IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 28, 2020, accepted May 11, 2020, date of publication May 15, 2020, date of current version May 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994950

Automatic Detection of Offensive Language for
Urdu and Roman Urdu

MUHAMMAD PERVEZ AKHTER'!, ZHENG JIANGBIN ', IRFAN RAZA NAQVI“!, MOHAMMED
ABDELMAJEED"“2, AND MUHAMMAD TARIQ SADIQ 3

1School of Software and Microelectronics, Northwestern Polytechnical University, Xian 710072, China
2School of Computer Science and Technology, Northwestern Polytechnical University, Xian 710072, China
3School of Automation, Northwestern Polytechnical University, Xian 710072, China

Corresponding author: Muhammad Pervez Akhter (pervezbces @ gmail.com)

This work was supported in part by the Research and Development Plan of Shaanxi Province under Grant 2017ZDXM-GY-094 and Grant
2015KTZDGY04-01, and in part by the National Natural Science Foundation of China under Grant 61972321.

ABSTRACT In recent years, unethical behavior in the cyber-environment has been revealed. The presence
of offensive language on social media platforms and automatic detection of such language is becoming a
major challenge in modern society. The complexity of natural language constructs makes this task even more
challenging. Until now, most of the research has focused on resource-rich languages like English. Roman
Urdu and Urdu are two scripts of writing the Urdu language on social media. The Roman script uses the
English language characters while the Urdu script uses Urdu language characters. Urdu and Hindi languages
are similar with the only difference in their writing script but the Roman scripts of both languages are similar.
This study is about the detection of offensive language from the user’s comments presented in a resource-
poor language Urdu. We propose the first offensive dataset of Urdu containing user-generated comments
from social media. We use individual and combined n-grams techniques to extract features at character-level
and word-level. We apply seventeen classifiers from seven machine learning techniques to detect offensive
language from both Urdu and Roman Urdu text comments. Experiments show that the regression-based
models using character n-grams show superior performance to process the Urdu language. Character-level
tri-gram outperforms the other word and character n-grams. LogitBoost and SimpleLogistic outperform
the other models and achieve 99.2% and 95.9% values of F-measure on Roman Urdu and Urdu datasets
respectively. Our designed dataset is publically available on GitHub for future research.

INDEX TERMS Social media, offensive language detection, natural language Processing, machine learning,

text processing.

I. INTRODUCTION

Cyberbullying using offensive language on the Internet has
become a major problem among all age groups. Automatic
detection of offensive language from social media appli-
cations, websites and blogs is a difficult but an important
task. Social media platforms (like Twitter, YouTube, and
Facebook) provide a common place to communicate and
share user opinion about various topics like news, videos,
and personalities. In the modern age, ease in the availability
and popularity of Internet, laptops, tablets and cellphones,
cyberbullying can take place anytime and anywhere which
turning cyberbullying into a serious problem. There is no

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiping Wen

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

eye-to-eye contact among users, which enables a user to
present his opinion without any fear.

Social media applications and websites provide a central
point of communication among the people of the world.
People who are parted from each other based on geographic,
religion, skin color, and culture (like division of Indian Sub-
continent into India, Pakistan) often attack each other using
offensive language [1], [2]. Users usually prefer and feel
comfortable to use their native language than English to write
their opinion, feedback or comments about online products,
videos, articles [3]. Comments with offensive language words
should not be visible to other users because it causes cyber-
bullying. Therefore, it is important to design an automatic
system to detect, stop or ban offensive language before it is
published online.

91213

https://orcid.org/0000-0002-4933-8905
https://orcid.org/0000-0001-5943-7379
https://orcid.org/0000-0003-4306-9297
https://orcid.org/0000-0002-3001-1662
https://orcid.org/0000-0002-7410-5951
https://orcid.org/0000-0001-8077-7001

IEEE Access

M. P. Akhter et al.: Automatic Detection of Offensive Language

YoutTube is a popular video website that contains multi-
purpose videos. It is the most trafficked website after Google.
YouTube has billions of hours of videos watched every day
and 1.9 billion monthly active users. Recently, informa-
tion processing, opinion mining, and behavior analysis from
YouTube comments are popular research areas [4], [5]. India
is the second source of YouTube traffic with 8.3% contribu-
tion and 2.45 million active users. T-Series channel of India is
the number one YouTube channel with 2.98 billion views per
month.! 73% of internet users of Pakistan use YouTube every
month. ARY Digital is the number one Pakistani YouTube
channel with 5,820,924,305 video views and 10,500,000 sub-
scribers.” Since the division of the subcontinent, relationships
between Pakistan and India are not good (because of multiple
wars in various disputed areas). Both nations mostly under-
stand their national languages (Hindi and Urdu) and criticize
each other using offensive language on various topics (e.g.,
politics and entertainment) on YouTube. Urdu and Hindi are
similar with the only difference being in their writing style
[6], [7]. The Roman script is the common script that is easily
readable, understandable and writable for both languages [8]
(see section 2 for detail discussion). That is why automatic
detection of offensive comments of Urdu and Roman Urdu is
important and has a broader scope.

In recent years, machine learning techniques have been
widely used for natural language processing (NLP) espe-
cially detection of offensive language and hate speeches
from online user comments. For the Arabic language, [9],
[10] used n-gram features and machine learning models to
detect offensive language from YouTube comments. Ibrohim
used machine learning models with n-gram features to detect
abusive text from Indonesian social media [11]. For German
offensive text detection, [12] used convolutional networks to
detect offensive text from the Twitter message. [1] use LSTM
and logistic regression to detect offensive comments written
in Danish and English language. This paper investigates the
performance of different machine learning techniques for
Urdu and Roman Urdu text.

There are two main steps in supervised classification: fea-
ture extraction and classification. There are several feature
extraction and classification techniques. The conventional
features for offensive language detection are based on a
blacklist [13], lexicon-based [14], pattern matching [15] and
n-grams methods [16]. In past several studies used n-gram
method for feature selection. N-gram features are based on
a sequence of characters or words in the text. Several studies
reported that n-gram models outperform the other models [9],
[11], [13], [16]. N-gram approach has several applications
like spelling correction, next word prediction and text trans-
lation.

To the best of our knowledge, offensive language detection
from Urdu text comments has not been performed because
Urdu is known as a resource-poor language; there is no

1 https://www.businessofapps.com/data/youtube-statistics/
2https://WWW.socialbakers.com/ statistics/youtube/channels/pakistan

91214

TABLE 1. A comparison of Roman Urdu and Urdu language text.

Features Roman Urdu Urdu
Alphabets characters 26 as the English 38

Font style English Nastaleeq
Grammars No Yes
Dictionary No Yes
Word order No Yes

Easy to type Yes No

Easy to read and understand ~ Yes No

standard dataset publically available for offensive text detec-
tion. In this study, we design and annotate a dataset of offen-
sive text comments written and make it publically available
for future research. Individual character or word n-grams
have been used in past studies to extract useful words from the
offensive text but no research effort investigates the effective-
ness of combined n-grams. In this study, we comparatively
investigate the performance of both individual and combined
character and word n-grams. We also compare seventeen
classifiers from seven machine learning techniques for clas-
sification of offensive comments of both Urdu and Roman
Urdu. Rest of the paper is organized as follows. Similarities
and differences between Urdu and Roman Urdu are given in
Section II. Related work is discussed in Section III. Methods
and techniques used in the study are briefly described in
Section IV. Experimental results, discussion and summary
are given in Section V. The conclusion is given at the end
in section VL.

