does not take into consideration the
potential fusion centers’ malicious behaviors.

E. USE OF MACHINE LEARNING TECHNIQUES

In general, intrusion detection can be approached by machine
learning techniques which can be classified into three cate-
gories: unsupervised, supervised and hybrid machine learn-
ing techniques. An intrusion detection with a multi class
SVM is presented in [30]. It increase the individual clas-
sification accuracy of the network attacks. In [31], an
attack-resilient malicious node detection scheme is presented
(BAN-Trust). This model can identify the malignant attacks
on BAN according to the nature acquired through the nodes
on their own and approvals shared by various nodes. In [31],
the authors proposed a hybrid feature selection and two-level
classifier ensembles are proposed. Features are selected based
on the classification performance of a reduced error pruning
tree (REPT) classifier. A new framework based on the organic
integration of multiple deep learning techniques is proposed
in [32]. A Damped Incremental Statistics algorithm is used to
extract features from network traffic and train Autoencoder
with a small amount of label data.

Triangle Area Based Nearest Neighbors (TANN) proposed
in [33] as hybrid learning using unsupervised and supervised
learning techniques. The k-means clustering is used first to
obtain the center of the cluster of attack class. Then, the sys-
tem computes the triangle area between the two centers to cre-
ate a new feature signature of the data. Finally, the new feature
is used by the k-NN classifier to improve the classification
attacks. Triangle Area Based Nearest Neighbors is a hybrid
machine learning technique that inherits the advantages of
both the supervised and the unsupervised learning namely
the good performance and unlabeled capability. However,
the improvement in accuracy comes with high computation
complexity and time consumption.

Authors in [34] proposed an online Naive Bayes classifier
for binary classification (2-classes normal / attacks) as well
as multi-classification (23-classes) using the KDDCUP99
dataset. The proposed model tried to solve the issue of data
changing in the network. However, it does not take into
consideration the problem of time consumption as well as
the data set imbalance. The classes having a high amount
of data instances are most classified correctly while the
classes with a low amount of data instances tend to be
ignored.

Online Average One Dependence Estimator (AODE)
model has been proposed in [35] for a multi-classification
problem in the UNSW-NB15 dataset using a supervised
machine learning algorithm. The proposed classifier updates
data overtime to secure a dynamic network. The results show
that the AODE outperformed Naive Bayes (NB). In partic-
ular, the classification rates of AODE and NB are 83.47%
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FIGURE 2. The general framework.

and 69.60% respectively for the multi-classification of the
UNSW-NB15 dataset.

Both Naive Bayes classifier (NB) and Online Average One
Dependence Estimator (AODE) use the supervised machine
learning technique which has relatively fast processing and
high detection performance when compared to existing arti-
ficial neural networks and the unsupervised SVM [36]. How-
ever, maximizing the learning efficiency is still one of the
major goals of secure systems that can be only achieved
through a big amount of data, that might be challenging to
collect.

Ill. THE OVERALL FRAMEWORK

Figure 2 shows the TIDCS framework. Firstly, the proposed
system selects the important features from both the training
and testing sets TR and TS respectively. Then, the set of
the selected features are used as an input in the Training
phase to build the classifier. For each received data point,
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the created classifier generates its decision and stores it in
a private database during the Initial decision and storing
phase. The final step related to Combined decision where
the stored decisions in the database are preprocessed with
the current classifier decision according to the used tech-
niques (TIDCS/TIDCS — A). The main reason to consider the
decision history is to detect malicious nodes with temporal
characteristics during the classification process. In fact, mul-
tiple attacks are caused by the insertion of false information
from compromised nodes within the network. So, the trust
between nodes is needed in the network to ensure that the
participating nodes are normal users and the use of past
information to identify the network users’ reliability can be a
good approach to guarantee a trustworthy environment. In the
proposed framework, the use of the supervised machine learn-
ing algorithm combined with the past information improve
the trustworthiness between the network nodes and overcome
the limited performance of the learning algorithm.
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IV. FEATURE SELECTION

A. PROBLEM FORMULATION

To reduce time and complexity in the created machine learn-
ing model, TIDCS reduces the number of features to a subset
of features called also best features. So, if we denote by
F = {F1|,Fa,...,Fy} the original set of features in the
training data set denoted by TR with cardinality nf. s is the
desired number of features per group G where G < F.
In the presented system, the feature selection criterion func-
tion is the accuracy denoted by § so the higher value of §()
indicates a better feature group. TIDCS aims to find a group
G C F so that:

|G| =5, (D
and
8(G) = max (). 2)
ZCF,|z|=s

The proposed system completes the feature selection phase
satisfying the conditions in Eq 2 based on two phases: random
and improvement phases so that the best features are grouped
together.

