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ABSTRACT This paper presents an interactive motion predictor to infer the intention of cut-in vehicles
using a bidirectional long short-term memory (Bi-LSTM) module. The proposed predictor consists of three
modules: maneuver recognition, trajectory prediction, and interaction. The driving data for training and
validating the Bi-LSTMmodule were collected by sensors mounted on an autonomous vehicle (AV). In total,
3,828 trajectories of human-driven vehicles around the AV are accumulated in a global coordinate system.
After postprocessing the collected trajectories, 83,188 and 35,652 data samples were used to train and
validate the Bi-LSTM module, respectively. In the Bi-LSTM module, a maneuver is defined as the desired
driving lane of a vehicle, which extend the behavior coverage of the proposed approach. The trajectory
prediction step is based on the path-following model with a motion parameter estimator to predict the
trajectories for all possible maneuvers. The interaction module considers the likelihood of each maneuver
and the collision risk to determine the future trajectories of the surrounding vehicles in terms of the driving
scene. The proposed predictor was evaluated in terms of its prediction accuracy and its effects on the motion
planner of the AV. It has been shown that the AV benefits from the improved motion prediction of target
vehicles provided by the proposed predictor with respect to enhanced safety and reduced control effort in
the case of cut-in situations.

INDEX TERMS Autonomous vehicle, interactive motion prediction, machine learning, bidirectional long
short-term memory, motion planning.

I. INTRODUCTION
The increasing demand for road safety, driver convenience,
and traffic efficiency have led to substantial research on
autonomous vehicles (AVs). The research field of auto-
mated driving is divided into perception for object detection,
scene awareness decision making, and actuation control [1].
Decision made by AVs require the ability to infer other traf-
fic participants’ intentions and predict their future motions
to understand the driving situation. Human drivers can
infer and predict the behaviors of surrounding vehicles
based on observed information and their driving experiences.
In particular, predicting lane changes is an essential func-
tion to increase safety and improve traffic flow by agilely
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responding to traffic. Out of all police-reported vehicle col-
lisions in the United States, 9% were two-vehicle lane-
change collisions [2]. Lack of attention was the leading
collision-contributing factor accounting for 50% of lane-
change cases [3]. Researchers have attempted to develop pre-
diction algorithms for lane-change intentions that can realize
drivers’ perceptions of driving scenes. Prediction of driver
behavior has been formulated as a problem in various ways
and with numerous approaches. Motion predictors can be
classified into one of two categories: (1) model-based and
(2) learning-based predictors.

Researchers have utilized physics-based and maneuver-
based models to predict the future motion of surrounding
vehicles. Physics-based models use kinematic or dynamic
models to predict future motion starting from the observed
states of the targets. Investigators have employed the constant
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velocity (CV) model, the constant acceleration (CA) model,
the constant turn rate (CTR) model, the constant turn
rate/constant tangential acceleration (CTRA) model [4], and
the path-following model [5] as physics-based prediction
models. However, despite the advantages of simplicity and
low computational burden, it is difficult to adapt these models
to driving situations and interactions between vehicles.

Various maneuver-based prediction models have been
studied to overcome the limitations of physics-based mod-
els. Maneuver-based models use a predefined set of behav-
iors, called maneuvers, to classify the driver’s intentions.
Lane keeping, lane changing, and turning are examples of
maneuvers frequently used in the literature. In some stud-
ies, a trajectory-level predictor is prepared to represent the
actual behavior of each maneuver. In addition, an interac-
tion algorithm is employed to increase the prediction accu-
racy or the number of vehicles in a multivehicle situation.
In terms of the predictor development methodology, the
maneuver-based approach can be divided into model-based
and learning-based methods. For model-based methods, the
basic approach is the comparison between the instantaneous
path of the vehicle and the shape of the road and recognizing
the intended maneuver [6]. A driver-modeling framework
that estimates an empirical reachable set to capture typi-
cal lane-changing behaviors was proposed [7]. To develop
a probabilistic representation of nonlinear time-dependent
behaviors, a dynamic Bayesian network (DBN) was utilized
to construct a maneuver and trajectory prediction model [8].
The trajectory model for each maneuver was introduced to
the DBN to realize trajectory-level prediction [9], [10]. The
integrated approach with physics-based models, such as the
CTRAmodel, was proposed to compensate for the shortcom-
ings of each method [11]. A hiddenMarkov model (HMM) is
used to reduce the computational load and complexity of the
DBN [12] for maneuver prediction. A variational Gaussian
mixture model (VGMM) was employed to fuse the predicted
trajectories with probabilities from the HMM [13]. A similar
approach using Gaussian mixture regression with a random
decision forest was proposed for rarely occurring lane-change
events [14].

Several learning-based approaches have been used to dis-
cern driver behaviors from driving data. The neural network
is modified to parameterize the VGMM to overcome the lim-
itations of parameter tuning [15]. A support vector machine
(SVM) was applied to find a hyperplane, which classifies the
observed vehicle states into predefined maneuvers [16], [17].
A nonlinear autoregressive neural network, which predicts
the trajectory of the recognized maneuver by the SVM, was
proposed to take advantage of machine learning-based clas-
sification and regression [17]. In addition, maneuver-based
long short-term memory (LSTM) was applied to the proba-
bility distribution of the multi-model over future motion [18].
To reduce the computational burden, the occupancy grid map
was applied to LSTM [19]. Convolutional social pooling is
introduced to LSTM to learn interdependencies in vehicle
motion [20].

A careful review of the literature reveals that various
methodologies have been employed to develop a motion
prediction algorithm. Many studies have defined different
maneuvers to represent the behavior of the surrounding vehi-
cles [8]–[14], [16]–[18], [20]. Due to the attempt to predict
using specific maneuvers, several studies consider more than
ten maneuvers [9], [10], [13], [20]. The increase in the num-
ber of maneuvers increases the complexity of the predictor
and makes performance verification difficult. Many studies
relied on the NGSIM dataset (from the Next Generation Sim-
ulation program), which is a public dataset for AV research
[7], [15], [18], [20]. However, it is challenging to develop a
prediction algorithm for AVs because vehicle information in
the NGSIM dataset has been extracted from images collected
from an overhead camera installed in the infrastructure.