Il. URDU AND ROMAN URDU SCRIPT

Urdu is the national language of Pakistan and the official
language in six states of India. Urdu has more than 300 mil-
lion speakers all over the world. Urdu is written in Nastaleeq
style that is a very complex and rich morphological script [6].
Urdu has many unique features like no capitalization, right-
to-left, diacritics, context-sensitive, free word order [17].
In the past, researchers neglected Urdu because of its complex
morphology, unique characteristics and the lack of linguistic
resources [7].

Hindi is the national language of India. Hindi and Urdu
languages are almost the same with the distinction of their
writing script [6]. Roman Urdu is written in Roman script
(i.e., with English alphabets). It is easy to write on com-
puters, tablets, and cell phones with an English keyboard.
Romanagari script of Hindi language is also written in Roman
script. The Roman script of both languages is the same and
easily readable and understandable by billions of people from
India, Pakistan and other regions of the world [8]. Therefore,
automatic detection of offensive language from the user’s
comments written in Urdu and Roman Urdu script is very
vital.

A comparison of both scripts is given in Table 1 that shows
that Roman Urdu is more flexibility than Urdu in reading,

VOLUME 8, 2020

M. P. Akhter et al.: Automatic Detection of Offensive Language

IEEE Access

writing and understanding because it uses the alphabets and
characters of English language and a person with little knowl-
edge of English can read the text of Roman Urdu. There is no
standard dictionary of Roman Urdu to know about a word is
either a valid or invalid. Similarly, there are no grammatical
rules of writing a sentence. As compare to Roman Urdu,
Urdu script has its alphabets, dictionary and grammar that
makes Urdu a difficult script for writing, reading than Roman
Urdu. For example an English language sentence: “That is
my school” can be written in Roman Urdu using different
ways: “wo mera school ha” or “vo mira skool ha’ but in
Urdu it can only be written as: ““ 7.

Several studies to detect offensive contents are in English
and a few other languages like Arabic [2], Germen [12],
Indonesian [11]. To the best of our knowledge, this is the first
work to detect offensive language from Urdu text.

Ill. RELATED WORK

Recently, an increasing amount of attention of computational
linguistic community has been given to detect offensive lan-
guage and hate speeches from several online social media
applications like YouTube [9], [18], [19], Twitter [2], [12],
[15], Facebook [1] and blogs [20]-[22]. People from all over
the world share their comments about the uploaded images,
videos and products on social media platforms. Because of
the difference in nationality, culture, religion, and race, user
comments usually include offensive or hate words that cause
cyberbullying among the users [14], [23]. Therefore, it is
important to detect and remove offensive comments auto-
matically. Various features of a language and the complexity
of natural language constructs make this a more challenging
task.

Automatic detection of offensive language from social
media has become a trending topic of research in recent
years. Several machine learning methods have been applied
to the text of various languages. Lexicon-based approach was
used to detect hate speech from websites such as blogs and
forums [14], [22]. Bouazizi applied a pattern-based approach
to detect sarcasm from Twitter posts and also compared the
performance of the proposed method with Random Forest,
SVM, k-NN and, maximum entropy classifier [15]. In the
study of Lee, they detected abusive text by designing two
lists of abusive words and non-abusive words [13]. Burnap
used supervised classifiers Random forest and SVM to detect
hate speech on Twitter [23]. Watanabe used a programmatic
approach to performs hate speech detection from tweets [2].
All these studies employed only a couple of machine learn-
ing classifiers to compare the performance with proposed
approaches but the power of machine learning classifiers
have not been fully explored. Therefore, it is required to
comparatively analyze the performance of various machine
learning classifiers to detect offensive language from the text.

Performance of a classifier heavily depends on the number
of features and the quality of the features selected by fea-
ture selection approaches. Several studies show that n-gram
approaches at the character and word level are very effective

VOLUME 8, 2020

to detect offensive language than Bag of Word (BoW) [2],
[15], [23]. [16] explored word n-grams to detect offensive
language from tweets. [9], [19] employed word n-grams to
detect offensive language from YouTube comments [20],
[22], [24] also used word n-grams to detect offensive lan-
guage from the comments collected from blogs and emails.
Similarly, for character n-grams, [25], [26] used character
n-grams to detect offensive language from tweets. [1] also
used BoW and character n-grams to detect offensive and hate
speech from tweets and comments collected from Twitter,
Reddit and Facebook. All these studies use either word n-
grams or character n-grams but the power of both techniques
has not been explored yet. [11], [13] use a character n-
grams and word n-gram approaches to detect abusive text by
creating a list of abusive words. [11] shows that uni+bi-grams
features performed best with NaiveBayes. For Roman Urdu
sentiment analysis task, the uni-gram approach showed the
best performance on YouTube comments [27]. In this study,
we applied both character n-gram and word n-grams to detect
offensive language from text comments of Urdu and Roman
Urdu.

Until now, most of the research has focused on resource-
rich languages like English while resource-poor languages
could not gain the attention of the researchers because
of the lack of language resources like annotated datasets.
Recently, various machine learning techniques have been
used to detect offensive and hate speech detection from social
media text of different languages other than English. In the
study of [22], a classifier ensemble techniques were used
to detect offensive text from the web pages of the Por-
tuguese language. For the Arabic language, [9], [10] used
n-gram methods to detect offensive language from online
comments. Ibrohim uses naive bayes, decision tree and sup-
port vector machine on n-gram features to detect abusive
text taken from Indonesian social media [11]. Sigurbergs-
son applied machine learning models to detect offensive
language from the Danish language [1] and Schneider also
used various models of machine learning to classify Ger-
man language tweets to detect offensive text [12]. In this
study, we design a dataset of comments of a resource-poor
language Urdu from YouTube videos and apply and com-
pare machine learning models to automatically detect abusive
comments.

From the last decade, social media platforms are the pop-
ular sources to collect public opinion, views, and trends
about some person, product, video etc. [11] collected a Twit-
ter dataset of Indonesian language tweets for abusive lan-
guage detection. After cleaning the dataset and removing
the duplicates, 2,500 tweets were used in final experiments.
[10] designed a dataset of 16,000 comments from YouTube
to detect offensive language. [22] used 1,250 comments of
Portuguese language collected from Brazilian websites to
detect offensive text. In this study, we collected comments of
Urdu language from YouTube and design a dataset to detect
offensive language. A summary of the work reviewed in this
section is given in Table 2.

91215

IEEE Access

M. P. Akhter et al.: Automatic Detection of Offensive Language

TABLE 2. Comparison of past studies about offensive language detection from social media comments

Reference Language Platform Feature extraction methods Classification models
91 Arabic YouTube Word n-grams SVM
[22] English, Twitter, Blogs hateword2vec, hatedoc2vec, Unigram NB and SVM
Portuguese
[13] English Twitter, Articles Abusive and non-abusive word list Unsupervised learning
[36] English Twitter Word n-grams, hate or non-hate words list ~ SVM (linear, polynomial, radial
[11] Indonesian Twitter Word and char. n-grams NB, SVM, RF
[1] Danish, English Twitter, Reddit, BoW, char. n-grams LR, BiLSTM
Facebook
[12] German Twitter Twitter and Wikipedia embedding, CNN
[16] English Twitter Word n-grams (1-8) SVM
[20] Japanese Blogs Word n-grams (1-5) SVM
[37] English Twitter BoW, Word n-grams (1-3) and Char. n- NB, LR, SVM, RF, Gradient Boosted
grams (3-8) Trees, CNN, RNN
[21] English News Group Complement NB, Multinomial ~ Decision Table NB (DTNB)
Updateable NB,
[25] English Twitter Char. n-gram, Bow Logistic Regression, SVM, CNN
[19] English YouTube Lexical Syntactic Feature, Word n-grams NB, SVM
(2,3,5), Bow
[26] English Twitter Char. n-grams (1-4) LR, Graph Convolutional Network
[41] English Twitter Word Unigram SVM, BiLSTM, CNN