B. THE RANDOM PHASE

During the first Ntraining time slots, the groups G are selected
randomly to increase the probability of making the features
participate in multiple groups with different § values allowing
the system to distinguish the important ones faster. For each
group, G with size s, TIDCS evaluates the set of features using
a machine learning algorithm and computes §(G). Ntraining
and s are fixed according to the network requirement (com-
plexity, time, accuracy). The proposed model computes the
score of each feature participant in the group G and takes
into consideration the number of times that the feature FE;
participates in the group generation.

C. IMPROVEMENT PHASE

After identifying the important features during the first
Ntraining time slots, TIDCS selects the group to maximize
the accuracy and applies a max-min strategy to select s the
features with a high score in the same group. Figure 3 shows

Random groups generation

el ol

Scored groups

LTS

FIGURE 3. Features grouping during the random and improvement
phases.

Training

Improvement
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an example of the group generation of 15 features during the
training and improvement phases where s = 5.

The feature selection process is done offline (during the
learning phase). It can be controlled and can be tuned care-
fully because the scope of the training data is known. This
does not impact the time complexity of the online classifica-
tion process. Moreover, the overall training complexity can
be control according to the Ntraining so that the bigger the
Ntraining is, the more the training process will be.

V. TRUST-BASED INTRUSION DETECTION AND
CLASSIFICATION SYSTEM
Table 1 presents the notations used in the following sections.

TABLE 1. Table of notations.

Symbols | Meanings

RF The Historical recurrence vector

¢ The possible classes in the dataset

M Number of features .

WPS The windows past decision size.

d;t the final decision at node k and time ¢.
N Number of nodes in the network .

Threshold value for the size of the window past
decision fixed by the operator.
Classifier decision of received data from a node k

T

d Cla
in time ¢.

TVSU The size of window past information for TIDCS .

Yi The time interval in index .

B The size of ~.

0 The accuracy ratio.

o The accuracy correlation rate.

SMI The similarity rate.

Rf The historical recurrence vector.

A. TRAINING PHASE

We assume that the proposed network is composed of N
nodes proportionally distributed according to the classes in
the considered dataset.! We assume that each packet received
in a node k at time ¢ can be identified and differentiated by a
set of features denoted by xtk (.i.e. IP destination, transmission
protocol). Let yf be the output class label for the k" node at
time . We denote by 7R the training input data extracted from
the dataset. During the learning phase, the adopted machine
learning algorithm (decision tree, SVM, random forest) gen-
erates an attack classification model by training the model
with the available input data TR. This generated model uses
the input features xtk to predict the outcome class yﬂ‘ for any
new node k at any time 7 so that:

yf = classifier(xtk). 3)

where y¥ € € and € denotes the set of all the attack
class labels. Without loss of generality, € is defined here by
¢ = {0, 1, 2, 3, 4} where 0 denotes a normally received data
and 1..4 denote different attack types that will be detailed in
the performance evaluation section.

INote the distribution of the nodes categories does not affect the perfor-
mance of the proposed model and is only used to exploit the available dataset
to model a multimode continuous communication network.
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B. CLASSIFIER DECISION AND STORING

For every newly received data at time ¢ form a node k (every
new entry extracted from the testing dataset 75), the classifier
creates an initial decision dtk that does not depend on any past
information. This decision is then stored in a secure database
to increase data availability and reliability. In particular, the
historical decision data should be secured to avoid any poten-
tial editing or injection of wrong information by malicious
users to make the system unable to recognize their attacks.
Also, this data should be private to make sure malicious users
can not know and learn how the classification of the attack is
working which is very crucial to the success of the proposed
model.

C. COMBINED DECISION

The proposed model detects the intrusion based on the trust
relationship between the nodes which is renewed periodically.
Thus, TIDCS performs a regular update for the node behavior
during each period TVSU fixed according to the network
requirements (network load/security level) and performance.
Let R’; = [r{‘, rf, . r,’f ] be historical recurrence vector. It is
considered as a summary of the decisions previously made
by the classifier for the node k and stored in the database
during TVSU. Rf is updated as follows:

R (c)+ 1if ¢; = df,

Vei e €, Rk(e)) = .
: ¢ (€) {Rf_l(ci) if ¢; # df.

