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ABSTRACT This paper addresses the power saving problem in mobile networks. Base station (BS) power
and network traffic volume (NTV) models are first established. The BS power is modeled based on in-house
equipment measurement by sampling different BS load configurations. The NTV model is built based on
traffic data in the literature. Then, a threshold-based adaptive power saving method is discussed, serving as
the benchmark. Next, a BS power control framework is created using Q-learning. The action-state function
of the Q-learning is approximated via a deep convolutional neural network (DCNN). The DCNN-Q agent is
designed to control the loads of cells in order to adapt to NTV variations and reduce power consumption. The
DCNN-Q power saving framework is trained and simulated in a heterogeneous network includingmacrocells
and microcells. It can be concluded that with the proposed DCNN-Q method, the power saving outperforms
the threshold-based method.

INDEX TERMS Power saving, deep convolutional neural network, reinforcement learning.

I. INTRODUCTION
A. BACKGROUND
In the era of data, information is flowing in an unprecedented
way anytime everywhere. It is reported in [1], that the number
of mobile broadband subscriptions will be approaching eight
billion by 2025. The amount of mobile data traffic is antici-
pated to grow at an exponential pace, reaching 160 extrabyte
(EB, 1018 bytes) per month within the same time period.
New emerging applications such as augmented reality (AR),
virtual reality (VR), vehicle to everything (V2X), and internet
of things (IoTs) are projected to have increasing contribution
to the massive growth of data traffic.

The fifth generation (5G) mobile network (MN) [2]–[4]
has introduced groundbreaking technologies in order to sat-
isfy this growing demand of data traffic. Millimeter-wave
(mmWave), for instance, is a well-recognized solution as high
bandwidths in mmWave are able to provide more available
radio resources. In addition, the use of massive multiple-input
multiple-output (MIMO), which equips base stations (BSs)
and user equipments (UEs) with an increasing number of
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antennas, can reduce intercell interference and boost network
throughput. Most importantly, reducing cell size and increas-
ing cell density have been the main source of enhancing
network throughput [5], [6]. There is no exception in 5G
networks, as they are expected to significantly scale up cell
densities.

However, denser cells come at the cost of larger MN power
consumption, which increases green house gas emissions
and accelerates global warming. Operators such as Vodafone,
have targeted to reduce green house gas emission by 50% by
2025 [7]. Reducing power consumption can not only reduce
green house gas emission, but also reduce operating cost
of MNs. To tackle the problem ofMN power saving, practical
models for BS power consumption and data traffic as well as
smart resource management techniques are required.

Authors in [8] measured BS power in real equipment
and proposed a number of linear power models in terms of
load for the remote unit (RU) only. In [9], power models
were built for components in a BS, such as power amplifier
and filter. It concluded that power consumption in downlink
was dominant. Measurement of voice traffic was presented
in [10]. More generally, the white paper [11] revealed traffic
patterns of various applications in reality. Both measurement
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reports showed that network traffic volume (NTV) was
normally higher during weekdays and lower during
weekends.

There are a number of classic cell on/off algorithms,
including optimizing user association, optimizing BS cover-
age, traffic prediction, and heterogeneous deployment [12].
In [10], a concept known as network-impact was proposed,
which can be calculated by the maximum of sum of the
original BS load and the additional load increments brought
by neighboring BSs. The algorithm in [10] required heuristic
parameters. In [13], the user association to BSs and dynamic
BS operations were jointly optimized for the purpose of
improving energy efficiency. The switching on and off of
BSs relied on a greedy algorithm and heuristic parameters.
Authors in [14] and [15] proposed algorithms to adjust cell
coverage to reduce power consumption. Methods of traffic
pattern and BS energy consumption pattern prediction were
discussed in [16]. In [17], stochastic geometry was used to
model distributions of macrocells and low-power cells. The
minimum separation distance between a macrocell and a low-
power cell was optimized to reduce interference and power
consumption. Besides the discoveries in academia, industry
has designed schemes to reduce power consumption as well.
The 3GPP 5G new radio (NR) [18] has replaced the always-
on cell-specific reference signal (CRS) in 4G long-term
evolution (LTE) [19] with a novel reference signal frame-
work, including demodulation reference signals (DMRSs)
and channel state information reference signal (CSI-RSs).
These are user-specific and flexibly configurable. As a result,
power consumption is reduced when there is no traffic or
measurement to certain UEs.