A. RESEARCH GAPS OF THE STUDY

Based on the literature discussed above and given in Table 2,
we recognized the following gaps in offensive language
detection from user comments on social media.

e Dataset preparation: It can be seen from Table 2 that the
English language has several research studies as compared
to other resource-poor languages because of the available
language resources like datasets. Urdu is also a resource-
poor language and to the best of our knowledge, there
is no public annotated dataset of Urdu that can be used
for offensive language detection. In this study, we collect
comments and annotate them manually to design a dataset
from YouTube videos.

e Feature selection: From Table 2, it can be seen that the
n-gram approach is effective and popular in the detection
of offensive language. All the studies used either word n-
grams or character n-gram methods. None of the studies
compares the performance of character n-gram with word
n-gram to detect offensive language. Moreover, none of
the studies explores the effects of these n-gram approaches
after combining them.

e Classification models: previous research studies used few
of the machine learning classifiers (one to four). None of
the studies explores the performance of various machine
learning classifiers to classify text into offensive and non-
offensive. In this study, we have found that regression-
based classifiers achieved better performance than other
popular classifiers.

91216

e Urdu and Roman Urdu scripts: Although several studies
process and compare several feature selection methods
[28] and classifiers [17] for Urdu text document classi-
fication and Roman Urdu text classification [27]. How-
ever, to the best of our knowledge, it is the first study
that explores, evaluates and compares machine learning
methods to process and detect offensive language from
both Urdu and Roman Urdu text.

IV. MATERIAL AND METHODS

In this section, we explain the proposed combined n-gram
approach used to detect offensive language from Roman Urdu
and Urdu text. First, we collect comments from YouTube
videos and manually annotate these comments into offen-
sive or non-offensive to design Urdu Offensive Dataset
(UOD). Second, we clean and tokenize both Urdu and Roman
Urdu datasets. Third, we extract six types of character n-
grams features and six types of word n-grams (uni-gram, bi-
gram, tri-gram, uni+bi-gram, bi+tri-gram, and uni-+bi-tri-
gram). Forth, using generated n-grams in the previous step,
we classify the comments into offensive and non-offensive
comments using seventeen supervised classifiers that belong
to seven machine learning techniques. Last, we evaluate and
compare the performance of these classifiers. All the n-grams
and classifiers used in this study are shown in Figure 1.

A. OFFENSIVE LANGUAGE DATASETS
There are many datasets are available to detect offensive text
of resource-rich languages like English as shown in Table 2.

VOLUME 8, 2020

M. P. Akhter et al.: Automatic Detection of Offensive Language

IEEE Access

Dataset Preparation

()
o >
. i 4= B
CSV File g2 5
Z 8 =
’7 - -
b Dataset Preprocessing Extraction of Combined N-gram
Features
Co G2 ESES
Punctuation Marks
Stopwords -
Removal @ @ | Rule | | 5 | SVM |
Remove Non-
. Language
Remove digits e o
@ Regression | Random

Machine [earning Models

FIGURE 1. The proposed methodology to detect offensive language that shows the number of steps used for dataset
design and preparation, preprocessing, feature selection and classification.

TABLE 3. Datasets of Roman Urdu and Urdu language text.

Dataset #comments #classes #offensive #non-offensive
Urdu 2,171 02 1,109 1,062
Roman Urdu 10,000 02 5,000 5,000

In this study, we used two datasets of Roman Urdu and
Urdu languages. For Roman Urdu, we use a dataset that is
publically available at GitHub. For Urdu language, we design
a dataset from YouTube videos because there is no publically
available dataset. The detail discussion of both datasets is
given in this section and a summary is given in Table 3.

1) ROMAN URDU DATASET

A Roman Urdu dataset is publically available at GitHub.?
This dataset contains 1,47,000 user comments collected from
multiple videos from YouTube. This dataset is available
in comma-separated file (CSV) format. Each comment is
labelled either offensive or non-offensive. In this study,
we use the subset of this dataset and randomly extracted ten
thousand comments from this dataset.

2) URDU OFFENSIVE DATASET (UOD)

Because there is no standard dataset of Urdu that can be
used for offensive language detection. Therefore, we col-
lect 2,171 comments and design a dataset of Urdu lan-
guage from YouTube videos. All the comments are manually
collected from political, entertainment, sports, and religion
videos uploaded by India and Pakistan. Three annotators that
are graduate students and are local speakers of the Urdu
language annotate Dataset. We provided them with a set
of comments and a question “a comment either is offen-
sive or non-offensive?”” We clean the dataset by removing

3 https://github.com/shaheerakr/roman-urdu-abusive-comment-detector

VOLUME 8, 2020

non-Urdu words and characters, URLs, numbers and special
characters from each comment. Our designed dataset and a
subset of Roman Urdu dataset used in this study are publically
available in CSV formats on GitHub.*

B. WORD N-GRAM AND CHARACTER N-GRAM

Features play an important role in the classification task
by classifiers and are extracted from the text under analy-
sis. n-gram features consist of a contiguous sequence of n
words or characters. For natural language processing, n-gram
is a popular and useful technique that is used to assign a
probability value to a word or a sequence of words from the
text. Classifiers use the assigned probability value to classify
the text. Followings are the popular n-grams:

o Uni-gram: a feature made of single word or character
(i.e.n=1)

o Bi-gram: a feature based on two contiguous words in the
text (i.e.n = 2)

o Tri-grams: it is based on three contiguous words or char-
acters (i.e. n = 3)

The number of n-grams from a sentence can be calculated
as given below:

Ngrams =X — (N —1) (1)

where X is the number of words (or characters) in a sentence
and N is the number of contiguous words (or characters).
Examples of extracting n-grams from a sentence of Roman
Urdu and Urdu are given in Table 4. A sentence has five
words. There are five uni-grams, four bi-grams and three tri-
grams.

Character n-grams are another feature type that represents
a text as a sequence of characters. Character n-gram is differ-
ent from word n-gram where n is the number of contiguous

4 https://github.com/pervezbcs/Urdu-Abusive-Dataset

91217

IEEE Access

M. P. Akhter et al.: Automatic Detection of Offensive Language

TABLE 4. Examples of designing n-grams from Roman Urdu and Urdu sentence.

N-grams Roman Urdu Urdu

Sentence ~ Wo ek chotiya banda ha o Wi ea Sl o
Unigram ‘wo’, ‘ek’, ‘chotia’, ‘banda’, ‘ha’ | et gt NS o !
Bigram ‘wo ek’, ‘ek chotiya’, ‘chotiya bnda’, ‘banda ha’ ! oaiy! oy L gat 'L s SO NSl o !
Trigram ‘wo ek chotiya’, ‘ek chotiya banda’, ‘chotiya banda ha® ' = eai Wi s’ ¢loaiy Wi s Si' 'l s Sl 0!

TABLE 5. No. of character-level and word-level n-grams extracted from
both datasets.

