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ABSTRACT Process metrics can reflect the software development process and the code changes which
are the main causes of defects. So, recently, the researches have put more emphasis on process metrics in
the field of software defect prediction. For evolving projects, it is more meaningful to study whether the
software module introduces or eliminates defects or not, not whether the software module is defective or
defect-free. However, no such work is available in the literature focusing on the change of defect state.
Discovering the factors that influence the change of defect state in the process of software development can
help us to understand the causes of software defects and improve the quality of subsequent software versions.
Therefore, this paper presents an extensive empirical study on which process metrics are significantly
important to change of defects in evolving projects. Five process metrics of 37 versions in 12 software
projects are collected. We not only analyze the class correlation values and the classification performance
values among five process metrics, but also perform statistical analysis to verify whether the experimental
results are of practical value. The experimental results indicate that Number of Distinct Committers plays a
significantly important role in the change of defect state, especially for elimination of defects, and Number
of Revisions is the second, whereas Degree of Code Modification is the last. In addition, Average Number
of Modified Lines is superior to Number of Modified Lines. Based on the experimental results, some
suggestions for software development and software defect prediction are also discussed.

INDEX TERMS Process metrics, software defect prediction, software evolution.

I. INTRODUCTION
During software development andmaintenance, requirements
changes, bug fixes, and code refactoring can lead to software
evolution. Software evolution leads to the increasing scale of
software, the increasingly complex relationship among func-
tional modules, and the inevitable defects in software [1]–[3].
Software projects in evolution have a great number of ver-
sions of program code. With each new version, there is a pos-
sibility to introduce new defects or eliminate previous defects.
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In fact, the process of software evolution can be regarded as
the process of continuously introducing defects and eliminat-
ing defects. Defective software can result in serious economic
problems, and even endanger human life. Software defect
prediction (SDP) can predict defective software modules, and
allocate test resources effectively. Recently, software defect
prediction has become one of the research hotspots among
academic and industrial organizations [3], [4].

Software metrics are indicators or parameters that describe
the characteristics of a software product [5] and are input
variables for software defect prediction. The performance of
defect prediction will be poor if the metrics are not properly
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selected, causing defect prediction is of little significance.
Therefore, this problem, which software metrics should be
selected for software defect prediction, has become one of the
research hotspots in the field of software defect prediction.
Early on, researchers mainly paid attention on code met-
rics [5]–[12]. Recently, researchers have put more emphasis
on process metrics, such as code churn and people factor,
because the code changes generated in software evolution
process are the main causes of defects, and process metrics
can reflect the software development process and the code
changes [13]–[35].

Defect state of a software module includes defective and
defect-free, and the change of defect state refers to whether
a module introduces or eliminates defects during software
evolution, that is, a module introduces defects or eliminates
defects from the completion of the previous version to the
completion of the current version. For evolving projects,
the new class may introduce defects or be defect-free, and
the existing class may change from defect-free to defec-
tive, or from defective to defect-free, and may still be defec-
tive or defect-free. For example, a module is defect-free in
the previous version, but is defective in the current version,
we can consider it as an instance of introduction of defects.
On the contrary, a module is defective in the previous version,
and is defect-free in the current version, we can consider
it as an instance of elimination of defects. Of course, there
are other states as well, for example, a module is defect-
free in the previous version, and still is defect-free in the
current version, and a module is defective in the previous
version, and still is defective in the current version. However,
we are more concerned with ‘‘elimination of defects’’ and
‘‘introduction of defects’’, so we put all the others into one
category ‘‘others’’. Therefore, the change of defect state
of a class can be divided into three categories: elimination
of defects, introduction of defects, and others. Eliminating
defects indicates that software is evolving in a good direction,
and improper evolution leads to introducing defects, which
we do not want to observe when software evolves.

Previous researches on software defect prediction tend to
start from the perspective of whether there is a defect or not,
that is, the classes of classification are defective and defect-
free. However, for evolving projects, it is more meaningful to
study whether the software module introduces or eliminates
defects or not, that is, the change of defect state, because it
is more beneficial for us to find the problems in the process
of software development for evolving software. And no such
work is available in the literature focusing on the change
of defect state. Therefore, in this paper, we focus on the
change of defect state of softwaremodules, that is, the class of
experiment datasets is the change of defect state. Discovering
the factors that influence the change of defect state in the
process of software development can help us to understand
the causes of software defects and improve the quality of
subsequent software development.