Besides classic methods, machine learning (ML) based
methods have attracted researchers to explore new
approaches to solve theMN power saving problem [20], [21].
Having assumed accessible location information, [22] pro-
posed a reinforcement learning (RL) based method to predict
movement of UEs and dynamically adjust the powers of
the handover target cell and the original cell. Authors [23]
used RL to optimize durations of different sleep modes to
reduce power consumption. These RL based methods did not
considered realistic power and traffic models. Also, loads of
BS were not directly controlled. In this paper, a centralized
deep RL based method is proposed, to intelligently control
BS loads according to realistic power and traffic models. In a
multi-cell mobile network, it is straightforward to expect a
distributed architecture where each cell is equipped with one
RL agent. As a result, multiple agents perform RL individ-
ually. However, a distributed architecture suffers from the
moving target problem [24], where the behavior of each agent
can impact on behaviors of other agents. On the contrary,
the centralized architecture used in this paper assumes one
agent only controlling all cells in the mobile network. This
can accelerate convergence.

B. CONTRIBUTIONS
The contributions of this paper are listed as follows.

1) A power model and a NTV model for base stations
are proposed. The power model is established based
on measurement data in real-world base stations. More
importantly, detailed power consumption in a data unit
(DU) and a RU is shown. The NTV model is obtained
from measurement data in the literature. These two
models are able to provide realistic descriptions on the
dynamics of network power consumption in terms of
time.

2) A threshold-based power saving method is proposed.
This method uses a cell load adaptation equation to
update cell loads to adjust power consumption.

3) Most importantly, a deep learning approach, i.e., deep
convolutional neural network based Q-learning
(DCNN-Q), for power saving is proposed. The pro-
posed method uses a centralized architecture and
Q-learning to control cell loads, with the action-state
function approximated by a DCNN. The DCNN not
only takes a one-dimensional (1D) load vector as input,
but also a two-channel two-dimensional (2D) image
containing information of instantaneous NTV require-
ment and network throughput.

The rest of this paper is organized as follows. Section II
proposes a power model based on measurement data and a
NTV model based on literature data. Problem description
and system model are presented in Section III. The bench-
mark method, i.e., the threshold-based method is investigated
in Section IV. Our proposed DCNN-Qmethod is discussed in
detail in Section V. Simulation/numerical results and anal-
ysis are presented in Section VI. Conclusions are drawn
in Section VII.

II. POWER MODEL AND NETWORK TRAFFIC MODEL
A. POWER MEASUREMENT IN REAL-WORLD EQUIPMENT
The power measurement was conducted in our in-house lab
on real LTE DU and RU equipment. Both power of DU and
RU in terms of different settings of load were measured,
by installing a power meter to both the DU and RU power
cables. Load of the system is the ratio of the number of active
physical resource blocks (PRBs) over the number of total
available PRBs. This was configured using the orthogonal
channel noise simulator (OCNS) functionality via command
line interface (CLI) during the measurement. The flowchart
of measurement is depicted in Fig. 1. A typical set of load
settings, i.e., 0%, 50%, 100%, were configured. The total
measurement period lasted for 10 hours and the readings of

FIGURE 1. DU and RU power measurement flowchart.
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power meter were recorded every 15 minutes. As a result,
there were 41 measured samples in total.

B. POWER MODEL
After obtaining the measured power data, a power model can
be established. In the paper, linear models for DU power PDU

and RU power PRU based on measured data are proposed, i.e.,

PDU(l) = 1.68l + 266.98 (1)

PRU(l) = 153.50l + 93.95 (2)

where l represents the load of the unit. Both proposed mod-
els, the total power model PTotal(l), and measured data are
shown in Fig. 2. It can be observed that the power of DU is
not sensitive to the change of load. On the other hand, the
change of load can result in changing the power of RU from
94 W to 247 W.