} 4)

In particular, d¥ € € denotes the raw decision made at
time ¢ for node k and R’;(ci) counts the number of times the
node k has been classified as ¢; till the time 7. From Eq. (4),
it can be deduced that at time 7', the number of times the
classifier decided that the node k transmission was of class c;
is given by

rE 2 Ry = i (af = ). )

t=TVSU

TIDCS extracts the most frequent decision in Rf during
TVSU i.e. the final decision at node k and time ¢ is given by:
d*, = argmax(R%(c;)). (6)
ci

Figure 4 shows an example of the most frequent decision
for a node k with TVSU = 3, two classes c¢o and c; are
considered. After 5 time slots, the number of times the node k
was classified as cp and ¢y are R’s‘(co) = 2 and ’g(cl) =1,
respectively. Therefore, the most frequent decision in this

example is d;kk =cy.

VI. TRUST-BASED INTRUSION DETECTION AND
CLASSIFICATION SYSTEM-ACCELERATED

A. ACCELERATED DETECTION

For TIDCS, the smaller the TVSU is, the shorter the node
status update is and the faster the malicious users can
be distinguished. To improve the detection performance,
we propose an enhanced novel scheme called Trust-based
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Initial
decision

TIDCS decision:

Ri(c)) =1 |:> &* = cp

RE(co) = 2

FIGURE 4. An example of the most frequent decision with TVSU = 3.

Intrusion Detection and Classification System- Accelerated
(TIDCS-A). For instance, TIDCS takes into consideration
the nodes’ histories during a period of time. However, the
network behavior is characterized by complexity and ran-
domization. Consequently, TIDCS-A is proposed to verify
and control the network behavior based on the correla-
tion between the decisions made by the classifier that does
not depend on any past information and the decisions of
TIDCS-A generated based on the past performance of the
nodes. The proposed scheme divides the time into multiple
intervals y. Let y; be an interval of y with index i and
size s. The network operator fixes s based on the network
load, and according to the requirements (time/security level).
Basically, in a dynamic network, s should be small as much as
possible for a fast update to detect any change in the network.
However, there is some standard closed cloud setting (.i.e. pri-
vate cloud) where the network is more stable, s can have
bigger values to avoid the last update. So, during each y;, the
proposed system computes the decision similarity between
the classifier and TIDCS-A decisions denoted by SMI which
counts the number of times that the classifier and TIDCS-A
have the same decisions classification. So the bigger is SM1,
the more stable behaviors the network is. For y;, SMI can be
written as:

SMI(y;) = Z (czasszﬁer(d,") = TIDCS —A(d}‘)>. (7
Yi

Let § be the accuracy ratio between the created classifier
and TIDCS-A. § computes the ratio of the similarity between
the created classifier and TIDCS-A decisions during the inter-
val y;. § can be expressed as:

SMI(y;
8(yi) = T(y) (8)

We define the correlation rate i; as a new metric to improve
the system detection performance. u; shows the degree of
correlation between the classifier and TIDCS-A. w; is used
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to control the nodes behaviors in time. So, at the beginning
of the each interval y;, TIDCS-A uses the current and the last
accuracy ratios (6(y;) and §(y;—1) respectively) to compute (;
and manages the windows past decision size WPS. The cor-
relation rate w; can be written as:

1 ifi=1,
wi = ‘3(%‘) = 8(Vi-1))
d(Yi-1))

The decision of WPS is based on a threshold t fixed
according to the security levels, such that:

C))

ifi > 1.

o Casel:
Wi > T, (10)

The decisions of the classifier and TIDCS-A diverge
and only the last y; past decisions will be taken into
consideration.
o Case 2:
Wi < T. eY)

The decisions of the classifier and TIDCS-A con-
verge and all the previous decisions will be taken into
consideration.

C
Classifier o [ L N
decision

]

TICDS-AE
decision
LT [

1 2 3 4 5 6 7 8

\4

\4

«—>
n M 72

FIGURE 5. An example of the decisions of the classifier and TICDS-A for
y={1,2}.

Figure 5 presents an example of two intervals y = {1, 2}
with size s = 4 (4 time unit (TU)). In this example, two

classes cg and c; are considered. For yj, the similarity SM1 is
equal to 3, and §(y1) is equal to:

3
S(y) = ; =075,

For y», the similarity SMI is equal to 1 since the classi-
fier and TIDCS-A have only one common decision (when
TU=8). In this case:

1
8 = - =0.25.
)=

o is equal to:

_ ‘8@2) — ()
5(1)
‘0.25 -1 ‘

=0.75. (12)
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In this example, and if we set T = 0.5, we have uy > ©
(case 1) so only the last decision will be taken is co which is
the same decision of the classifier. The nodes’ histories will
be updated starting from y = 3.