This paper presents an empirical study on which process
metrics are significantly important to change of defects in

evolving projects. In general, the contributions of this paper
are summarized as follows:

i) The existing researches of software defect prediction
for evolving projects mainly focused on whether the mod-
ule is defective or not. This paper focuses on whether the
software module introduces or eliminates defects or not. This
paper presents an empirical study on which process metrics
are significantly important to change of defects in evolving
projects. To the extent of our knowledge, no earlier work
is available that has explored the factors that influence the
change of defect state in the process of software development
for evolving projects.

ii) We study on which process metrics are significantly
important to change of defects in evolving projects from
two aspects. First, we compare the class correlation val-
ues among five process metrics by using six class correla-
tion measurement methods, including Pearson Correlation
Coefficient, Chi-Square, ReliefF, Information Gain, Gain
Ratio, and Symmetric Uncertainty. Second, we compare the
classification performance values among five process met-
rics in terms of four evaluation measures, including Recall,
F-Measure, AUC, and MCC, by using five classification
algorithms, includingNaive Bayes, K-nearest Neighbor, Log-
ical Regression, Multilayer Perceptron, and Support Vector
Machine.

iii) Additionally, we conduct the empirical study for the
project datasets extracted by Madeyski and Jureczko [19],
including 18 releases of seven open source and 19 releases
of five industrial software projects. Very limited works are
available earlier where these projects have been used for
the comparison of process metrics in defect prediction of
evolving projects.

iv) To evaluate the class correlation and classification
performance values among five process metrics, we perform
an experimental analysis by using different class correla-
tion measurement methods and classification algorithms.
We not only analyze the class correlation values and the
class performance values among five process metrics, but
also perform statistical analysis of Wilcoxon matched-pair
signed-rank test and Cohen’s d to verify whether the exper-
imental results are statistically significant and calculate the
effect size. The experimental results indicate that Number of
Distinct Committers (NDC) plays a significantly important
role in the change of defect state including introduction of
defects and elimination of defects, and Number of Revisions
(NR) is the second, whereas Degree of Code Modification
(DCM) is the last. In addition, Average Number of Modified
Lines (ANML) is superior to Number of Modified Lines
(NML). Based on the experimental results, some suggestions
for software development and software defect prediction are
also discussed.

The organizational structure of this paper is as follows.
The related works of process metrics and defect prediction
of evolving projects are discussed in section II. Section III
describes the case study in detail. The experimental results
and analysis are presented in section IV. The threats to our
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study are discussed in section V. Lastly, the summary and
future works are presented in section VI.

II. RELATED WORKS
In this section, we mainly introduce the research status of
process metrics and defect prediction of evolving projects.

A. PROCESS METRICS
We can extract software metrics from databases generated
during software development, such as code repositories,
defect repositories, and version control systems. Based on
the common characteristics of software defective modules,
the researchers proposed a variety of software metrics related
to software scale, software complexity, and human psychol-
ogy, which can be divided into code metrics and process
metrics.

Code metrics were wildly used for defect prediction early.
This kind of researches thought that code size and code
complexity which were easy to extract is strongly related
to defects in software, such as the LOC metric representing
code size [5], the McCabe metrics describing software code
structure complexity [6], the Halstead metrics representing
code complexity defined by the number of operands and oper-
ators [7], the CKmetrics of object-oriented programs [8], and
the metrics of abstract syntax tree [9]. Many scholars have
criticized codemetrics. Olague et al. [10] used logistic regres-
sion to implement cross-version defect prediction based on
a variety of object-oriented metrics, and found that the pre-
diction performance of object-oriented metrics is not ideal.
Shepperd and Ince [11] and Radjenović et al. [13] pointed out
that using LOC metrics and complexity metrics at the same
timemay affect the performance of defect prediction, because
many complexity metrics are strongly correlated with LOC.
Rahman and Devanbu [14] pointed out that code metrics have
hysteresis, that is, code metrics may not be changed much
after fixing bugs. Consequently, simply using code metrics is
not suitable for defect prediction in evolving projects.