FIGURE 2. Comparison between the proposed power model and
measured data.

Moreover, when load falls down to zero, switch-off DU and
RU can be assumed. In this case, the total power is assumed
to reduce to zero in the paper, although in practice there can
be a small amount of energy consumption. Hence, the total
power can be expressed as

PTotal(l) =

{
0 if l = 0
PDU(l)+ PRU(l) if l > 0.

(3)

The power saving comes from two sources. First, each cell
adapts its load according to current network traffic. Sec-
ond, certain low load cells need to handover their traffic to
other cells such that these low load cells can be completely
switched off.

C. NETWORK TRAFFIC MODEL
Network traffic model in this paper was developed based on
measured NTV data published in [11]. The measured NTV
data were extracted by visual inspection. It can be observed
in [11] that the shape of NTV in each single day is similar.

However, the absolute NTV values in weekdays and week-
ends are different. Therefore, to establish the model, a two-
step approach is used in this paper. First, a normalized NTV
model for a single day is established, to characterize how
NTV is varying in different hours of a day. Second, another
model is established to characterize how NTV is varying in
different days of a week.

The NTV model V1(t) for a single day can be expressed as
a 20th-order polynomial as

V1(t) =
20∑
n=0

antn, (4)

where t ∈ [0, 24) is the hour of a day and an is the coef-
ficient of the nth-order term. Least-squared estimation was
performed and the coefficients an can be found in Table 1.

Fig. 3 shows the comparison of normalized measured NTV
in a day in [11]. It can be seen that the valley of NTV
appears at approximately 4 am, which accounts for 15% of
the peak of a day. The peak of NTV occurs at 9 pm. The
proposed 20th-order polynomial model provides sufficient
approximation to the real-world one-day measured NTV.

FIGURE 3. Comparison between the single-day NTV model and measured
NTV in [11].

Next, to capture the variation of days within a week, the
NTV model V2(τ ) for a week can be expressed as a 5th-order
polynomial as

V2(τ ) =
5∑

m=0

bmτm, (5)

where τ = 1, 2, . . . , 7 represents Monday to Sunday and bm
is the coefficient of the mth-order term. The coefficients bm
are in Table 2. Then, with (4) and (5), the NTV of a week can
be synthesized via

V (t) = ηV1(mod(t, 24))V2((mod bt/24c , 7)+ 1) (6)

where t is the hour in a week (t ∈ [0, 168)), mod(·) is the
modulus operator, b·c is the flooring operator, and η is a
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TABLE 1. Polynomial coefficients for NTV model in a day.

TABLE 2. Polynomial coefficients for NTV model in a week.

scaling factor to scale the normalized NTV to a realistic NTV.
The normalized NTV model is depicted in Fig. 4. It can be
observed that during the weekdays, the NTVs are similar.
However, during weekend, the NTVs drop from Saturday to
Sunday.

FIGURE 4. Normalized synthesized NTV model in a week.

Furthermore, we define a parameter γ called safetymargin,
which quantifies the largest rate of change of NTV between
two adjacent time instances tν and tν+1, i.e.,

γ ≡ max
ν

V (tν+1)− V (tν)
V (tν)

(7)

where ν is the sub-interval index when a certain length of
observation interval is divided into equal-size sub-intervals.

A network with γ taken into consideration will be able
to satisfy the period when the traffic increases at the steep-
est rate. From (6), it can be computed numerically that γ
equals 0.4.

Assume that there are Nuser users per cell with index
i = 1, 2, · · · ,Nuser, the user traffic volume (UTV) for the
ith user in terms of time is modeled as

UTVi(t) =
V (t)
Nuser

· Zi (8)

where Zi is user-specific independent and identically
distributed (i.i.d.) log-normal random variable, i.e.,

lnZi ∼ N (0, σ 2) ∀i, to describe user-specific traffic varia-
tions. Parameter σ is the standard deviation of UTV among
different users.