Consequently, an algorithm is presented in the next section
to design an optimized WPS to guarantee the fast convergence
of the TIDCS-A decisions. This algorithm is used to compute
Eq 7, Eq 8 and control the WPS by satisfying the conditions
in Eq 10 and Eq 11.

B. OPTIMIZED WINDOWS PAST INFORMATION

To compute the the similarity SMI, the accuracy ratio § and p,
and to control the conditions in Eq 10 and 11, a novel best
effort algorithm entitled OptimizedWPS (Alg 1) is designed.

Algorithm 1 OptimizedWPS (TR, TS)
1: Input:
TR : Training dataset.
TS : Testing dataset.
Output:
WPS : Optimized window past decision.

OptimizedWPS.Initialization.
OptimizedWPS.FinalDecison.

R DN A RN

The first step in the proposed algorithm consists of
initializing the necessary variables using the function of
OptimizedWPS .Initialization defined in Ag. (2). y and t are
considered as input from the network operator.

Algorithm 2 OptimizedWPS .Initialization (y, T)

1: 5 < Length(y). > The size of the input interval y.

2: n < Length(C). > Number of classes in C.

3: w < 1. > Initialize the accuracy correlation rate | to
1.

4: SMI <« 0. > [Initialize the similarity rate to 0.

5: 8§ < 0. > Initialize the accuracy ratio to 0.

6: WPS < ComputeRatio(d,k, SMI,§). > Compute the
initial WPS.

The function ComputeRatio(dk, SMI, §) is a function cre-
ated in Alg. 3. This function computes first the similarity SMI
then the accuracy rate § and the correlation rate p for each
interval y; and compares it to T to see whether the decisions of
the classifier and TICDS-A converge or not. In the worst case,
the decisions diverge meaning that the node changes its status
rapidly during y; and it is performing abnormal behaviors.
In this case, the algorithm does not take into consideration all
the past data of this node, and only the new decisions will be
considered.

After finishing the computation of the WPS, the algorithm
summarizes all the previous decisions rl.k for each node k
(Line 1 of Alg. 4) and updates the historical recurrence
vector Rf according to the WPS. The algorithm computes
the decision dtk (Line 3 of Alg. 4) that provides the index
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Algorithm 3 ComputeRatios (d¥, SMI, §)
I: Input:dtk, SMI,§.

3: Ouput: WPS

4 SMI(y;) < Y, (classifier(df) = TIDCS — A(df)) >
Number of similar decisions between the classifier and
the TICDS-A fusing y;.

5: 8(y;) < w > Compute the accuracy ratio.
6: W < % > Compute the accuracy

correlation rate.

7. if (u; < ) then

WPS <« (t — i) > The system considers all the

previous decisions of the node from the received instant
t to the last accurate decision in instant i.

9: else

10: WPS <« t > The system considers only the decision
in instant t.

11: end if

12: Return (WPS)

Algorithm 4 OptimizedWPS .FinalDecison.
1: Input: WPS.
2: Ouput:d*

3: fori < 1toN do

k r k..

ri < Li—wes i = ci.
5: Update the historical recurrence vector R¥ =

[r{‘ ..k
6: d¥ < argmax(RL(c)))
Ci

7: end for

8: Return(d))

of the maximum element in the vector Rf which is the final
classification decision.

VIl. PERFORMANCE EVALUATION

In this section, the performance of the proposed approach
is studied. First, we present the simulation environment in
section (VIL.A) including the used machine learning algo-
rithms. Section (VIL.B) presents the used datasets. The fea-
ture selection performance section (VII.C) is investigated in
terms of accuracy and detection rate ; false and positive rate.
Also, we use precision, recall, and F1 function for better
performance evaluation [8]. TICDS and TICDS-A perfor-
mances are presented in sections (VII.C) and (VILE) respec-
tively and a comparison between the two models is studied
in section (VILF).