This study focuses on improving in-lane target recognition
and the prediction accuracy by introducing a Bi-LSTM-based
interactive motion predictor. The proposed motion predictor
is trained using data collected from the surrounding vehicles
obtained by sensors on an AV. Real data captured on urban
roads in Seoul, South Korea, are used to evaluate the accu-
racy of the motion predictor. Vehicle tests are conducted to
show the improvement in the motion planning performance
in multivehicle conditions on urban roads.

The main contributions of this work are as follows:
1) A Bi-LSTM-based maneuver recognizer is defined to

infer the targeted driving lanes of surrounding vehicles.
2) Lateral and longitudinalmotion parameter estimation is

implemented to improve the trajectory-level prediction
accuracy.

3) Interactions between vehicles based on the maneuver
likelihood and collision probability are considered.

II. ARCHITECTURE OF THE INTERACTIVE MOTION
PREDICTOR BASED ON A BI-LSTM MODEL
This study focused on the prediction of lane-changingmaneu-
vers in multi-traffic conditions of urban environments. The
interactive motion predictor based on Bi-LSTM has been
proposed to realize the trajectory-level motion prediction
of the surrounding vehicles. In previous studies, maneuver
prediction, which infers the driver’s lane-changing intention,
was mainly considered in motorways and main roads in
urban environments. As mentioned before, these studies have
focused on selecting the most appropriate maneuver based on
the observed target states. Therefore, intention inference is
difficult for cases in which the vehicles behave like they are
not included in the predefined maneuver sets. The increas-
ing number of maneuvers, which is mostly used to cover
various behaviors, causing the deterioration of the prediction
accuracy.

Even though the intention of the surrounding vehicles is
predicted appropriately, trajectory-level prediction should be
employed to determine the desired motion of the AV based
on physical quantities, not indexes. Furthermore, when pre-
dicting the motion of multiple vehicles on roads, interactions
between vehicles should be considered drivers to predict
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the behavior of surrounding vehicles. If the predictions are
made separately for individual vehicles, there is a possibility
of predicting a situation that cannot occur. An example is
predicting a situation where two vehicles attempt to change
lanes to the same lane simultaneously. Therefore, we intro-
duce the interactive motion predictor to reduce the num-
ber of false intention inferences and increase the prediction
accuracy.

FIGURE 1. Overall architecture of the proposed interactive motion
predictor.

The architecture of the Bi-LSTM-based interactive motion
predictor is represented in Fig. 1. The proposed motion pre-
dictor is composed of three modules: (1) maneuver recog-
nition; (2) trajectory prediction; and (3) interaction. Each
module has two submodules. First, the maneuver recognition
module consists of a data encoder with input track manage-
ment and a Bi-LSTM-based RNN. The data encoder with
input track management accumulates and standardizes the
information from the in-vehicle network and environmen-
tal sensors. The in-vehicle network provides subject vehicle
states, such as the velocity. The environmental sensors pro-
vide target vehicle states and lane information. The accumu-
lated information is used as input features of the Bi-LSTM
model, which estimates the likelihood of each maneuver.
Second, the trajectory prediction module is composed of a
motion parameter estimator and a path predictor. The tra-
jectory prediction module uses target states and lane infor-
mation to predict future trajectories. The motion parameter
estimator estimates themaximum yaw rate of the lane-change
behaviors and the desired velocity, which are used as input
parameters of the path predictor. The path predictor uses the
path-following model with an estimated motion parameter
to predict the future trajectories for all possible maneuvers.
Finally, the maneuver likelihood from the Bi-LSTM model
and the predicted trajectories of each maneuver are consid-
ered by the interactionmodule to estimate the collision proba-
bility for all combinations of surrounding vehicle maneuvers.
Then, the risk-minimized maneuver combination is used to
determine the optimal prediction results.

III. BI-LSTM-BASED MANEUVER RECOGNITION
A. DATASET
We used a data collection vehicle to collect data from var-
ious vehicles driving on urban roads. The data collection

vehicle, which was developed as an AV, collected the states
of target vehicles and lane marker information by using a
laser scanner and vision sensors. To reflect the interactions
between the AV and the surrounding vehicles, the states of
the data collection vehicle are also accumulated in synchro-
nizationwith the information from the environmental sensors.
In addition, the data collection vehicle drove with real traffic
to acquire information obtainable by the environmental sen-
sors of the AV. The predictor based on this dataset can be
directly utilized in autonomous driving because the informa-
tion obtained from infrastructure is excluded. The details will
be discussed in the following section.

FIGURE 2. Configuration of data collection vehicle.

1) DATA COLLECTION VEHICLE AND THE TARGET ROADS
The configuration of the data collection vehicle is represented
in Fig. 2. As mentioned before, the data collection vehicle is
designed as an AV for urban environments by covering the
360-degree perception area around the AV. To perceive the
surrounding vehicles, we used six ibeo LUX sensors with an
ibeo.HAD Feature Fusion system, which detects traffic par-
ticipants up to 100 m at 25 Hz. This LiDAR system provides
the position, heading, and velocity in local coordinates rela-
tive to the data collection vehicle with classified information.
A front camera,Mobileye Q3, is used to collect the lane infor-
mation as a second-order polynomial with a recognition qual-
ity index. In addition, around-view monitoring (AVM) and a
low-cost GPS were employed to acquire road markers and a
global position for the localization of the AV in urban envi-
ronments. A gateway electronic control unit (ECU) is used to
interface with the chassis controller area network (CAN) and
collect the outputs of the chassis sensors. To acquire highly
accurate localization results on urban roads, the outputs of the
chassis sensors and low-cost GPS and lane marks from
the AVM image were fused to estimate the global position
of the AV, which is described in [21]. All the data were stored
on an industrial PC. A MicroAutobox II and a motor-driven
power steering/smart cruise control module were used to
control and operate the AV. The driving data on the surround-
ing vehicle trajectories were collected on the urban roads of
Gwanak-gu, Seoul, South Korea. Fig. 3 presents the driving
route of data collection highlighted in the solid red line on a
satellite map.
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FIGURE 3. Data collection roads and the collected vehicle trajectories in
global coordinates.