N-gram/Type Word Char

Roman Urdu Urdu Roman Urdu Urdu
Uni-gram 3316 2705 28 50
Bi-gram 4179 2430 665 864
Tri-gram 3277 17774 2320 1281
Uni+Bi-gram 4179 1921 691 911
Bi +Tri-gram 2196 2449 1227 863
Uni+Bi+Tri-gram 1496 1853 1186 1259

characters instead of words. In this study, we employed uni-
gram, bi-gram, and tri-gram to extract features from the com-
ments. We also combined n-grams to extract complex features
like uni+bi-gram, bi+tri-gram, and uni+bi+tri-grams. Here
‘4’ character show the group of one n-gram with another
[11], [29]. For example, uni+bi-gram features means all the
n-grams of length one and two (see Table 4). The number
of extracted character n-grams and word n-grams from both
datasets are given in Table 5.

C. MACHINE LEARNING TECHNIQUES

In this section, we give a brief introduction of machine learn-
ing techniques used in this study to detect offensive language
from Urdu and Roman Urdu scripts. We used seventeen
classifiers from seven machine learning techniques. We used
a popular data mining tool WEKA [30] for the experiments.
For a detail description of these classifiers, please see the
online documentation of WEKA. However, here we describe
these classifiers.

1) BAYESIAN MODELS
These models are based on Bayes theorem and conditional
probability. Bayes models are simple, useful and easy to build
for large datasets. Bayes theorem is as follows:

P(C|D) = M)

P(D)

where C and D are two events and P (D) # 0. P(D) and
P(C) are the prior probabilities of observing D and C without
regard to each other. P (D|C) is the probability of observing
event D given that C is true. We used two Bayes models:
Naive Bayes (NB) and Bayes Network (BayesNet).

e BayesNet: itmodels a directed acyclic graph (DAG) with
the conditional probability distribution of each node of

91218

that graph. The arc between the nodes represents the
probabilistic dependency among them. Nodes represent
the attributes of the dataset. BayesNet calculates and
gives the posterior probability distribution of the clas-
sification node given the values of the other nodes.
In learning, BayesNet performs two tasks: learning the
graphical structure and then learning the parameters of
that structure.

e Naive Bayes (NB): it has a simple structure than
BayesNet where the classification node is the parent
node of all the other nodes. In learning, NB assumes that
all the features of a dataset are independent of each other.
Because of this assumption, NB is efficient and easy to
construct.

2) NEAREST NEIGHBORS

Assigns a label to an instance based on the labels of its k-
nearest neighbors. Its performance is based on the value of k
and the similarity measure that is used to predict the class of
an instance. For a large dataset, it is computationally expen-
sive. In this study, we used Instance-Based Learning (IBk)
model with Euclidean Distance to measure the similarity
among the k instances.

3) TREE

These models construct a tree from the given data. Nodes of
a tree represent attributes or features of an example with its
importance to classify it. Leave nodes of the tree represent
classes in the data. Easy to interpret but complex and time-
consuming for a high dimensional dataset. We used three
tree-based models: Hoeffding Tree, J48, and Reduced Error
Pruning Tree (REPTree).

o Hoeffding Tree: use Hoeffding bound to calculate a cer-
tain level of confidence score and to decide how many
examples are needed to achieve that confidence.

e J48: is a decision tree-based model that is an extension
of the ID3 algorithm. It constructs a decision tree from
the training data and prunes it.

e REPTree: produces a fast decision tree using informa-
tion gain and prune the produced tree using reduce error
pruning. It can produce multiple trees and choose the
fine one.

4) RANDOM
Random algorithms construct a tree by considering k ran-
domly chosen attributes at each node. Random behavior of

VOLUME 8, 2020

M. P. Akhter et al.: Automatic Detection of Offensive Language

IEEE Access

a model helps to reduce both errors due to bias and error due
to variance [31]. We used Random Tree and Random Forest
models that are described below:

o Random Tree: is like a decision tree but it does not use all
the features of a dataset to construct a tree. It randomly
selects some features to construct a decision tree for the
classification task.

e Random Forest: Tt consists of multiple decision trees.
Each tree is constructed using a subset of features. Each
tree is used for the classification task but the final clas-
sification is performed using aggregating the classifica-
tion results (like using majority voting) of all the trees.

5) REGRESSION

Use a statistical process to measure the relationship between
a dependent variable and one or more independent variables.
We use three regression-based models called linear multi-
nomial logistic regression with a ridge estimator (Logis-
tic), additive logistic regression (LogitBoost), and regression
model with simple regression function (SimpleLogistic).

o Logistic: it builds a model using multinomial logis-
tic regression with ridge estimator. It replaces miss-
ing attributes and transforms nominal attributes into
numeric attributes. It can also handle weighted and non-
weighed instances.

o LogitBoost: is based on AdaBoost procedure that trains
the model on weighted samples. It assigns higher
weights to misclassified samples. After performing a
sequence of steps, the final classifier is the linear com-
bination of classifiers at each stage [32].

o SimpleLogistic: by using LogitBoost algorithm, it fits
a multinomial logistic regression model. In train-
ing or learning the dataset, in each iteration, it adds one
simple linear regression model per class into the logistic
regression model. It stops adding linear regression mod-
els when cross-validation error no longer decreases.

6) SUPPORT VECTOR MACHINE
Learns n-dimensional hyperplane that separates examples
into classes. It can classify both linear and non-linear data.
High memory and poor interpretability are its drawbacks
[33]. Kernel function in SVM is used to analyze the patterns
in data. We apply four mostly used kernels: polynomial,
radial, sigmoid, and linear kernels.

o Polynomial Kernel: For degree “‘d,” the polynomial ker-

nel can be defined as:

KGix) = (T + ¢} 3)

where x; and x; are the input space vector and xl-T is the
transpose of x;. ¢ is a parameter used for the trade-off
between the highest order and lowest order polynomial.

e Radial Basis Function (RBF) Kernel: is a real-valued
function, whose value depends upon the distance from
the origin. RBF kernel can be defined as follows:

K (xi,x)) = exp(—y(x; —x)P) fory >0 (4)

VOLUME 8, 2020

where the value of y can be used as 1/20% where o i
the variance of input data.
o Sigmoid Kernel: The sigmoid kernel function can be

defined as:

S

K (xi, xj) = tanh(ax; x; + b) 3)

a > 0 is the scaling parameter for the input data, and
b is the shifting parameter that controls the threshold of
mapping.

e Linear Kernel: can be represented as below wherex;, x;,
and xl.T are same as defined in the polynomial kernel.

K (xl-, xj) = xiij (6)

7) RULE-BASED

These models implement a propositional rule learner. For
each label, exactly one rule is defined. A rule is to build by
trying every possible value of each attribute and select the
condition with the highest information gain. In this study,
OneR and JRip are used.

e OneR: is a simple rule-based classifier that constructs
one rule for each predictor in rules learning. The rule
with minimum error is selected for the final classifica-
tion.

e JRip: is based on prepositional rule learner RIPPER
(Repeated Incremental Pruning to Produce Error Reduc-
tion) that incrementally learns rules and then optimize
these rules. First, it constructs rules for all positive
instances and then prunes them. It is efficient on a large
noisy dataset for classification task [18].

D. PERFORMANCE EVALUATION MEASURES

To measure the classification performance, we used the most
common performance measures used for classification task:
F-measure [34], [35]. F-measure can be calculated using True
Positive (TP), False Positive (FP), False Negative (FN) of
a confusion matrix [17]. TP is the number of comments
correctly predicted as the positive class (offensive). FP is the
number of comments predicted wrongly as the positive class
when it was not. FN is the number of comments predicted
wrongly as the negative class (non-offensive) when it was
not. F-measure is the harmonic mean of precision and recall
values. F-measure can be calculated as:

Precision * Recall

F — measure = 2+ — @)
Precision + Recall

where precision and recall can be calculated as given below:

TP

Precision = —— (8)
TP 4 FP
TP
Recall = —)
TP + FN

V. RESULTS AND DISCUSSION
In this section, the experimental results are discussed. During
experiments, we investigated the following questions:

91219

IEEE Access

M. P. Akhter et al.: Automatic Detection of Offensive Language

o Which n-gram technique (word or character) outper-
forms others?

o Are individual n-grams better than combined n-grams?

o Which machine learning technique is the best for offen-
sive language detection?