A. SIMULATION ENVIRONMENT

Without loss of generality, we use this approach on two
machine learning algorithms namely: decision tree and ran-
dom forest (50 trees). Both algorithms are very well-known
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machine learning approaches and used in many classifica-
tion problems. Moreover, they are suitable for large datasets
which makes them optimal for network anomaly detection
over cloud computing [37], [38]. We assume that each node
changes its status every 5007U. Note that the total number
of nodes is fixed to 50 nodes proportionally distributed to the
number of classes in the datasets.

B. USED DATASETS

1) NSL-KDD DATASET

In 2009, the NSL-KDD data has been released as a refined
version of the KDD cup99, it includes 41 features and 4 attack
categories which are DOS, PROBE R2R, and U2R. These
attacks include 39 attack types.

The validation method is hold-out where the dataset is
partitioned into two parts 70% from the testing set used
to create the optimized score weights and 30% is used to
compare the performance of the algorithms.

2) UNSW DATASET
NSL-KDD dataset is an upgraded version of the KDD99
dataset. The major disadvantage of this dataset is that it does
not represent the modern low foot-print attack scenarios.
To overcome the deficiencies of the old datasets, the UNSW-
NB15 dataset was developed by the cyber-security research
group at the Australian Center for Cyber Security in 2015.
The dataset contains nine different modern types of attacks
and varieties of real normal traffic. The data was generated
with a change over time to imitate the contemporary real
network traffic

The UNSW dataset [39] includes 10 different types of
traffic packets and it is more suitable to be used in the
contemporary anomaly detection models. It includes normal
packets as well as 9 types of attacks, which are Analysis,
Backdoor, DoS, Exploits, Fuzzers, Reconnaissance, Shell-
code, and Worms. Table 2 shows the notation of these classes
in the paper. UNSW-NB-15 is composed of two parts: a train-
ing set UNSW-NB-15 training-set.csv which has been used
for model creation and a testing set, UNSW-NB-15-testing-
set.csv used for the testing step and modeling the received
real-time packets.

TABLE 2. Classes notation.

Number | Class

0 Normal

1 Analysis
2 Backdoor
3 DoS

4 Exploits
5 Fuzzers

6 Generic

7 Reconnaissance
8 Sellcode
9 Worms

C. FEATURE SELECTION PERFORMANCE

Figure 6 shows the redundancy and accuracy of each
feature during the random phase for the decision tree
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FIGURE 6. The accuracy and the redundancy for TIDCS applied to decision
tree using UNSW-NB15.

using UNSW-NB15. The redundancy shows how many times
a feature F' participates in group generation (random phase)
and the accuracy per feature shows the score that has been
assigned to this feature. The redundancy of features varies
between 700 and 1100 and the feature accuracy between 62
and 75%. First, we remark that the number of redundancy
does not impact the accuracy since a bigger redundancy
value does not mean a bigger accuracy rate. For example,
in Figure 6, we can see that F'7, which has the highest accuracy
rate compared to the other features, has a redundancy equals
to 870 which is not the maximum. This means that important
features can be identified from the first iterations. In this
simulation, the number of iteration is Nygining = 1100 which
can be modified according to the network requirements in
terms of complexity and time.

Figure 7 shows the accuracy during the random (a) and
improvement (b) phases for TIDCS using UNSW-NB15. This
figure shows how the system improves its performance after
completing the training phase. The improvement phase shows
the final performance of the TIDCS. During the random
phase, the accuracy shows an excessive fluctuation which
means that the best features are not identified and the gen-
eration of more groups results in variations of the accuracy.
After completing the random phase, the system has enough
information about each feature and it can identify the best

of them according to their given accuracy score. According
to Figure 7, the best 5 features have higher accuracy (78%)
than the 42 features (71%). The proposed features selection
technique increases the detection accuracy by 9% compared
to the original performance of the decision tree (69%) while
reducing the number of features to 5 out of 42 (80% less).
In this simulation, we show also the effect of the use of past
data on system performance. We can remark that the accuracy
reaches 91%. This means 13% improvement compared to the
best 5 features model and 20 % compared to the original
decision tree. In fact, after long periods of detection, the
amount of nodes’ past decisions also increases. Therefore, the
system has enough information about node behaviors and can
make more accurate decisions.

Figure 8 shows the accuracy rate of the proposed approach
applied to the decision tree and bagging tree compared to the
original algorithms using UNSW-NB15 datasets. This figure
shows that the proposed model works with different machine
learning algorithms TIDCS selects the best 5 features for
both algorithms which proves that it can reduce the number
of features whatever the algorithm is. The use of past data
also improves the detection performance of the decision tree
and bagging tree in terms of accuracy rate with 23% and 7%
respectively compared to the original performance.