2) DATA ACCUMULATION AND SELECTION
The collected states of the surrounding vehicles and lane
information are defined by the local coordinates of the data
collection vehicle with a time index. To create the appropriate
input sequence of Bi-LSTM for learning the motion patterns
of the vehicles, all the states and lane information should be
defined with fixed global coordinates. The estimated global
position of the data collection vehicle is used to transform
the collected data from local to global coordinates. In Fig. 3,
the five enlarged subfigures show examples of the trajectory
data accumulated in the fixed global coordinate system.

The collected data contained 3,828 trajectories of human-
driven vehicles with lane information. These trajectories were
processed to generate data samples to train and validate the
Bi-LSTM-based maneuver recognition module. After pro-
cessing the collected data, 83,188 data samples for training
and 35,652 for validation were generated. An example of
the generated data is shown in Fig. 4. In the figure, the data
collection vehicle and the surrounding vehicles are depicted
by black and green vehicles, respectively. The input and
output sequences of the Bi-LSTM module are represented in
a blue and red-colored vehicle.

FIGURE 4. Example of data extracted from accumulated vehicle
trajectories.

B. MANEUVER RECOGNIZER
The Bi-LSTM-based maneuver recognizer was proposed to
estimate the likelihood of each maneuver. Since the vehicle

shows continuous behaviors governed by vehicle dynam-
ics, the time-dependent characteristics should be considered
when designing the motion predictor. Rule-based conven-
tional approaches have the advantage that they can be con-
figured with a small amount of data. However, they have
the disadvantage that the design is too complex to cope with
various driving situations. Therefore, the maneuver recog-
nizer based on the Bi-LSTM-based RNN architecture was
proposed based on the information collected from the sensors
on the AV.

FIGURE 5. Maneuver definition for the road-structure-based interactive
motion predictor.

1) MANEUVER DEFINITION
The maneuver of the proposed predictor is defined from the
perspective of driving lanes of the subject AV. The graph-
ical representation of the maneuver definition is described
in Fig. 5. The maneuvers mean the lanes each vehicle intends
to drive in, not a lane-change intention. Therefore, the results
of the maneuver recognition module can be directly used to
classify the driving lanes of the surrounding vehicles into in-
lane, left-lane, and right-lane targets. The other advantage of
the proposedmaneuver definition reduces the risks of mispre-
diction, such as a double lane change to two lanes away from
the subject vehicle. In this case, the subject vehicle might
decide to change to a risky lane. Therefore, the proposed
maneuver excludes double lane changes.

2) NETWORK ARCHITECTURE
This study used a Bi-LSTM-based RNN to construct a
maneuver recognizer, which estimates the likelihood of each
maneuver. Among the learning-based methodologies, RNNs
are suitable for dealing with sequential data. Since the activa-
tions in each step are passed to the same network of the next
time step and updated with new input data, one set of weights
is repeated over the observation horizon. Therefore, when
using the RNN, there is an advantage that the parameter is
reduced compared to a general neural network in performing
the prediction for the same inputs. In addition, Bi-LSTM is
introduced to learn long-term dependencies more accurately
than simple recurrent architectures. In particular, bidirec-
tional characteristics are useful when the context of the input
is essential to increase the prediction accuracy.

Fig. 6 (a) describes the unrolled structure of the Bi-LSTM-
basedRNNused in this study for an observation horizon h and
a prediction horizon of p. The proposed maneuver recognizer
outputs maneuver prediction results after p steps.
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FIGURE 6. Diagram of the proposed Bi-LSTM-based maneuver recognition
module.

The single step of the prediction using the proposed
Bi-LSTM-based RNN is conceptually expressed in Fig. 6 (b).
The inputs of the proposed predictor are composed of the
target states, lane information, and current maneuver.

The structure of the Bi-LSTM-based RNN has been deter-
mined by comparing the prediction accuracies of candidate
networks. Fig. 7 presents each layer of the Bi-LSTM-based
RNN with the number of cells in each layer. This structure is
determined by comparing the recall and precision of 84 RNN
candidates. The candidates consist of combinations of fully
connected (FC) and Bi-LSTM layers.

3) INPUT AND OUTPUT FEATURES
The objective of maneuver recognition is to estimate the
likelihood of each maneuver and driving lane based on the
information from the AV sensors. Therefore, the input fea-
tures of the Bi-LSTM-based RNN are composed of the target
vehicle states, subject vehicle states, lane information, and
driving lane of the target vehicle. The target vehicle states
consist of the x and y positions, heading angle, and velocity
of the surrounding target vehicles in local coordinates, which
are reconstructed from the dataset, as shown in Fig. 4. The
velocity is used as the subject vehicle state. The lane informa-
tion is composed of the detection quality, curvature, heading
angle, and lateral offset of the left and right lanes. Finally,
the driving lane of the target vehicle is defined based on the

maneuver definition, which is described in Fig. 5. The output
is the predicted driving lane of the target vehicles after the
prediction horizon.

4) ENCODER
The neural network input data should be preprocessed to
improve stability and performance. In this study, we intro-
duce an encoder to standardize each component of the input
data, which rescales the data to a mean of 0 and a standard
deviation of 1. Parameters µ and σ were determined using
the 83,188 training data samples only andwere stored to reuse
when validating the proposed algorithm and applying it to the
AV. The input to the network is standardized as

x̄t,n =
xt,n − µn
σn

, (1)

where xt,n is the n-th component of the input data such as the
position or heading at time t . In addition, x̄t,n is the standard-
ized input of xt,n, and µn and σn are the mean and standard
deviation, respectively, of the n-th component. Therefore,
14 µn and σn values were prepared based on the training
dataset.

5) SEQUENCE LENGTH
The sequence length consists of the input and output sequence
length. Each length corresponds to the observation hori-
zon and prediction horizon. The observation horizon h is
an important factor in improving prediction performance.
For this study, we trained the network architecture depicted
in Fig. 6 using several candidates in the observation history
to find the optimal length. We compared 10, 15, 20, 25, 30,
35, 40, 45, and 50 steps with a sampling time of 100 ms. The
results show that an observation horizon of 50 steps yields the
most accurate results compared to other horizons. However,
the longer the observation horizon is, the longer the delay
in performing accurate prediction after recognizing the tar-
get. Therefore, we use the second-most accurate observation
horizon, 25 steps, as an optimal observation horizon of the
interactive motion predictor. For the prediction horizon p,
we use 50 steps to manage the risk between the subject and
surrounding vehicles considering the driving speed on the
urban road. Fifty steps is the prediction horizon before the
decrease in the prediction accuracy largely increases when
the prediction is performed with 25 input data steps.