III. PROBLEM DESCRIPTION AND SYSTEM MODEL
A. PROBLEM DESCRIPTION
From Section II, the mobile network power saving problem is
to adjust loads of cells according to the current NTV require-
ment. Furthermore, to save the largest amount of power,
a handover mechanism needs to be considered such that
certain cells can migrate its attached users to other cells and
reduce its load to zero and switch off. However, since the
number of cells can be massive in the area of interest (AOI),
the solution space of this combinatorial optimization problem
will be too large for exhaustive search, even for a single time
instance. Moreover, the NTV is evolving in terms of time.
The solution of the problem should be sufficiently flexible to
handle the variation of NTV.

B. NETWORK DEPLOYMENT
In this paper, we consider an approximately 1km×1km AOI
which is covered by four frequency bands. Among these four
frequency bands, three of them are for urban micro (UMi)
and one of them is for urban macro (UMa). Settings of these
four frequency bands are listed in Table 3. The UMi cells
have carrier frequencies 2.1 GHz, 2.7 GHz, and 3.6 GHz,
and they are two-ring hexagonal [25] and with 200m inter-
site distance (ISD). For a two-ring hexagonal layout [25],
each band has 19 three-sector sites, resulting in 57 cells in
total. The UMa cell has carrier frequency 1.8 GHz and it is
one-ring hexagonal with 500m ISD. For a one-ring hexagonal
layout [25], each band has 7 three-sector sites, resulting in
21 cells in total. Users are uniformly and randomly dropped
into the AOI for each band and the average total NTV for
each band of each cell, i.e., the mean of the sum of all user
traffic within a cell, equals (6) for a specific time t . It should
be noticed that each band will fully cover the AOI. When
a user is dropped inside the AOI, it will choose the cell in
a certain band which provides the largest received power.
Also, in this paper, for the sake of reducing power, handover
between different bands is allowed. Namely, when cells in
two different bands with similar coverage area, one cell in
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TABLE 3. Settings of the four frequency bands covering the area of interest.

Band 1 can migrate all of its traffic to the other cell in Band 2,
provided that Band 2 will not overload. Then, the cell in
Band 1 will have zero load and it can completely switch off.

C. SINR AND NETWORK THROUGHPUT CALCULATION
Since different bands will not interfere each other, band index
is dropped in the following expressions. Consider a certain
band, let Pk be the transmit power of the kth cell and let β(k)ik
be the large scale path loss between the kth cell and the ith
user in the AOI, where the superscript ·(k) denotes that the
user belongs to the kth cell. Furthermore, let NPRB denote
the total number of PRBs, let lj be the load of the jth cell
and let N0 and N (k)

i denote the noise density and number of
assigned PRBs to the ith user in the kth cell, respectively.
Then, assuming the bandwidth of a PRB is B, the signal-to-
noise-plus-interference ratio (SINR) ρ(k)i of the ith user in the
kth cell in the AOI can be expressed as

ρ
(k)
i =

β
(k)
ik liPk

N0N
(k)
i B+

∑
j 6=k
β
(k)
ij Pjχij

(9)

where χij is a coefficient representing the interference ratio
between the ith base station and the jth base station. As the
jth base station is only using N (k)

j PRBs, the interference
power emitted by it is a fraction of its total power Pj. At the
same time, the ith base station has only N (k)

i active PRBs, the
interference power it receives is a fraction of the interference
power emitted by the jth base station. As a result, χij is a func-
tion of NPRB, N

(k)
i , and N (k)

j . Also, the number of PRBs allo-
cated by a base station is assumed to be randomly distributed
in [0,NPRB]. The average number of PRBs selected by both

the ith and the jth cells can be computed as
N (k)
i N (k)

j
NPRB

. Therefore,
the interference ratio coefficient can be expressed as

χij =
N (k)
i N (k)

j

N 2
PRB

. (10)

The network throughput T (k) provided by the kth cell can
be computed as

T (k)
= µ

∑
i

N (k)
i B log2(1+ ρ

(k)
i ) (11)

where µ represents a factor accounting the overhead and
number of layers during the transmission process. The area
throughput in the AOI T area is then the sum of the network

throughput of all cells, i.e.,

T area
=

∑
k

T (k). (12)

From (9) and (11), it can be observed that the network
throughput may not always be monotonically increasing with
loads, because as loads increase, mutual interference among
cells increases as well. Also, when a set of new loads are
configured for all the cells, the SINR and throughput map of
the AOI need to be updated.