« In each technique, which classifier is the best to classify
offensive and non-offensive comments?

Because the datasets are not divided into training, testing or
validation sets, we used ten-fold cross-validation to train and
test the machine learning models [17], [36]. All the experi-
ments have been performed using open source and publically
available software WEKA.

A. WORD N-GRAMS

In this section, we evaluate the performance of our models
on six types of word n-grams. For Roman Urdu, as shown
in Figure 2, it can be seen that uni-gram is the best n-gram
than other individual or combined n-grams because most of
the classifiers achieved maximum performance using uni-
gram. It is because the single word or uni-gram are promi-
nent in offensive comments such as “harami’, “kutta”, and
“chotiya”. It also endorsed the findings of [2]. Regression-
based classifier SimpleLogistic and SVM linear outperform
the other models on uni-gram as concluded in [16] and
achieved 94.2% F-measure value. For combined word n-
grams, after uni-gram, uni+-bi+-tri-gram shows better perfor-
mance than the other four n-grams. SVM polynomial shows
better result than other models on uni+bi+tri n-grams and
achieves 92% score of F-measure. OneR shows worse than all
other models as it constructs one rule only from the dataset as
compare to JRip that incrementally learns rules and optimizes
that rule [18].

To detect offensive language from Urdu dataset, again uni-
gram is more accurate and superior over other n-grams. Tree-
based REPTree model outperforms the other models on uni-
gram. Because of information gain and reduce error pruning
techniques to build and prune the tree, REPTree achieves
the highest value 94.7% of F-measure. SVM sigmoid out-
performs better with 85.2% F-measure on bi-gram and SVM
polynomial performs superior with 74.1% score on tri-gram
features. For combined n-grams, again REPTree achieves
high performance on both uni+ bi-gram and uni4-bi-4tri-
gram features and achieves 94.5% and 94.4% F-measure
value respectively. Hoeffding tree failed to achieve a certain
level of confidence score and performed the worse than other
classifiers except better than OneR classifier. As compare to
other techniques, overall SVM models show better perfor-
mance than other techniques using all the n-grams except uni-
gram to detect offensive language from Urdu comments.

If we analyze the results of word n-grams as shown in Fig-
ure 2 and Figure 3, we conclude that uni-gram is the best
feature from six types of n-grams (individual and combined)
to detect the offensive language in the text of both Roman
Urdu and Urdu datasets and it endorses the finding of [27].
From all seventeen classifiers, SimpleLogistic and SVM

91220

linear outperform the other models on Roman Urdu while
REPTree outperformed on Urdu. Experimental results also
show that individual feature of n-gram performs better than
combined features of different length of words or n-grams.
For both of the datasets, both Hoeffding Tree and OneR
perform worse than all the other models because of the com-
plex and morphological features of Urdu and the free writing
style of Roman Urdu. Therefore, OneR failed to construct
an optimum rule and Hoeffding Tree failed to calculate a
certain level of confidence score to classify offensive and
non-offensive comments from both datasets.

B. CHARACTER N-GRAMS

For character n-grams, F-measure scores achieved by each
classifier on Roman Urdu are shown in Figure 4. Regression-
based model LogitBoost outperforms the other models and
achieves 99.2% value of F-measure on the tri-gram fea-
ture. LogitBoost also shows maximum performance on all
the individual or combined n-grams except uni-gram. SVM
radial shows better performance than other models on uni-
gram and achieved 77.3% F-measure that is 21.9% less than
LogitBoost performance. On combined n-grams, LogitBoost
again outperforms the others. It achieves 96.0%, 98.6% and
98.4% values of F-measure on uni+bi-gram, bi-tri-gram
and uni+bi+tri-gram feature respectively. Hoeffding tree and
OneR perform the worse than the other models the same as
in the case of word n-grams as shown and discussed in the
previous section.

For Urdu dataset, regression-based model SimpleLogis-
tic outperforms the others models on tri-gram feature and
achieves 95.9% F-measure score. SVM radial and polynomial
show better results than other models on uni-gram and bi-
gram as it is shown in Figure 5. For combined n-grams, again,
uni+bi+-tri-gram feature outperforms than others and SVM
polynomial achieved 95.5% values of F-measure. Random
Tree and OneR models perform worse than other models on
all the features.

After the analysis of both Figure 4 and Figure 5, for
character n-grams, we conclude that character tri-gram is
the best feature and very helpful in the detection of offen-
sive language for both Roman Urdu and Urdu datasets. It is
because one or two characters do not design meaningful
words of Urdu and Roman Urdu script. These words are
usually known as stopwords. The study of [17] concludes that
stopwords of Urdu decrease the performance of classifiers.
The performance of regression-based models LogitBoost and
SimpleLogistic are outstanding at character n-grams features
except for uni-gram. Again, OneR performs worse than other
models. For word n-grams, uni-gram approach outperforms
the others on both datasets. For character n-grams, tri-gram
outperforms the others on both datasets.

C. WORD N-GRAMS VS. CHARACTER N-GRAMS

If we analyze the performance of both words n-grams
and character n-grams on Urdu and Roman Urdu datasets,
we conclude that individual n-grams are better than combined

VOLUME 8, 2020

M. P. Akhter et al.: Automatic Detection of Offensive Language

IEEE Access

mUni =Bi =Tn

100
90

Uni+Bi mBi+Tri ® Uni+Bi+Tri

el

0
0
0
3 5 s 20% 2 2 £ 5 o3 2 25 E o2
S, Z- z = 2 5 £ 5 2 & 2 & B 3 & =
“ b ¥ A =z A2 = 92 2 = Z 2 o o0
@ A f e = < 5 &= o0 o © o
m > = 210 % = - S o g
z o e B
< = n =
Z
NAIVE NN TREE SVM RANDOM REGRESSION RULE
FIGURE 2. F-measure values of word-level n-grams on Roman Urdu dataset.
mUni ®Bi =Tri ©Uni+Bi ®Bi+Tri ® Unit+Bi+Tri
100
90
80
70
60
50
40
30
2 5 o 2% 208 x|% 8|8 2 ol =
-z Z. z = £ £ 2 35 2 & 2 = o oz
< » A £ 0z /2 = 92 2 = 2 2 5 0o
m m 23 o = <) A~ o o o m
m > o 2 = ~ = = o o)
Z o= o R B
< T n =
4
NAIVE NN TREE SVM RANDOM REGRESSION RULE

FIGURE 3. F-measure values of word-level n-grams on Urdu dataset.

n-grams. It can also be concluded that character n-gram
shows better performance than word n-grams to detect offen-
sive language and it endorsed the findings of [1], [37] on
offensive text detection on English and Danish languages. For
character n-grams, tri-gram is the most effective n-gram than
other character n-grams (individual or combined). Character
tri-gram achieved 95.9% and 99.2% F-measure values on
Urdu and Roman Urdu respectively. Learning the complex
morphology of Urdu and the insufficient number of samples
in Urdu dataset are affecting the performance of machine
learning models than Roman Urdu. For word n-grams,
the performance of uni-gram is the best n-gram than other
word n-grams. Word uni-gram achieved 94.2% F-measure
on Roman Urdu and 94.7% values of F-measure on Urdu.
We have also compared the combined n-grams of word

VOLUME 8, 2020

n-grams or character n-grams. For combined word n-grams,
uni+bi-+tri-gram and uni+bi-gram perform better than other
word n-grams as they achieved 92% and 94.5% F-measure
values on Roman Urdu and Urdu datasets respectively. At
combined character n-grams, bi4-tri-gram and uni+-bi-tri-
gram features achieved 98.6% and 95.5% F-measure scores
and showed the best performance on Roman Urdu and Urdu
respectively.