IV. TRAJECTORY PREDICTION WITH INTERACTIONS
A. TRAJECTORY PREDICTION
The trajectory predictionmodule consists of two submodules:
motion parameter estimation and path prediction. Path pre-
diction was conducted using the path-followingmodel, which
is parametrized as the maximum yaw rate γmax for lateral
motion and the desired velocity u for longitudinal motion.
The input sequences of each target of the Bi-LSTM module
are utilized to estimate γmax and u. Based on the estimated
parameters, the trajectory prediction module predicts the tra-
jectories of all possible maneuvers.
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FIGURE 7. Diagram that depicts the individual layers of the Bi-LSTM-based maneuver recognition module.

1) PATH-FOLLOWING MODEL
Predicting the future motion of moving vehicles is a crucial
part of autonomous driving to guarantee the safety of the
vehicle. An appropriate model is required to predict future
motion precisely by using the state estimates of the vehicle
as an initial prediction condition. The state vector of the
prediction model at time step j is defined as

xk|j = [px,k|j py,k|j θk|j vk|j ]T , (2)

where px,k|j, py,k|j, and pθ,k|j are the x position, y position,
and heading angle, respectively, of the vehicle at prediction
step k in relation to the fixed coordinate defined on the
digital map; vk|j is the absolute velocity of the vehicle at
the same prediction step. It is assumed that the slip of the
vehicle has been maintained at a negligible level. In other
words, the vehicle motion can be modeled as a kinematic
model. Based on this assumption, the process update model
for motion prediction is defined as

px,k+1 = px,k+vk cos θkdt+(ak cos θk − vkγk sin θk )dt2/2,

py,k+1 = py,k+vk sin θkdt+(ak sin θk + vkγk cos θk )dt2/2,

θk+1 = θk + γkdt,

vk+1 = vk + akdt. (3)

The key issue of motion prediction is determining how to
assume the future behavior of moving vehicles. In this study,
moving vehicles are assumed to stay in their lanes, which is
termed the path-following model. The possibility of current
lane departure will be discussed in the following section.
To stay in the lane, virtual inputs ak,input and γk,input for the
moving vehicle are defined as

ak,input = amax

[
1−

(vk
u

)δ]
,

γk,input = min
(
−γmax max

(
γmax

(1+ẏ2k )
3/2

ÿk

) )
, (4)

where yk is the approximated centerline in the 4th order
polynomial tracked by the target vehicle. In this study, the fol-
lowing lanes have been estimated using the road information
of the digital map. Therefore, γk,input is defined by the desired
yaw rate calculation based on the curvature of the lane. Then,
ak,input is determined based on the velocity tracking term of
the intelligent driver model (IDM). The parameters γmax and
u will be discussed in the following section.

2) MOTION PARAMETER ESTIMATION
γmax is estimated under the assumption that the lateral accel-
eration of the lane-changing vehicle is a sinusoidal pattern.

FIGURE 8. Definition of the lateral offset for maximum yaw rate
estimation of lateral motion prediction.

The lateral acceleration is assumed to be

ay = ÿ+ vx · γ

= vx · γmax · sin
(
2π
tLC

t
)
, (5)

where tLC is the time it takes for the vehicle to change lanes.
The longitudinal velocity vx of the targets is assumed to
be constant while changing lanes. The lateral position py is
derived by integrating equation (5):

py = vx · γmax ·
tLC
2π

[
t −

tLC
2π

sin
(
2π
tLC

t
)]
. (6)

From the lane information obtained by the vision sensors,
the lane width Yd is measurable, which is the lateral dis-
tance traveled during a lane change. Therefore, py should be
matched with Yd after tLC as

py = vx · γmax ·
tLC
2π

[
tLC −

tLC
2π

sin
(
2π
tLC

tLC

)]
= vx · γmax ·

t2LC
2π

= Yd . (7)

tLC is estimated based on the trajectory history of the target
vehicle. The lateral offset to the target lane at step h is defined
as ey,h, which is shown in Fig. 8. The first and last offset ey,1
and ey,h are used to estimate tLC :

v̂y = (ey,h − ey,1)/th,

t̂LC = Yd/v̂y. (8)

Then, γmax can be determined by substituting t̂LC into
equation (7):

γmax =
Yd · 2π

vx · t̂2LC
. (9)

Second, the desired velocity u of the intelligent driver
model (IDM) is estimated to predict future longitudinal
motion. The desired velocity candidate ucandi is defined by
means of linear spacing with an interval of 0.5 m/s. The
minimum and maximum values of ucandi assume an available
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longitudinal acceleration ranges from −5m/s2 to 1.5 m/s2

within the observation horizon h. ucandi is defined as

ucandi=
[
vx,1+

(
−5m/s2 ·th

)
: 0.5 : vx,1 +

(
1.5m/s2 ·th

)]
,

(10)

where vx,1 is the first velocity of the input sequences. Then,
the future longitudinal velocity is predicted by the IDM as

vk+1 = vk + ak · dt,

ak = amax

[
1−

(
vk

ucandi

)δ]
, (11)

where amax = 3m/s2 and δ = 4. The cost function for the
selection of ucandi gives more weight to the observation his-
tory near the current state by using an exponential function.
û is determined by evaluating the error between the observed
velocity vx(k) and the predicted velocity vx,u(k) as

û = argmin
u

th/dt∑
k=1

eλk
(
vx(k)− vx,u(k)

)2
, (12)

where λ is the forgetting factor to weigh an observation later.

B. INTERACTIONS
From the maneuver recognition and path prediction modules,
we can obtain the likelihood and predicted motion of each
maneuver. In this step, we consider all the likelihoods and
predicted motions simultaneously to compensate for false
predictions from the maneuver recognition module. In other
words, the objective of the interaction module is to eliminate
the false prediction cases by minimizing the cost function
considering the maneuver likelihood and the collision risk
between vehicles. The cost function for interactive maneuver
prediction consists of three energies: the maneuver likelihood
PRNNik , collision with the subject vehicle Psubik , and collision
between target vehicles Pijkl . Before describing the meaning
of each energy, the indexes should be defined. i and j represent
the i-th and j-th target vehicles, respectively. k and l are
the maneuver indexes, such as lanes L, S, and R. The cost
function is defined as

N∑
i=1

[
PRNNik + λ1Psubik

]
+ λ2 ·

N∑
i=1

N∑
j = 1
j 6= i

Pijkl,

where

PRNNik = − log(ERNNik ),

Psubik =

[ p∑
n=1

((
xsub(n)−xi,k (n)

)2
−
(
yy,sub(n)−xi,k (n)

)2)]−1
,

Pijkl =

[ p∑
n=1

((
xi,k (n)−xj,l(n)

)2
−
(
yi,k (n)−yj,l(n)

)2)]−1
.