TIDCS(DT) — 1
DT

TIDCS(BT) ] 1
BT

0 20 40 60 80 100
FIGURE 8. Accuracy of TIDCS applied to decision tree and bagging trees.

Table 3 shows the online time complexity of the repre-
sentative machine learning algorithms [40]. n is the num-
ber of instances, each described by mattributes. Generally,
n depends on the dataset size which cannot be managed.
However, m which is the number of features can be managed
by selecting the most important features. The experiments
have been conducted in an operating system on a core i7
desktop computer with 16 GB RAM.

TABLE 3. Time complexity.

[ Algorithm | Time complexity | Comments |

100 100
== Best 5
>
90 |——pBest10 8 80
> Best 15 3 .
® 80 |=—Best42 2 —_—
3 I < Best 10
S " Bost 15
< 70 —Bestd2
20 = Best 5
60 — IPGFS (5F)
0
0 100 200 300 400 4 100 200 300 400
Time index Time index

FIGURE 7. The accuracy rate of TIDCS applied to decision tree during the
training and improvement phases using UNSW-NB15.
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O(m * n?) m: attributes
n: instances

M: Number of trees

Decisions Trees

Random Forest | O(M * m * n * log(n))

Figure 10 shows the effect of the number of features m on
the time complexity. We fixed M = 500, n; = 67343 (testing
set of NSL KDD) and ny = 175, 341 (testing set of UNSW-
NB-15). m is varied from 5 to 42. First, we remark that
the decision tree (DT) has a bigger complexity than random
tree (RF). This figure shows that m has a strong effect on the
time complexity. The bigger is m, the higher is the complexity.
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FIGURE 9. The accuracy rate of TIDCS applied to decision tree compared
to the the original algorithm under different TVSU configurations as a
function of time.
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FIGURE 10. Time complexity.

The accuracy performance aims to select as many features as
possible, while on the contrary, the overfitting problem of the
created model requires to reduce the number of features as
possible for low model complexity and precision.

Figure 11 depicts a comparison of performance between
random forest (RF), Silent features (SF) and TIDCS applied
to the decision tree using the NSL-KDD dataset. The results
show that all the presented systems have good accuracy
(>99%). However, this rate is achieved by TIDCS with only
5 features while RF and SF use 10 features.

RF (10 F) 1 99.87 %1

SF (10 F) 1 99.45 %1

IPGFS (5 F) 1 99.05 %1
0 20 40 60 80 100

FIGURE 11. Comparison of performance between RF, SF and TIDCS using
the NSL-KDD dataset.
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Tables 5 and 4 a comparison of performance between
RF, SE, and TIDCS using the UNSW-NB15 and NSL-KD
datasets to select the most important features. TIDCS is
applied to the decision tree and it reduces the original 42
UNSW-NBI15 features to 5, and the original 41 NSL-KDD
features to 5. We compare the results of TIDCS to SF and RF
models. The three systems select different features that have
a big impact on their accuracy performance.

TABLE 4. NSL-KDD feature selection.

Selected features
F1, F2, F3, F4, F5,
F6,F7, F8, F9, F10,
F11, F12,F13, F14,
F15, Fl6, F17, F18,
F19,F20, F21, F22,
F23, F24, F25,F26,
F27, F28, F29, F30,
F31,F32, F33, F34

, F35, F36, F37,F38,
F39, F40,F41

F3, F23, F24, F29,
F31,F33, F34, F35,
F37, F39

F4,F3, F8, F5, F10,
F23,F30, F32, F36,
F40

F5, F3, F23, F35, F4

FS technique Number of features

Original features 41

Silent Features 10

Random Forest selection | 10

TIDCS 5

TABLE 5. UNSW-NBI15 feature selection.

Selected features
Fl, F2, F3, F4, F5,
F6,F7, F8, F9, F10,
F11, F12,F13,F14,
F15, F16, F17, F18,
F19,F20, F21, F22,

FS technique Number of features

Original features 42 F23. F24, F25.F26,
F27, F28, F29, F30,
F31,F32, F33, F34
, F35, F36, F37,F38,
F39, F40,F41,F42
Silent Features 5 F8, F25, F26, F29, F31
Random Forest selection | 5 F23, F38, F37, F20, F4
TIDCS 5 F2, F3, F7, F27, F42