D. PERFORMANCE COMPARISON OF MACHINE
LEARNING MODELS

After the analysis of n-gram methods, in this section, we com-
pare the overall performance of machine learning models to
classify comments into offensive or non-offensive comments.
Table 6 shows the maximum F-measure scores of each model

91221

IEEE Access

M. P. Akhter et al.: Automatic Detection of Offensive Language

mUni mBi =Tn

100

Uni+Bi ®Bi+Tri ® Unit+Bi+Tri

95
90
85
80
75
70
65
60
55
50

Z.
v

NAIVEBAYES
BAYESNET
HOEFFDING
REPTREE
LINEAR
RADIAL

z
2,
=
[es}

NN TREE

SVM

2 x5 a3 2 2 5 & £
o = m o~ = = o Z. d
= 92 = = Z 2 o o

O o I G-
» = S ° o
= 21 0o
75} —

RANDOM REGRESSION RULE

FIGURE 4. F-measure values of character n-grams on Roman Urdu dataset.

mUni =Bi =Tn

S = © LLLJ ~ :
onl <

> z. z- z = o m =

< ©n a = z a

m m = ~ = <

m > B m — ~

> < on ~

< T

z

NAIVE NN TREE

SVM

UnitBi mBi+Tri = Unit+Bi+Tri

90
85
80
75
70
65
60
55
50

[a)] > = 3] Q @) = 24 A
— wn m — — W m L]
S 2 9w 2 B B o Zz &
= 2 % = 2 Z o o0
@] o C) C) m
7 = © o
H — o
n —
RANDOM REGRESSION RULE

FIGURE 5. F-measure values of character-level n-grams on Urdu dataset.

achieved on both character n-grams and word n-grams. All
the models except k-NN and SVM show the best performance
with the default parameters as given in the WEKA. k-NN
with k = 11 and k = 6 achieves the best performance on
Roman Urdu and Urdu respectively. SVM radial with g =
0.0, sigmoid with g = 0.1, and polynomial withd =2 and g
= 0.1 achieve the best F-measure scores on Urdu. For Roman
Urdu, SVM radial and sigmoid shows high performance with
g = 0.0 but SVM polynomial with d = 2 and g = 0.3 shows
the best performance.

From the analysis of values in Table 6, we conclude that
regression-based models are the most effective than other
models on both datasets with character tri-gram features.

91222

LogitBoost achieved 99.2% F-measure on Roman Urdu while
SimpleLogistic outperforms the others on Urdu dataset and
achieved 95.9% score of F-measure. Overall, character n-
grams perform better than word n-grams with all the machine
learning models except Random Tree and SVM sigmoid.
Character tri-gram shows superior performance with most of
the models on both datasets. Combined n-gram features at
both word n-grams and character n-grams do not perform well
with most of the classifiers.

For Bayes theorem models, BayesNet achieves better per-
formance than NB on character bi-gram and tri-gram features
on both Roman Urdu and Urdu datasets respectively. Our
finding endorsed the findings of [17] about BayesNet in

VOLUME 8, 2020

M. P. Akhter et al.: Automatic Detection of Offensive Language

IEEE Access

TABLE 6. Summary of results achieved by seven machine learning techniques. Maximum values of F-measure achieved by a classifier on type of n-gram

both datasets.

Roman Urdu Urdu
Technique Classifier F-measure N-grams Type F-measure N-grams Type
Bayes NB 84.6 U+B+T Char 93.0 U+B+T Char
BayesNet 89.6 B,B+T Char 94.0 T Char
NN k-NN 922 U+B+T Char 88.9 U+B Char
Tree Hoeffding Tree 89.7 T Char 87.5 B, U+B, B+T Char
J48 98.8 T Char 934 U+B+T Char
REPTree 98.9 T Char 949 T Char
SVM Linear 97.5 T Char 94.6 T Char
Radial 96.7 T Char 92.7 U+B+T Char
Sigmoid 95.8 T Char 93.1 U+B Word
Polynomial 97.7 U+B+T Char 955 U+B+T Char
Random Random Forest 96.2 B+T Char 949 U+B+T Char
Random Tree 83.8 B+T Char 809 U+B+T Word
Regression Logistic 97.0 T Char 924 U+B+T Char
SimpleLogistic 98.3 T Char 95.9 T Char
LogitBoost 99.2 T Char 949 T Char
Rule OneR 77.8 B, U+B, U+B+T Char 77.9 B, U+B, B+T, U+B+T Char
JRip 98.2 T Char 92.8 U+B+T Char
100
95
90
85
80
75
70
65
60
55
50
) m = g E E) M = g ; z
5 5
Word Character
®Roman Urdu = Urdu
FIGURE 6. Performance comparison of word-level and character-level n-grams on both datasets.
TABLE 7. Time (in seconds) taken to build the model.
Dataset BayesNet k-NN REPTree SVM Poly. RandomForest Simple Logistic LogitBoost JRip
Time 1.09 0.01 29.89 70.84 80.01 145.55 742.11 194.66

the classification of Urdu text documents. k-NN shows the
highest performance with k = 6 and k = 11 using combined
character n-grams on both Roman Urdu and Urdu datasets
respectively. For tree-based models, REPTree outperforms
the j48 and Hoeffding Tree with character tri-gram on both
datasets. SVM with polynomial kernel shows better perfor-
mance than linear, radial and sigmoid kernels using combined

VOLUME 8, 2020

character n-gram on both datasets. From random classifiers,
Random Forest gives better results than Random Tree on both
datasets using combined character n-grams. In regression-
based classifiers, SimpleLogistic and LogitBoost outperform
the other sixteen classifiers using character tri-grams on Urdu
and Roman Urdu. For the rule-based technique, JRip is bet-
ter to classify offensive language than OneR. JRip achieves

91223

IEEE Access

M. P. Akhter et al.: Automatic Detection of Offensive Language

Predicted Labels
Non-abusive Abusive
'_E_' Non-abusive 4958 42
=
m
g
2 Abusive 39 4961

(a) Confusion matrix of LogitBoost on Roman Urdu

Predicted Labels
Non-abusive Abusive
_g Non-abusive 1038 24
o
g
“ Abusive 66 1043

(b) Confusion matrix of SimpleLogistic on Urdu

FIGURE 7. Confusion matrices of LogitBoost and SimpleLogistic models.

98.2% value of F-measure on Roman Urdu and 92.8% value
on Urdu dataset that is 20.4% and 14.9% higher than OneR.

In short, LogitBoost and Simple Logistic outperform the
other classifiers using character tri-gram on both datasets.
Confusion matrices of both LogitBoost and Simple Logistic
models are shown in Figure 7. Confusion matrix of Logit-
Boost, in Figure 7 (a) shows that the classification ratio is
99.19% and the misclassification ratio is less than 1%. For
SimpleLogistic model in Figure 7 (b), the misclassification
ratio is 4.15% only. From the confusion matrix, we conclude
that both regression-based models are the effective classifiers
from sixteen machine learning classifiers to detect offensive
language from the comments of both scripts.