(13)

PRNNik is defined as a negative log of the maneuver like-
lihood PRNNik . Psubik is the collision risk between the subject

TABLE 1. Integrated cost function evaluation example.

vehicle and i-th target vehicle when performing maneuver k .
Pijkl is the collision risk between the i-th target vehicle when
it is performing maneuver k and the j-th target vehicle when
it is performing maneuver l. The proposed cost function is
evaluated for all combinations of the possible maneuvers of
the target vehicles. For example, the cost evaluation of the two
target scenarios is summarized in Table 1. In this example,
the maneuver set of target 1, which is driving in the left lane,
and target 2, which is driving in the right lane, is the optimal
solution of the nine maneuver sets. The same approach is
applied to multiple vehicle target cases. If N target vehicles
exist, 3N maneuver sets are considered to determine the opti-
mal maneuver set.

V. PREDICTION PERFORMANCE ANALYSIS
The proposed interactive motion predictor was evaluated
through a driving data-based evaluation in three aspects.
First, in Section V. A, the performance of the maneuver
recognition module was evaluated based on the 35,652 data
samples, which were not used to train the Bi-LSTM mod-
ule. This analysis includes an analysis of the maneuver
recognition accuracy using individual data samples with
true labels and an analysis of lane-change detection timing
using 486 trajectories of lane-change maneuvers. Second,
in Section V. B, the trajectory-level prediction accuracy
of the interactive motion predictor is evaluated and com-
pared with the accuracy of conventional algorithms. Finally,
in Section V. C, the advantage of using the proposed interac-
tion module is analyzed with three representative scenarios in
which it is difficult to make proper predictions.

A. MANEUVER RECOGNITION ANALYSIS
To compare the prediction accuracy of maneuver recognition,
the parameters are defined as follows. In Section III. B,
a maneuver was defined as the driving lane around the sub-
ject vehicle, such as in-lane, left lane, and right lane. Each
maneuver is labeled with ‘Lane S,’ ‘Lane L,’ or ‘Lane R,’
as shown in Fig. 5. In other words, maneuver recognition
is a classification problem of future driving lanes based on
the observed behaviors of the surrounding vehicles. There-
fore, confusion matrices have been used to describe the
performance of the proposed maneuver recognition module
on a set of test data for which the true values are known.
However, we defined the confusion matrix based on the lane-
change motion because it is important to recognize the lane-
changing moment and it is easier to compare our approach
with conventional approaches, which try to infer the lane-
changing intention. Therefore, the confusion matrix for the
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TABLE 2. Confusion matrix of maneuver recognition module.

performance analysis of the proposed maneuver recognition
module is defined in Table 2. In this case, lane change (LC)
means that the driving lane after the prediction horizon is
different from the current driving lane. Moreover, lane keep-
ing (LK) means that the driving lane is maintained during the
prediction horizon.

As shown in Table 2, the case of predicting the LC con-
dition properly is defined as a true positive (TP). Moreover,
the case of correctly predicting the LK condition is defined
as a true negative (TN). Based on these definitions, false
negatives (FNs) and false positives (FPs) are defined based
on false recognitions. To quantify the results of the maneuver
recognition module, the true positive rate (TPR)/recall, false
positive rate (FPR) and precision are used. The definitions of
the recall and precision are

TPR/Recall =
TP

TP+ FN
,

FPR =
FP

TN + FP
,

Precision =
TP

TP+ FP
. (14)

The precision-recall (PR) curve and receiver operating
characteristic (ROC) curve of the maneuver recognition with
thresholds are depicted in Fig. 9. To analyze the accuracy of
the proposed approach, an LSTM network, an SVM, and a
rule-based maneuver recognizer were used as a comparison.
The rule-based algorithm determines the lane change based
on the speed and position of the vehicle approaching the lane.
This algorithm is the same approach as the lane departure
warning system [22].

The results indicate that the proposed Bi-LSTM-based
approach improves the accuracy of maneuver recognition
for all the thresholds in terms of the PR curve and ROC
curve. As shown in Fig. 9, the PR and ROC curves of the
Bi-LSTM-based approach are closer to the upper-right and
upper-left corners than the conventional approaches for all
the thresholds. The areas under the ROC curves (AUCs)
of the Bi-LSTM, LSTM, SVM, and rule-based maneuver
recognizer algorithms are 0.971, 0.966, 0.957, and 0.955,
respectively. In particular, approximately 95% of the lane-
change maneuvers can be detected in a prediction horizon
of 5 seconds with an FPR of only 5%. Moreover, when the
FPR is the same, the conventional approaches achieve accu-
racies of approximately 90 to 92%. In particular, the LSTM
models outperformed the SVM and rule-based approaches

FIGURE 9. Analysis of the proposed maneuver recognition module with
respect to classification thresholds.

because LSTM models can reflect the time dependencies
of the input sequences. Bi-LSTM, which learns long-term
dependencies more effectively than LSTM, has a better pre-
diction performance than the conventional approaches.

The recognition timing of lane changes between the pro-
posed maneuver recognizer and the rule-based algorithm are
compared. In this comparison, the maneuver recognizer used
a threshold of 0.55. This threshold is selected to balance the
recall and precision while managing the FPR because both
FPs and FNs mean the incorrect prediction of the vehicle
behavior between the LK and LC conditions. Therefore,
these two errors should be considered equally in terms of
driving safety. Therefore, the threshold was determined to be
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0.55 based on the PR curve, while the FPR was maintained
under a reasonable value by considering the ROC curve.
In this case, approximately 89% of lane-change maneuvers
can be detected while allowing an FPR of only 2% by the
proposed maneuver recognizer.