IV. BENCHMARK METHOD: THRESHOLD-BASED
POWER SAVING
Controlling problems like MN power saving are usually
approached by threshold-based methods. Namely, a feedback
loop is established and the feedback is mapped to a metric,
such that actions will be taken accordingly based on whether
the metric is higher or lower than a threshold. For power
saving, these actions include scaling up or down the loads of
cells, and handing over traffic to other bands and switching
off cells whose loads are zero, and switching on cells. Let
V (k)
X , T (k)

X , l(k)X be the NTV, the network throughput, and
the cell load of the kth cell in Band X , respectively. The
adaptation of cell load l(k)X at time tn+1 is expressed as

l(k)X (tn+1) = l(k)X (tn)(1+ γ )
V (k)
X (tn)

T (k)
X (tn)

+
V (k)
Y (tn)

T (k)
X (tn)

(13)

where γ from (7) is a safety margin such that the cell load
is enough for the steepest NTV increase. It can be seen
from (13) that the cell load at time tn+1 is the sum of two
terms. The first term is a scaled version of load at the previous
time tn. The gap between two time instances is customizable
and it is assumed half an hour in this paper. The second term
is an additional load if Band Y is switched off and Band Y
migrates its traffic to Band X .

When the load of the kth cell l(k)X (tn+1) in Band X is less
than a threshold ξ1, i.e., l

(k)
X (tn+1) < ξ1 the cell will handover

its traffic to another band then the cell can be switched off
and l(k)X (tn+1) will be set to zero. For simplicity, we assume
that the handover is done by handing over from Band X to
Band X + 1. This is a feasible simplification if the traffic
distributions in Band X and Band X + 1 are statistically the
same. On the other hand, let l̄activeX denote the average load
of active cells in Band X . If l̄activeX > ξ2, meaning that current
active cells have heavy load, then inactive cells in Band X−1
should be switched on to help handle traffic. The settings
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TABLE 4. Parameter settings in the threshold-based power saving method.

of γ , ξ1, and ξ2 in this paper are heuristically determined and
listed in Table 4.

The procedure of the threshold-based power savingmethod
is shown in Fig. 5. The procedure starts with scaling the cell
load only based on traffic variation. Then, each band starts
to adjust the on and off situations. This is achieved by calcu-
lating the average load of active cells. If this load is larger
than ξ2, it requires more cells to offload upcoming traffic.
Therefore, inactive cells in Band X−1 are switched on. If this
load is less than ξ2, the load of each cell in Band X will be
compared to ξ1. If a cell load is less than ξ1, it means this cell
has low load and can be switched off as soon as its traffic is
handed over to Band X + 1. Otherwise, the updated load is
calculated according to (13).

FIGURE 5. Pseudo codes of threshold-based power saving.

V. DCNN-Q FOR MN POWER SAVING
A. RL REVIEW
RL is a trial-and-error machine learning technique, which
samples the environment and takes actions to the environ-
ment. The environment is everything that cannot be arbitrar-
ily modified by the RL agent and will provide a feedback
containing the reward corresponding to the action to the
RL agent. When the RL agent obtains a sample from the

environment, this sample is known as a state. The RL agent
attempts to make a sequence of decision on actions in order
to achieve a certain goal. The difficulty of RL is that when an
action is taken in each step, it will impact on actions in later
stages.

A Markov decision process (MDP) provides widely used
model for RL [26]. A MDP can be modeled by a 4-tuple
E = E 〈S,A,P,R〉. State space S consists of all possible
states of the environment. A state s ∈ S is the perception
of the environment of the RL agent. Action space A contains
potential actions to be taken by the RL agent. Assume that
the state is s, when action a ∈ A is taken, the environment
will transit to a new state s′. This transition is modeled
by a hidden transfer function P : S × A × S 7→ R,
which represents the transition probability. Moreover, in each
state transition, a reward is produced and it is characterized
by R : S × A× S 7→ R.