We also compare the efficiency of those models from each
machine learning technique who achieved high F-measure
values in Table 6. Although regression-based models show
superior performance, these models take longer time to build
the model than others do. From Table 7, it can be seen that
LogitBoost takes 742.11 seconds to build the model and to
achieve 99.2% F-measure. Similarly, the time of SimpleLo-
gistic to build the model is 145.55 seconds that is much less
than LogitBoost. The most efficient model is the k-NN model
that takes 0.01 second to build the model and achieved 92.2%
F-measure that is 7% less than LogitBoost.

VI. CONCLUSION

In this work, we performed automatic detection of offensive
language from YouTube comments of Roman Urdu and Urdu.
Our major contribution is to provide the first dataset of the
Urdu language to detect offensive language automatically
from the text. We explored the performance of seventeen
models from seven machine learning techniques to process
and detect offensive language from both Urdu and Roman
Urdu datasets. We have also compared the effectiveness of
individual as well as combined character n-grams and word
n-grams to extract useful features from text to help the models
in classification. After the analysis of results from differ-
ent aspects, we conclude that character n-grams outperform
the word n-grams. Character tri-gram is the most effective
n-gram feature than other five types of character and word
n-grams for both Urdu and Roman Urdu datasets. We also

91224

found that combined n-grams do not perform better than
individual n-grams. From the seven classification techniques
of machine learning, regression-based technique outperforms
the other six techniques but these models take longer time to
build the model. LogitBoost shows superior performance on
Roman Urdu using character tri-gram and achieved 99.2%
score of F-measure. SimpleLogistic outperforms the oth-
ers classifiers using character tri-gram on Urdu dataset and
achieved 95.8% F-measure value. k-NN takes less time to
build the model but its performance is not as good as many
other models.

For future work, we aimed to apply neural network
based models like fully convolutional neural networks [38]
and character-level convolutional neural networks [39], [40]
approaches for the detection of offensive language for Urdu
and Roman Urdu. We have also aimed to design a multilin-
gual text dataset of both languages from other popular social
platforms. Our dataset is publically available to reproduce
results and to do work in this direction.

REFERENCES

[1] G. L. Sigurbergsson and L. Derczynski, “Offensive language and hate
speech detection for Danish,” Aug. 2019, arXiv:1908.04531. [Online].
Available: https://arxiv.org/abs/1908.04531

[2] H. Watanabe, M. Bouazizi, and T. Ohtsuki, “Hate speech on Twitter:
A pragmatic approach to collect hateful and offensive expressions and
perform hate speech detection,” IEEE Access, vol. 6, pp. 13825-13835,
2018.

[3] F. Noor, M. Bakhtyar, and J. Baber, “Sentiment analysis in E-commerce

using SVM on roman urdu text,” in Emerging Technologies in Computing,

vol. 285. Cham, Switzerland: Springer, 2019, pp. 213-222.

A. Severyn, A. Moschitti, O. Uryupina, B. Plank, and K. Filippova, ‘“Multi-

lingual opinion mining on YouTube,” Inf. Process. Manage., vol. 52, no. 1,

pp. 46-60, Jan. 2016.

[5] H. T. Nguyen and M. Le Nguyen, “Multilingual opinion mining on
YouTube—A convolutional N-gram BiLSTM word embedding,” Inf. Pro-
cess. Manage., vol. 54, no. 3, pp. 451-462, May 2018.

[6] K. Riaz, “Comparison of Hindi and Urdu in computational context,” Int.
J. Comput. Linguist. Nat. Lang. Process., vol. 1, no. 3, pp. 92-97, 2012.

[7]1 A. Daud, W. Khan, and D. Che, “Urdu language processing: A survey,”

Artif. Intell. Rev., vol. 47, no. 3, pp. 279-311, Mar. 2017.

M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification

of roman-urdu opinions using Naive Bayesian, decision tree and KNN

classification techniques,” J. King Saud Univ.-Comput. Inf. Sci., vol. 28,

no. 3, pp. 330-344, Jul. 2016.

[9] A. Alakrot, L. Murray, and N. S. Nikolov, ‘“Towards accurate detection of
offensive language in online communication in Arabic,” Procedia Comput.
Sci., vol. 142, pp. 315-320, Jan. 2018.

[4

=

[8

—

VOLUME 8, 2020

. Akhter et al.: Automatic Detection of Offensive Language

IEEE Access

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Alakrot, L. Murray, and N. S. Nikolov, “Dataset construction for the
detection of anti-social behaviour in online communication in Arabic,”
Procedia Comput. Sci., vol. 142, pp. 174-181, Jan. 2018.

M. O. Ibrohim and I. Budi, ‘A dataset and preliminaries study for abusive
language detection in Indonesian social media,” Procedia Comput. Sci.,
vol. 135, pp. 222-229, Jan. 2018.

J. M. Schneider, R. Roller, P. Bourgonje, S. Hegele, and G. Rehm,
“Towards the automatic classification of offensive language and related
phenomena in German tweets,” in Proc. 14th Conf. Natural Lang. Process.
(Konvens), 2018, p. 95.

H.-S. Lee, H.-R. Lee, J.-U. Park, and Y.-S. Han, ““An abusive text detection
system based on enhanced abusive and non-abusive word lists,” Decis.
Support Syst., vol. 113, pp. 22-31, Sep. 2018.

N.D. Gitari, Z. Zhang, H. Damien, and J. Long, ‘A lexicon-based approach
for hate speech detection,” Int. J. Multimedia Ubiquitous Eng., vol. 10,
no. 4, pp. 215-230, Apr. 2015.

M. Bouazizi and T. Otsuki Ohtsuki, ““A pattern-based approach for sarcasm
detection on Twitter,” IEEE Access, vol. 4, pp. 5477-5488, 2016.

P. Rani and A. K. Ojha, “KMI-coling at SemEval-2019 task 6: Exploring
N-grams for offensive language detection,” in Proc. 13th Int. Workshop
Semantic Eval., 2019, pp. 668—671.

M. P. Akhter, Z. Jiangbin, I. R. Naqvi, M. Abdelmajeed, A. Mehmood,
and M. T. Sadiq, “Document-level text classification using single-layer
multisize filters convolutional neural network,” IEEE Access, vol. 8,
pp. 42689-42707, 2020.

K. Dinakar, B. Jones, C. Havasi, H. Lieberman, and R. Picard, “Common
sense reasoning for detection, prevention, and mitigation of cyberbully-
ing,” ACM Trans. Interact. Intell. Syst., vol. 2, no. 3, pp. 1-30, Sep. 2012.
Y. Chen, Y. Zhou, S. Zhu, and H. Xu, “Detecting offensive language
in social media to protect adolescent online safety,” in Proc. Int. Conf.
Privacy, Secur., Risk Trust Int. Confernece Social Comput., Sep. 2012,
pp. 71-80.

T. Ishisaka and K. Yamamoto, “Detecting nasty comments from BBS
posts,” in Proc. 24th Pacific Asia Conf. Lang. Inf. Comput. (PACLIC),
2010, pp. 645-652.

A. H. Razavi, D. Inkpen, S. Uritsky, and S. Matwin, “Offensive lan-
guage detection using multi-level classification,” in Advances in Artificial
Intelligence (Lecture Notes in Computer Science: Lecture Notes Artificial
Intelligence: Lecture Notes Bioinformatics), vol. 6085, A. Farzindar and
V. Keselj, Eds. Berlin, Germany: Springer-Verlag, 2010, pp. 16-27.