FIGURE 10. Histogram of the lane change recognition-timing difference
between the proposed and conventional algorithm.

The lane-change recognition-timing differences between
the proposed maneuver recognizer and the rule-based algo-
rithm are presented in Fig. 10. This difference is defined as
the lane-change recognition time of the proposed algorithm
based on the lane-change recognition time of the rule-based
algorithm. Therefore, if the proposed algorithm detects lane
changes early, the difference becomes negative. The analysis
was performed on 486 cases in which a lane change occurred.
Fig. 10 shows that in 324 of the 486 cases, the proposed
algorithm recognized the lane-change intention earlier than
the rule-based algorithm by up to 5 seconds. Ninety-five cases
showed the same recognition timing. However, in 67 cases,
the proposed algorithm recognized the lane change later by
up to 1.2 seconds. This phenomenon occurs when predic-
tions are made before the newly detected target has observed
less than 25 steps, which is the observation horizon of the
Bi-LSTM. In other words, the later recognition cases only
occurred when the target vehicles first appeared beyond the
sensors’ region of interest boundaries, whichmeans that these
cases took place sufficiently beyond the safety distance of the
subject vehicle. Therefore, these cases had little influence in
determining the behavior of the subject vehicle.

B. PREDICTION ACCURACY ANALYSIS
The prediction error was defined to compare the predic-
tion accuracy between the true and predicted states. The
x-position error ex,Tp, y-position error ey,Tp, heading error
eθ,Tp, and velocity error ev,Tp were defined as

ex,Tp = px,Tp − p̂x,Tp,

ey,Tp = py,Tp − p̂y,Tp,

eθ,Tp = θTp − θ̂Tp,

ev,Tp = vTp − v̂Tp. (15)

Among the prediction errors, ex,Tp and ev,Tp were defined
in local coordinates that originated from the true state at Tp,
as shown in Fig. 11. This error definition prevented the

FIGURE 11. Definition of the prediction error at prediction time Tp.

FIGURE 12. Comparison of the prediction error between the proposed
and base algorithm.

misinterpretation of the predicted results caused by chang-
ing the heading angle that occurs when driving on curved
roads or changing lanes.

The motion prediction error of the interactive motion pre-
dictor is summarized in Fig. 12 and Table 3. Fig. 12 shows
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TABLE 3. Comparison of the prediction errors between the proposed
predictor and the CTRV model.

the error distributions of the proposed algorithm and the
conventional algorithm. In this analysis, the constant turn
rate and velocity (CTRV) model, which is frequently used
as a prediction model for moving objects in 2-D space, was
used as the conventional algorithm. As shown in Fig. 12,
the proposed motion predictor shows more accurate results
than the CTRV model in all aspects. The proposed algorithm
shows significantly reduced prediction errors compared to
the base algorithms in terms of the mean, standard deviation
(STD), and root mean square error (RMSE).

Parameter estimation for longitudinal motion reduces ex,Tp
and ev,Tp. In particular, the distributions of ex,Tp and ev,Tp are
biased toward the positive side for the CTRV model because
the range of the deceleration is larger than the accelera-
tion under normal driving conditions. However, the proposed
approach shows a distribution similar to a normal distribution,
which means that the biases of ex,Tp and ev,Tp reduce that
of the CTRV model. The standard deviations improved to
43.7% for ex,Tp and 72.1% for ev,Tp. For lateral motion,
the standard deviations of ey,Tp and eθ,Tp improved to 76.6%
and 71.5%, respectively. Since lane changes occur in a tiny
portion of the total data, the influence from the statistical
analysis is minimal. Therefore, the prediction of lane-keeping
vehicles has a significant influence on the error distributions
of ey,Tp and eθ,Tp. These improvements are mainly caused
by the path-following model and parameter estimation for
longitudinal motion. In short, the standard deviations of ex,Tp,
ey,Tp, ev,Tp, and eθ,Tp are bound within a reasonable level,
which makes it possible for the AV to perform prediction-
based motion planning. Therefore, the motion planning of
AVs based on the proposed prediction algorithm can increase
safety and passenger acceptance of autonomous driving. The
vehicle test results using the AV are discussed in Section VI.

C. INTERACTIVE MOTION PREDICTOR
The effectiveness of the interaction module of the interactive
motion predictor is summarized in Fig. 13 with three rep-
resentative cases. What these three cases have in common
is the prediction failure case of the maneuver recognition
module. In Fig. 13, the prediction results with environmental
sensor outputs are shown in the top view on the left side.
All vehicles in the top subfigure show the currently rec-
ognized position, the prediction results for 2 seconds at
0.4-second intervals considering the scale of the figure, and
the likelihood of each maneuver (‘Lane S,’ ‘Lane L,’ and

FIGURE 13. Effectiveness of the interaction module of the interactive
motion predictor.

‘Lane R’) The driving scene which was recorded by the dash
cam is shown on the right side. Among the surrounding vehi-
cles in the three cases, the vehicle whose result was corrected
by the interaction module is indicated by the yellow box even
though the prediction results of the maneuver recognition
module are incorrect.

The first situation is a case where the likelihoods of
‘Lane L’ and’ Lane S’ of a vehicle driving in the left lane
are similar, as shown in Fig. 13 (a). Therefore, it is difficult
to determine the future driving lane based on the results of
the maneuver recognition module. If the interaction module
is not utilized to consider the collision probabilities between
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vehicles, it would be determined that a lane change from
‘Lane L’ to ‘Lane S’ would be performed by the vehicle in
the yellow box. However, since it is certain that the vehicles in
‘Lane S’ and ‘Lane L’will stay in the current lane based on the
likelihood from the maneuver recognition module, the inter-
action module determined that the situation in which all the
vehicles remain in the current lane is the most appropriate
among the 27 possible maneuver combinations of the three
vehicles. In other words, it is judged that the risk caused by
a lane change made by the left vehicle is much higher than
the 61.4% likelihood for ‘Lane S.’ Therefore, the predicted
maneuver of the left vehicle is ‘Lane L’, not ‘Lane S,’ which
is the correct prediction as shown in the images taken by the
dash cam. If the predictor makes a false prediction that the left
vehicle in the yellow boxwill cut in, it is likely that the subject
vehicle will unnecessarily decelerate or attempt to overtake in
the left lane.