D. TICDS PERFORMANCE

1) SIMULATION RESULTS USING UNSW DATASET

Figure 9 shows the accuracy rate of TIDCS applied to deci-
sion tree compared to the original algorithm under different
TVSU configurations as a function of time. We can see that
by increasing the time (between 1 to 400), the accuracy
of TIDCS increases however; the accuracy of the decision
tree is fixed to 69%. In the zoomed part from Figure 9, the
time varies between 450 and 900. First, we can remark that
when time index=500, and TVSU = 100, TIDCS accuracy
decreases to 30%. The node changes its status every 5S007TU
so the past decisions of the nodes are not accurate which
falsify the system decisions. After 1007U (time index=610)
the system performance improves and reaches 91%. How-
ever, when TVSU = 750, TIDCS accuracy reaches 91% after
400 TU (time index=900). The smaller TVSU is, the more
accurate the node past information will be.
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Figure 12 presents the detection performance after 1, 400,
550, 900, 1050 and 1400 TU of TIDCS applied to decision
tree. Note also that the normal node average decision is equal
to 0 and the average for the malicious node is 1. The normal
users are presented by blue stars and red stars for the mali-
cious ones. The detection performance of the original deci-
sion tree is presented when the time index=1. We can remark
that the decision tree has a weak detection performance mean-
ing that it is enabled to distinguish the malicious nodes from
the non-malicious ones. After 400 iterations, the proposed
algorithm successfully distinguishes malicious users from
the normal nodes by giving them low reputation scores. For
Time=550, the system is not able to detect the malicious
nodes because the participants’ nodes change their status.

Time: Time: Time: Time: Time: Time:

1 400 550 900 1050 1400
1| e | DR 1 R | PENEID | GO | GO
, 08 0.8 0.8 0.8 0.8 0.8
e
5 * % * * ¥
So6 0.6 0.6 0.6 0.6 0.6
©
S b ox o * * Kk
c
S04 0.4 0.4 0.4 0.4 . 04
8 o oxrx *
@
B0 0.2 0.2 02 02 0.2
0 (EEamne 0 EHSEEE ( EECHEND ( EEIGRED 0 SEECHEOD ( ERIERE
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FIGURE 12. The detection performance after 1, 400, 550, 900, 1050
and 1400 TU for TIDCS applied to decision tree with TVSU = 100.

Figure 13 shows the accuracy rate, detection rate, and false-
positive rate of TICDS compared to NB, AODE, CADF and
TANN using UNSW-NB15 Dataset. It can be seen that the
proposed system has a higher accuracy rate compared to
the other techniques. For example, the accuracy for multi-
classification using the UNSW-NBI15 dataset is 91% for
TICDS, 83.47% by using online AODE, 88% for CADF,
90% for EDM, 90% for TANN and 69.6% for NB. In addi-
tion, TICDS also provides the higher detection rate (94%)
than TANN (88.2%), EDM (89.4%), AODE (77.84%) and
NB(70.32%). Finally, for the false alarm rate, TICDS also
performs the best (4%) over TANN (12.3%), EDM (10.6%),
AODE (6.57%) and NB(31.67%).

2) SIMULATION RESULTS USING NSL-KDD DATASET
TANN shows good accuracy for the UNSW dataset. Thus, it
has been selected to be compared with TICDS in terms of
detection performance. Figure 14 shows the accuracy rate of
TICDS compared to TANN. We can see that TANN keeps
a good performance for intrusion detection and its accuracy
reaches 96.91%. TIDCS also has a good accuracy equals
to 98%. So, TIDCS has a better accuracy rate compared
to TANN.

Table 6 shows a classification comparison between TIDCS
(TVSU = 500) and TANN using NSL-KDD dataset. It can be
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FIGURE 13. Accuracy rate, detection rate, and false positive rate of TICDS
compared to NB, AODE, CADF and TANN.
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FIGURE 14. Accuracy rate of TICDS and TANN using NSL-KDD Dataset.

TABLE 6. Comparison between TIDCS and TANN using NSL-KDD Dataset.

[ Normal [ Probe | DoS [ U2R [ R2L |

TANN | 97.01 94.89 | 90.94 | 60 80.53
TIDCS | 100 99 95 81 98

seen that we have small improvements in predictive accuracy
for TIDCS compared with TANN.