R. Pelle, C. Alcantara, and V. P. Moreira, “A classifier ensemble for
offensive text detection,” in Proc. 24th Brazilian Symp. Multimedia Web,
2018, pp. 237-243.

P. Burnap and M. L. Williams, “Cyber hate speech on Twitter: An appli-
cation of machine classification and statistical modeling for policy and
decision making,” Policy Internet, vol. 7, no. 2, pp. 223-242, Jun. 2015.
M. Ptaszynski, “In the service of online order: Tackling cyber-bullying
with machine learning and affect analysis,” Int. J. Comput. Linguist. Res.,
vol. 1, pp. 135-154, Jul. 2015.

J. H. Park and P. Fung, “One-step and two-step classification for abu-
sive language detection on Twitter,” CoRR, vol. abs/1706.0, pp. 41-45,
Aug. 2017. [Online]. Available: https://www.aclweb.org/anthology/W17-
3006/

P. Mishra, M. Del Tredici, H. Yannakoudakis, and E. Shutova,
“Abusive language detection with graph convolutional networks,”
CoRR, vol. abs/1904.0, pp. 2145-2150, Jun. 2019. [Online]. Available:
https://www.aclweb.org/anthology/N19-1221/

K. Mehmood, D. Essam, and K. Shafi, “Sentiment analysis system for
roman urdu BT—Intelligent computing,” in Proc. Adv. Intell. Syst. Com-
put., 2019, pp. 29-42.

Z. Tehseen, M. P. Akhter, and Q. Abbas, “Comparative study of feature
selection approaches for urdu text categorization,” Malaysian J. Comput.
Sci., vol. 28, no. 2, pp. 93-109, 2015.

K. Mehmood, D. Essam, K. Shafi, and M. K. Malik, “Sentiment analysis
for a resource poor language—Roman urdu,” ACM Trans. Asian Low-
Resour. Lang. Inf. Process., vol. 19, no. 1, pp. 1-15, Aug. 2019.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,” ACM
SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10-18, Nov. 2009.

A. Pérez, P. Larrafiaga, and I. Inza, “‘Bayesian classifiers based on kernel
density estimation: Flexible classifiers,” Int. J. Approx. Reasoning, vol. 50,
no. 2, pp. 341-362, Feb. 2009.

VOLUME 8, 2020

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

(40]

(41]

B. Ziolko, S. Manandhar, R. C. Wilson, and M. Ziolko, “Logitboost weka
classifier speech segmentation,” in Proc. IEEE Int. Conf. Multimedia Expo
(ICME), Jun. 2008, pp. 1297-1300.

T. Zia, M. P. Akhter, and Q. Abbas, “Comparative study of feature selection
approaches for Urdu text categorization,” Malaysian J. Comput. Sci.,
vol. 28, no. 2, pp. 93-109, 2015.

A. Tripathy, A. Anand, and S. K. Rath, “Document-level sentiment clas-
sification using hybrid machine learning approach,” Knowl. Inf. Syst.,
vol. 53, no. 3, pp. 805-831, Dec. 2017.

Q. A. Al-Radaideh and M. A. Al-Abrat, “An arabic text categorization
approach using term weighting and multiple reducts,” Soft Comput.,
vol. 23, no. 14, pp. 5849-5863, Jul. 2019.

P. Burnap and M. L. Williams, “Us and them: Identifying cyber hate on
Twitter across multiple protected characteristics,” EPJ Data Sci., vol. 5,
no. 1, p. 11, Dec. 2016.

Y. Lee, S. Yoon, and K. Jung, “Comparative studies of detecting abusive
language on Twitter,” CoRR, vol. abs/1808.1, pp. 101-106, Oct. 2018.
[Online]. Available: https://www.aclweb.org/anthology/W18-5113/

M. Dong, S. Wen, Z. Zeng, Z. Yan, and T. Huang, ““Sparse fully convolu-
tional network for face labeling,” Neurocomputing, vol. 331, pp. 465-472,
Feb. 2019.

S. Ghasemi and A. H. Jadidinejad, ‘“Persian text classification via
character-level convolutional neural networks,” in Proc. 8th Conf. Al
Robot., 10th RoboCup Iranopen Int. Symp. (IRANOPEN), Apr. 2018,
pp. 1-6.

M. Sato, R. Orihara, Y. Sei, Y. Tahara, and A. Ohsuga, ‘““Text classification
and transfer learning based on character-level deep convolutional neural
networks,” in Proc. Int. Conf. Agents Artif. Intell., 2018, pp. 62-81.

M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and R. Kumar,
“Predicting the type and target of offensive posts in social media,” 2019,
arXiv:1902.09666. [Online]. Available: https://arxiv.org/abs/1902.09666

MUHAMMAD PERVEZ AKHTER received
B.S. and M.S. degrees in computer science
from University of Sargodha, Sargodha, Pakistan
in 2009 and 2013 respectively. He is currently
pursuing Ph.D. degree in Software Engineering at
School of Software and Microelectronics, North-
western Polytechnical University, Xi’an, P.R.
China. He has eight years of teaching experience.
He has published several research articles in high
quality journals. His research interests include text

processing, data mining, and image processing and computer vision.

ZHENG JIANGBIN received Ph.D. degree from
IT Academy, PR. China. He has presided over
the research work of scientific research projects
such as the National Natural Science Foundation,
the 863 Program, and provincial and ministerial
funds, and has published more than 100 articles.
From 2008, he was working as professor
at Northwestern Polytechnical University, Xi’an,
PR. China. He is currently acting as a dean at
School of Software and Microelectronics, North-

western Polytechnical University, Xi’an, PR. China. His research interests
are image processing and computer vision, the IoTs, big data processing,
and embedded computing technology.

IRFAN RAZA NAQVI received his bachelor
degree in B.S Computer Science from Bahaudin
Zakariya University, Multan, Pakistan in 2012.
He then commenced his master degree in Soft-
ware Engineering from Air University, Pakistan.
Currently he is a Ph.D. student at Northwestern
Polytechnical University, Xi’an, PR. China. His
current research interests include security and pri-
| vacy concerns in the context of Internet of Things
4 (IoTs), machine learning and big data.

91225

IEEE Access

M. P. Akhter et al.: Automatic Detection of Offensive Language

91226

MOHAMMED ABDELMAIJEED received the
B.Sc. degree from Omdurman Islamic University,
Khartoum, Sudan, in 2009, and the M.Sc. degree
from Alneelain University, Khartoum, in 2015. He
is currently pursuing the Ph.D. degree in computer
science with Northwestern Polytechincal Univer-
sity, Xi’an, China. He has four years of teaching
experience. His research areas are text processing
and computer vision.

MUHAMMAD TARIQ SADIQ is Ph.D scholar
at Northwestern Polytechnical University, Xi’an,
PR. China and working as an Assistant Professor
at Electrical Engineering Department of The Uni-
versity of Lahore. He has received his B.Sc with
(Hons.) and M.Sc. degrees both in Electrical Engi-
neering from Comsats Institute of Information
Technology, Lahore, Pakistan and Blekinge Insti-
tute of Technology, Sweden, in the year 2009 and
2011 respectively. Previously he was an Assistant
Professor at the Sharif College of Engineering & Technology (SCET) which
is affiliated with the University of Engineering & Technology Lahore and
Lecturer at the University of South Asia. He was also Project Manager at
SCET to manage final year student’s projects, Patron of IEEE-SCET Student
Branch and a lifetime member of Pakistan Engineering Council, Islam-
abad, Pakistan. His research interests include biomedical signal analysis and
classification.

VOLUME 8, 2020