A policy π associates a state s to an action, which can be
categorized as deterministic or randomized. A deterministic
policy maps a state to an action π : S 7→ A. On the contrary,
a randomized policy maps a state to a probability distribution
π : S ×A 7→ R, representing the probability of taking action
a ∈ A in state s. In the learning process, the state-action value
function (Q function) Qπ (s, a) stores the estimated values of
accumulated discounted rewards using policy π .
When the model of the environment is accessible (model-

based learning), i.e., the hidden transfer function P is known,
the expected values of the Q function can be computed
iteratively with dynamic programming. According to [26],
the optimal policy satisfies the optimal Bellman equation
and can be found by selecting the action maximizing the
state-action value iteratively. The state-action values increase
monotonically each time the policy is updated with the best
action. Therefore, when the policy converges, it converges to
the optimal policy.

However, in practice, it is usually difficult to obtain the
model of the environment. Namely, the hidden transfer
function P is unknown. In this case, model-free learning
can be applied. Model-free learning assumes no knowl-
edge of the environment and relies on approximating the
Q function by sampling the environment, states, and rewards.
A widely used model-free learning method is the Monte
Carlo (MC) method [26], where the value function and poli-
cies are updated only when an episode of samples are fin-
ished. Another model-free learning method is the temporal-
difference (TD) learning [26] where the value function and
policies are updated in a step-by-step manner. A TD learning
method known as Q-learning is used in this paper. The main
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characteristic of Q-learning is that the approximation of the
Q function is independent of the policy being followed, which
largely reduces complexity [26].

B. DCNN-Q ARCHITECTURE DESIGN
The overview diagram of DCNN-Q for mobile network
power saving is depicted in Fig. 6. This RL problem can be
divided into the design of state space, action space, policy,
reward function, and Q function, which will be detailed later
paragraphs.

FIGURE 6. Diagram of DCNN-Q for mobile network power saving.

1) STATE SPACE
In a power saving problem, a state should be able to cap-
ture what the current requirement of NTV is and how well
the system is responding to such requirement. Therefore, a
state s ∈ S is characterized by a traffic map, a throughput
map, and a vector of current loads of all cells in the AOI,
i.e., s = {traffic map, throughput map, loads of all cells}.
It should be noticed that both maps are 2D while the vector
of loads of all cells is 1D.

2) ACTION SPACE
The cardinality of the action space should be properly design.
If the cardinality of the action space is too small, then the
granularity of actions becomes coarse. Conversely, if the car-
dinality of the action space is too large, convergence of train-
ing will be too slow. To reach this balance, three constraints
are taken in this paper. First, instead of continuous load, only
discretized loads are considered. For example, a load can
only be chosen in the set of {0%, 25%, 50%, 75%, 100%}.
However, even only discretized loads are considered, with
192 cells as shown in Table 3, there are still 5192 combina-
tions. Therefore, the second constraint is that once a load
is chosen, all the cells in the same band will be set to the
same load. Then, for four bands, the number of combinations
reduces to 54 = 625. Third, certain combinations will be
excluded in the action space as the pseudo codes shown
in Fig. 7. In Fig. 7, the subscript k in wk represents the
band identification (ID). From the action space generation

FIGURE 7. Pseudo codes of action space generation.

algorithm, it can be observed that the UMa band is always
on to guarantee there will be coverage in the AOI while
UMi cells can be switched off. This constrain is able to
avoid coverage holes in the AOI when certain UMi cells are
switched off. After the algorithm in Fig. 7, the cardinality of
the action space is reduced to 140.

3) POLICY
A state is mapped to an action via policy π (s). A commonly
chosen policy is the ε-greedy algorithm (ε ∈ [0, 1]) [26].
It consists of two phases. In the exploitation phase, which
has probability 1 − ε, the RL agent selects the action with
the highest Q value. In the exploration phase, which has
probability ε, the RL agent will choose an action in a ran-
dom manner in the action space with equal probability. The
ε-greedy algorithm is presented as

π ε(s) =

{
π (s) if U < 1− ε
a ∈ A uniformly otherwise

(14)

where U is a uniform random variable in [0, 1].