A similar situation is represented in Fig. 13 (b). The bus in
‘Lane R’ in the yellow box traveled close to the lane markers,
as shown in the top view of the sensor outputs and recorded
image of the dash cam, because the width of the bus is wider
than that of the passenger cars. In this case, it is common
to predict that there is a lane-change intention to the close
lane. The proposed maneuver recognition module estimated
a similar likelihood for ‘Lane S’ and’ Lane R’ for the bus,
even though the measurements from the LiDAR system are
relatively accurate because the bus is in a close position.
A prediction that the bus will change lanes from ‘Lane R’
to ‘Lane S,’ is unrealistic and the preceding vehicle and the
bus will collide. However, the interaction module predicted
that the bus will stay the current lane based on the estimated
collision probability of the candidate maneuver combination.

The last case is that it is difficult to make a proper pre-
diction with only the surrounding vehicle’s states from envi-
ronmental sensors due to a large perception error. As shown
in Fig. 13 (c), the heading angle is erroneously perceived
as pointing to the left even though the vehicles in the right
lane are going straight. In particular, it was estimated that
the vehicle in the right lane of the yellow box had a high
likelihood, 67.0%, to change lanes to ‘Lane S.’ However,
the interaction module predicted that the vehicle in the yellow
box would not cut in and would stay the current lane by
considering the four moving vehicles simultaneously.

These cases are failure cases of the maneuver recognition
module due to multiple causes, in which a lane-keeping
vehicle is predicted to change lanes. However, the interaction
module, which considers the likelihood and predicted motion
of all the surrounding vehicles simultaneously, determined
that these maneuver recognition results are unrealistic. If only
individual vehicles were considered without looking at the
entire driving situation, the motion plan of AVs based on
these maneuver recognition predictions is likely to be risky
and uncomfortable for passengers and traffic participants.
Therefore, the results of maneuver recognition are rejected,
and the interactive motion predictor predicts that the targets
will remain in the current lane. Through this finding, it can

be confirmed that the interactive motion predictor prevents
the prediction of unrealistic situations and compensates for
the incorrect prediction made by the maneuver recognition
module.

VI. VEHICLE TEST RESULTS
The application results of the interactive motion predictor to a
motion planning algorithm were summarized into results for
a case study and the analysis of the entire vehicle test results.
The prediction-based distance control algorithm was used to
control the distance between the in-lane target and the subject
vehicle [23]. Vehicle tests were conducted by implementing
the proposed algorithm on an AV, which is described in Fig. 2.
The motion predictor and motion planner are implemented
in an industrial PC using the LabVIEW/MATLAB-based
environment.

A. CASE STUDY OF THE MOTION PLANNING
APPLICATION
The representative scenario is successive cut ins of the left-
and right-lane vehicles when the AV is accelerating to reduce
the clearance for the in-lane target. The prediction results with
a dash cam image are depicted in Fig. 14, and the results for
the crucial variables of the proposed case are summarized
in Fig. 15. Fig. 14 shows the prediction results with the
environmental sensor outputs in the top view on the left side.
All the vehicles in the left figure show the currently rec-
ognized position, the prediction results for 2 seconds at
0.4-second intervals, and the likelihood of ‘Lane S,’ ‘Lane L,’
and ‘Lane R.’ The driving situations recorded by the dash cam
are shown on the right side. Three important scenes from this
case are presented in Fig. 14 (a) to (c). The details of each
scene are discussed in this section.

Fig. 15 shows the longitudinal acceleration, velocity, clear-
ance, lateral offset, time gap, warning index x, and TTC−1.
The clearance, lateral offset, time gap, warning index x, and
TTC−1 are calculated using the closest in-lane target, which
is classified by the prediction algorithm. Therefore, when
the in-lane target is changed, discontinuous changes in the
clearance, lateral offset, time gap, x, and TTC−1 appear.
Since the vehicle tests were conducted by using the pro-
posed algorithm, the conventional algorithm obtained the
results by offline simulation based on the acquired driving
data. In this comparison, the CTRV model was used as the
conventional algorithm. Therefore, the longitudinal accelera-
tion, clearance, and time gap history, which are depicted in
Fig. 15 (a), (c), and (d), respectively, show the actual and
desired values calculated in real time during the vehicle tests.
In the case of the velocity, x, and TTC−1 history, the results
between the AV and the in-lane target acquired during the
vehicle tests are shown in Fig. 15 (b) and (e). The comparison
of the proposed and conventional algorithms is represented
in the lateral-offset history of the in-lane target, as shown
in Fig. 15 (f). As mentioned before, the lateral-offset history
of the conventional algorithm is acquired by offline simula-
tion using the acquired driving data.
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FIGURE 14. Snapshots of the vehicle test results for the two cut-in
vehicles case.

The prediction results, which are represented in Fig. 14 (a),
show the driving situations of the AV before the surrounding
vehicles perform lane changes. At this moment (t = 0.7s),
four surrounding targets are detected, showing that all vehi-
cles stay in their current driving lanes. As shown in Fig. 14(a),
it can be seen that each vehicle has the highest likelihood
of the current driving lane, ranging from 80.4% to 100.0%.
However, since the amount of longitudinal motion is different
for each vehicle, the distances between the prediction results
displayed at 0.4-second intervals are different. In this case,
the motion planner decides to use maximum acceleration
to follow the in-lane target because the surrounding vehi-
cles do not have cut-in intentions. Therefore, the AV used
a maximum acceleration of 1.5m/s2 to reduce the relative FIGURE 15. Vehicle test results.
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velocity, clearance, and time gap and to the in-lane target
until 2.4 seconds, as shown in Fig. 15 (a) to (d). There-
fore, x and TTC−1 are maintained in safe areas, as depicted
in Fig. 15‘(e). At this moment, since the in-lane target is clear,
there is no difference in the lateral offset of the in-lane target
between the proposed and conventional algorithms, as shown
in Fig. 15 (f).