E. TICDS-A PERFORMANCE

Figure 15 (a) shows the accuracy rate of accuracy rate of
TIDCS-A applied to decision tree under different thresh-
old t with a fixed interval size s = 10. Similarly to
TIDCS, the accuracy of TIDCS-A increases with time. When
TU = 500, the TIDCS-A accuracy decreases, however, the
system detects rapidly the changes in the first interval and
updates the status using only the 10 past decisions. The
accuracy increases from 30% to 91%. In the zoomed part
from Figure 15, we can see the impact of T on the accuracy
which controls the decreased rate of accuracy value. For
example, T = 0.5, the accuracy reaches 20% and for r = 0.2,
it reaches only 30%. So the lower the t is, the better the
accuracy will be.
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FIGURE 15. The accuracy rate of TIDCS-A applied to decision tree under
different threshold 7 with a fixed interval size s = 10.

F. TIDCS VS TIDCS-A
We assume that each node changes its status every 300TU.
Figure 16 shows a 3D figure for the accuracy rate per
class for TIDCS as a function of time for TVSU = 300.
First, we can remark that TIDCS has a 100% accuracy for
6 class classifications which are (0,4,5,6,7,8) and has a weak
detection performance for the rest (1, 2, 3, 9). In particular,
class 10 has O packets detected from 100 received. This
weak performance is due to the deficiency of decision tree
algorithm.

100
80
60

40

20

Accuracy per class (%)

9

45678

1000
Time 1500 0 Class

FIGURE 16. The accuracy rate per class for TIDCS for TVSU = 300.

Figure 17 shows the accuracy rate per class for TIDCS-A
in function of time with t = 0.5 and s = 10. We can
see that TIDCS-A detects the intrusion rapidly compared to
TIDCS and the accuracy of classes reaches 100% faster than
TIDCS. Thanks to its dynamic window update, TIDCS-A
detects the evolution of the behaviors of nodes and updates
WPS accordingly which increases the intrusion detection.
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FIGURE 17. The accuracy rate per class for TIDCS-A in function of time
with r = 0.5 and s = 10.

Table 7 shows the detection rate comparison for TIDCS
and TIDCS-A applied to two machine learning algorithms
namely: decision tree (DT)and random forest (RF) using
the UNSW dataset. The size s of interval y is equal to 10
and T = 0.2. TVSU is equal to 500. We remark that both
systems TIDCS and TIDCS-A show good results in terms of
detection accuracy. However, when time=500, the detection
rate decreases for both models applied to decision tree (the
nodes change their status every 500 TU). Only 100 TU are
needed for TIDCS-A to improve its performance and the
detection rate reaches 88% when time=600. On the other
hand, the detection rate of TIDCS reaches 88% only when
time=800. TIDCS-A has an optimized algorithm to identify
WPS which improves the detection rate while increasing the
time and computation complexity. However, TIDCS is more
simple with a fixed cleansing period.

TABLE 7. The detection rate comparison between complex tree and
bagging trees using TIDCS and TIDCS-A using UNSW dataset.

TIDCS-A TIDCS

s =50 7=0.2 | TVSU=500
Time | DT | RF DT | RF
1 66 53 66 52
50 86 66 86 66
501 30 18 32 30
510 30 18 32 30
550 87 18 32 30
600 88 66 32 30
700 88 66 42 40
800 88 66 75 44
900 88 66 88 66

G. SUMMARY

Our preliminary investigation reveals that both TIDCS and
TIDCS-A show good results in terms of detection accuracy.
TIDCS applies periodic trust updates based on the node’s
past information. TIDCS-A proposes a dynamic algorithm to
compute the exact time for nodes cleansing states and restricts
the exposure window of the nodes. TIDCS and TIDCS-A
are used according to the applied security policy. It has been
proven that TIDCS-A is faster in the detection of malicious
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nodes and more complex compared to TIDCS. By using the
NSL-KDD and UNSW datasets, TICDS performs better than
previous work (NB, AODF, CADF, and TANN) in terms of
average accuracy, the detection rate, false alarm.

VIil. CONCLUSION

The security of the networks has become an essential issue
in any distributed system. Intrusion detection systems came
to aid in adding a layer of protection over these networks
by detecting unauthorized intrusion scenarios. In this paper,
we propose a novel model for network intrusion detection,
namely TICDS and TICDS-A. In particular, the proposed
system combines machine learning techniques and past infor-
mation to create a trusted cloud environment. TICDS and
TICDS-A apply cleansing activities for the participants’
nodes, regardless of the presence/absence of attack alarms.
TIDCS has a fixed periodic cleansing window and TIDCS-A
has a dynamic window for network cleansing and anomaly
detection. Simulation results show the good performance of
the two proposed models.
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