4) REWARD FUNCTION
There are two principles to design the reward function. First,
it should be penalized if the current network throughput is
not able to satisfy the NTV requirement. With such design,
the RL agent will learn from experience to avoid correspond-
ing actions. Second, as another goal of the problem is to
save power, the reward should be monotonically increas-
ing if the network consumes less power, provided that the
required NTV is satisfied. As a result, the reward function
is modeled as

r =

−20 throughput < NTV∑
X ,k

exp
(
−βP(k),TotalX

)
otherwise (15)

where β is a positive coefficient describing how fast the
reward is decaying with the increase in power and P(k),TotalX
is the total power of the kth cell in Band X . The choice of the
exponential function is because it is continuous in its domain
and able to handle interpolated power values. In this paper,
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FIGURE 8. DCNN structure for Q function approximation.

β is set to be 0.004, which corresponds to a reward of 0.2
when the load is 25%.

5) Q FUNCTION
The accumulated reward of a state-action pair is recorded by
the Q function Q(s, a) and it is incrementally updated as the
training progresses, i.e.,

Q(s, a) = Q(s, a)+ α(r + δQ(s′, a′)− Q(s, a)) (16)

where s′ is the new state, a′ is the action to the new state, α is
the learning rate, and δ is the discounting factor. To approxi-
mate the Q function, both table-based and NN-based methods
were used in the literature.

In this paper, the NN-based method is adopted.
A NN-based Q function has two benefits. First, it does not
needmassive storage compared to a table-basedmethodwhen
the action space and state space are large. Second, it can han-
dle complex inputs such as a mixture of 2D and 1D data and
unseen states. A NN structure is proposed for approximation
of the Q function. The NN accepts a state as input and outputs
the Q value of each potential action. The NN is constructed
by two parts which is shown in Fig. 8. The first part is
a DCNN and the second part is a 3-layer fully-connected
network. The DCNN maps a two-channel 2D image to a
vector. One channel of the 2D image is the throughput map of
the AOI and the other channel is the traffic map of the AOI.
The two-channel image is then passed to five convolution
blocks in serial and each convolution block consists of a
convolution layer, a rectifier (ReLU) [27], and a pooling
layer. The convolution layer is responsible for exacting high-
level features of the 2D input. The ReLU is a typical non-
linear activation in NNs. The pooling layer is responsible
for reducing complexity and extracting dominate features.
Then, after five convolution blocks, the output is passed
into a drop-out layer to further reduce complexity and avoid
overfitting. Since a state consists not only the 2D image but

also a 1D vector storing the current loads of all the cells, the
output of the drop-out layer is normalized and concatenated
with the 1D load vector. The concatenated 1D vector is input
to the second part of the NN, i.e., the 3-layer fully-connected
network, the output of which is the the Q function. The
objective function of the DCNN is the root mean squared
error (RMSE) between the predicted Q value vector and the
updated Q value vector.

To achieve the best performance of the DCNN, both the
throughput map and the traffic map will be normalized before
being input to the DCNN. Let 2D matrices M1 and M2
denote the throughput map and traffic map, respectively. The
normalization of M1 includes cutting-off and scaling, i.e.,

M̃1 = max {M1, 20} /20. (17)

The normalization of M2 is achieved by

M̃2 =M2/η. (18)

The DCNN-Q learning is described in pseudo codes in Fig. 9.
To begin with, the policy is initialized with equal probability.
In each iteration of the training, the RL agent chooses an
action according to ε-greedy policy. As soon as the action
is determined, it will be mapped to cell loads in all the
bands. Then, all the cells will adjust their loads according
to the action. After these processes, the situation of mutual
inference is changed and hence SINR in the AOI needs to be
re-calculated. Then, the throughput map needs to be updated
and the new state is formed. Next, the reward is computed
according to (15) and the next action is obtained from the
policy function. The RL agent updates the Q function and
the policy. These steps are then repeated until the maximum
number of iteration is reached.