The truck in the left lane, which has the fastest velocity
in Fig. 14 (a), cuts in after overtaking the subject vehicle at
t = 2.4s. At this moment, the proposed predictor recognizes
the lane-change intention 1.2 seconds earlier than the con-
ventional predictor, as shown in Fig. 15 (f). The change in
the in-lane target is revealed as a discontinuous change in the
lateral offset, clearance, time gap, x, and TTC−1 at t = 2.4s.
The lateral offset was approximately 2.0 m when first infer-
ring the cut-in intention, whichmeans that a cut-in intention is
predicted before the truck crosses the lane markers, as shown
in the dash cam image (Fig. 14 (b)). This early intention
inference allows the AV to respond to a new in-lane target
before the clearance and time gap decrease to risky levels.
As shown in Fig. 15 (a) to (d), the AV smoothly reduces
the acceleration and converges to the target clearance, time
gap and in-lane target velocity. However, the conventional
approach did not recognize the cut-in behavior until the lat-
eral offset was reduced to 1.1 m, as shown in Fig. 15 (f). If the
AV had been controlled by the conventional algorithm in the
same situation, the AV would have accelerated further until it
recognized the in-lane target, which would have caused more
deceleration than the proposed algorithm and a risky situation
would have occurred.

A similar situation also occurred when a sport utility vehi-
cle (SUV) in the right lane cut in after the truck passed
its position at t = 5.6s. The proposed predictor classifies
the SUV as the in-lane target 1.0 seconds earlier than the
conventional predictor does, as shown in Fig. 15. (f). At this
moment, the SUV cuts in at a lower speed than the subject
vehicle at a distance closer than the previous cut-in truck,
which reduces the safety parameter to a dangerous level, as
shown in Fig. 15 (c), (d), and (e). The earlier cut-in recogni-
tion manages the risk by applying smooth deceleration and
slowing down below the velocity of the in-lane target, as
shown in Fig. 15 (a) and (b). If the conventional algorithm
is used to classify the targets, the risk is expected to increase
to a level close to that of a collision. Because of the time gap
at the first cut-in recognition, 0.5s is less than the delay of
cut-in recognition of 1.0s.

Therefore, the proposed predictor can handle multi-traffic
conditions while guaranteeing the safety of AVs by reducing
the delay in the reaction to the behaviors of the surrounding
vehicles. The clearance, time gap, x, and TTC−1 are properly
managed even in situations where the surrounding vehicles
cut in very close to the AV. In addition, an improvement in
the target prediction reduces the use of sudden decelerations
and improves ride comfort.

FIGURE 16. Histograms of the longitudinal acceleration command
between the proposed and conventional algorithms.

B. STATISTICAL ANALYSIS OF THE MOTION
PLANNING APPLICATION
A 53-minute automated vehicle test of the interactive motion
predictor-basedmotion planner was conducted to evaluate the
control effort and safety and compare those with those of
the CTRV-based motion planner. For the CTRV-based motion
planner, a 37-minute vehicle test was conducted. In total,
18,472 samples of in-lane target following and 114 cases
of cut-in scenarios are extracted from the postprocessed
vehicle test data. The histograms of the desired longitudinal
accelerations of both algorithms are depicted in Fig. 16 (a).
The desired acceleration of the proposed algorithm shows
a bell curve with zero as the origin, which means that the
proposed algorithm minimizes the control effort by precisely
predicting the future behavior of the in-lane target as a human
driver. However, the histogram of the conventional algorithm
used more acceleration and deceleration to follow the in-lane
target because the conventional motion predictor has a low
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accuracy in predicting the acceleration and deceleration of the
in-lane target. Therefore, the proposed algorithm reduces the
control effort more than the conventional algorithm when
the in-lane target exists.

The safety performance of the proposed algorithm based
on two parameters is depicted in Fig. 16 (b) and (c): the time
gap and TTC−1, respectively. The time gap and TTC−1 are
maintained in the safe region by the proposed algorithm. The
time gap is maintained for more than 0.6 seconds, except
for a single case of a dangerous cut-in behavior. In addition,
TTC−1 shows the bell curve originating at zero, which means
that the proposed algorithm properly manages the risks and
tracks the desired states. However, the conventional algorithm
manages the risk inappropriately, which makes the time gap
and TTC−1 reduce to the risky level. In particular, the delay
in the recognition of the cut-in intentions of the surrounding
vehicles frequently caused a time gap of less than 0.6 seconds.
In addition, TTC−1 is biased to a negative value because the
conventional algorithm has difficulty predicting the deceler-
ation, and a deceleration delay occurs accordingly. In short,
the proposed algorithm can control the subject vehicle more
safely and significantly reduce the control effort.

VII. CONCLUSION
An interactive motion predictor based on bidirectional long
short-term memory (Bi-LSTM) was developed and evalu-
ated by implementation in an autonomous vehicle (AV). The
proposed predictor consists of three modules: the maneu-
ver recognition, trajectory prediction, and interaction mod-
ules. The maneuver recognition module, which has been
trained using 83,188 data samples collected by an AV in
real traffic, estimates the maneuver likelihood. The trajectory
prediction module based on the path-following model with
motion parameter estimation predicts all possible trajectories
for each maneuver. The interaction module considers the
maneuver likelihood and the collision risk between the future
trajectories to reduce the false prediction cases. The proposed
predictor was evaluated in terms of its accuracy and its effects
on the AV by data-based analysis and vehicle tests.

The evaluation results using 35,652 data samples with
486 lane-changing cases showed improved maneuver recog-
nition and prediction accuracy. In particular, cut-in maneuver
prediction to classify the in-lane target improved significantly
compared to the performance of the constant turn rate and
velocity (CTRV) model. The vehicle test results indicated
that the proposed predictor can control the subject vehicle
more safely than the CTRV model and reduce the control
effort significantly. The time gap is maintained for more
than 0.6 seconds, and TTC−1 shows a bell curve originat-
ing at zero, which means that the proposed algorithm prop-
erly manages the risks caused by cut-in targets. The desired
acceleration from the proposed algorithm shows a bell curve
with zero as the origin based on the precise prediction of
the future behavior of the in-lane target. Future works in
predictingmotion of surrounding vehicles can be summarized
in two aspects. The first aspect is the coverage extension of

the motion prediction algorithm. The coverage road will be
extended from urban roads to highways. In addition, recog-
nizable maneuvers will be increased to cope with various
urban road conditions. For example, U-turning or turning
at intersections will be covered in the future. The second
aspect is learning the behavior of individual target vehicles
in real time when AVs drive in urban environments with real
traffic. Exploration of these topics is expected to substantially
increase the safety and acceptance of autonomous vehicles by
traffic participants on urban roads.
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