VI. RESULTS AND ANALYSIS
The proposed DCNN-Q power saving is trained and tested
according to the parameters listed in Table 5. As comparisons,
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FIGURE 9. Pseudo codes of DCNN-Q learning.

TABLE 5. Simulation parameter settings.

the always-full-load method, the threshold-based method,
and the DCNN-Qmethod are discussed. The always-full-load
method means that all cells at all bands are operating with
100% loads.

Normalized mean reward with respect to the number of
weeks trained is shown in Fig. 10. Normalization is down in
terms of the mean reward after 10 weeks of training. It can
be seen that there are fluctuations between 20 to 40 weeks,
as the size of training data is still small. After 40 weeks of
training, performance starts to improve. After 200 weeks of
training, the result is 13% better than 10 weeks of training.
As the length of training needs to reach balance between
performance and training cost, we use the 200-week trained
RL agent to test the proposed DCNN-Q performance.

NTV requirement and throughput provided by these three
methods in terms of time within a week are illustrated
in Fig. 11. The step size is half an hour. The always-full-load

FIGURE 10. Normalized mean reward with respect to the number of
weeks trained.

FIGURE 11. Network throughput comparison of always-full-load,
threshold-based, and DCNN-Q methods in terms of time.

method provides a constant network throughput, which
is 30% higher than the highest NTV peak during a week. This
is the foundation for an intelligent power saving method. The
threshold-based method is able to adjust its network through-
put according to NTV. It can be seen that the threshold-based
method is aggressive when the required NTV is low and is
conservative when the required NTV is high. On the contrary,
DCNN-Q does not behave like the threshold-based method.
DCNN-Q ismore conservativewhenNTV is low by reserving
a larger safety margin, and more aggressive when NTV is
high. It can also be observed that the change of configuration
in DCNN-Q is sharper. This is because the action space of the
DCNN-Q is discrete.

Network power consumption in terms of time within
a week is illustrated in Fig. 12. The power consumption
of the always-full-load method is constant. The threshold-
based method has the lowest power consumption when NTV
is low and had higher power consumption when NTV is
high. Its range of power consumption is relatively wide.
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FIGURE 12. Network power consumption comparison of always-full-load,
threshold-based, and DCNN-Q methods in terms of time.

FIGURE 13. Normalized aggregate network power consumption
comparison of always-full-load, threshold-based, and DCNN-Q methods.

Conversely, the provided network throughput by the
DCNN-Q has limited range of power consumption values.

Fig. 13 depicts the normalized aggregate power consump-
tion of the three methods. Normalization is done relative
to the threshold-based method. Always-full-load consumes
the most power as expected, which is 41% higher than the
threshold-based method. The proposed DCNN-Q method is
able to save 19% power compared to the threshold-based
method and 42% compared to the always-full-load method.
This demonstrates that the proposedmethod is able to achieve
significant power saving.

VII. CONCLUSION
To investigate power saving for mobile networks, it is impor-
tant to establish practical power and network traffic models.
Based on our in-house measurement, linear models are suffi-
ciently accurate to describe base station power consumption
in terms of load. The power of RU is more sensitive to load
change, whereas the power of DU is steady. Power reduction
is achieved via the adaptation of loads of the network and
dynamic switching on and off according to required NTV.
A polynomial model for synthesizing NTV is proposed,
describing traffic fluctuations over one week. The threshold-
based method, which relies on heuristically set thresholds,

serves as the benchmark and is able to reduce power con-
sumption by 30% compared to always-full load. As a sig-
nificant enhancement, the centralized DCNN-Q method is
proposed. The DCNN-Q uses a DCNN, which accepts a
joint input of 2D images and a 1D vector, to approximate
the Q function in the Q-learning framework. The proposed
DCNN-Q method is capable of saving 19% power com-
pared to the threshold-based method. This demonstrates that
DCNN-Q is a promising solution to confine mobile network
power when both the data and the size of a network are
soaring. For future work, instead of the centralized method
proposed in this paper, a distributed learning framework
would be another direction of research. Also, optimization on
energy efficiency, i.e., bits/joule, is essential to consider for
green network research.
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