Different from the information reflected by code metrics,
process metrics directly reflect the software development
process and software evolution track. The code changes
generated in the evolution process are the main causes
of the defects in evolving projects. Recently, researchers
have put more emphasis on process metrics. A considerable
process metrics are proposed, mainly including: i) metrics
based on code change history, such as number of modi-
fied lines [13], [19], [20], [23], [28]–[33], and code relative
change metrics [13], [20], [27], [30], ii) metrics based on
developer information, such as number of distinct commit-
ters [15], [19], [20], [23]–[26], [30], [32], [34], experience of
developers [16], [34], commit activities of developers [34],
project team organizational structure [17], code own-
ership [34], and organizational dispersion degree [18],
iii) development process related metrics, such as number of
revisions [13]–[15], [19], [20], [22], [23], [25], [30], number
of defects repaired [30], number of refactorings [20], [30],
code change complexity [21], [32], and number of historical

defects [19], [23]. The most widely used, classical, and
defect-related processmetrics are Number of Revisions (NR),
Number of Distinct Committers (NDC), Number of Modified
Lines (NML), and code relative change metrics. The research
status of these process metrics are as follows:
• NR is a widely used process metric in software defect
prediction. Schröter et al. [15] found that NR was more
relevant to the number of defects. Graves et al. [22]
showed that NR was a better predictor of defect, at least
better than LOC. Illes-Seifert and Paech [25] compared
the correlation between process metrics and the number
of defects. The experimental results showed that NRwas
strongly correlated with the number of defects, and NR
had better defect prediction performance.

• NDC is a controversial processmetric. Some researchers
thought the introduction of NDC had no effect on
improving the performance of defect prediction model.
Weyuker et al. [24] compared the performance of the
prediction models with and without NDC, and found
that NDC could not significantly improve the predic-
tion performance. There are also some researchers who
claimed NDC can improve the defect prediction per-
formance. Illes-Seifert and Paech [25] found NDC was
highly related to the number of defects, and could obtain
great defect prediction performance in terms of pre-
dicting the number of defects. Matsumoto et al. [26]
analyzed the correlation between a variety of developer
metrics and the number of defects, and evaluated the
influence of developer metrics on the defect prediction
performance with the number of defects as prediction
target. The experimental results showed that the intro-
duction of developer related information could improve
the defect prediction performance. Kini and Tosun [34]
extracted periodic developer experience metrics at file
level and commit level, and investigated the explanatory
effect of these metrics on defects. The experimental
results showed that periodic developer experience met-
rics extracted at file level were good merits for defect
prediction.

• NML is also a widely used process metrics in soft-
ware defect prediction. Previous studies have shown
that NML was strongly related to defects. Nagappan
and Ball [28] pointed out that NML had a good defect
density prediction performance. Shin et al. [29] also
showed that NML had better defect tendency prediction
performance. Liu et al. [31] proposed an NML based
unsupervised defect predictionmodel (CCUM) in effort-
aware JIT defect prediction, and evaluated the prediction
performance of CCUM under cross validation, time-
wise cross validation, and cross-project validation. The
experimental results showed that CCUM performed bet-
ter than all the prior supervised and unsupervised mod-
els. Miletić et al. [33] built standard prediction models
with and without cross-version code churn. The predic-
tionmodels were trained on earlier releases and tested on
the following ones, and the experimental results showed
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that the prediction model performed better when cross-
version code churn was included.

• The concept of relative was first proposed by Munson
and Elbaum [35]. Code relative change metrics here
refer to the degree of code change between two adjacent
versions, usually represented by the ratio of NML to
other software metric. Nagappan and Ball [27] con-
ducted a study on the defect prediction performance of
eight code relative change metrics. The experimental
results showed that compared with code absolute change
metrics, the code relative change metrics could obtain
better defect density prediction performance and defect
tendency prediction performance.

Some researchers compared the defect prediction perfor-
mance of process metrics with the defect prediction perfor-
mance of code metrics, and found that the defect prediction
performance of process metrics or their combination was bet-
ter than that of code metrics. Radjenović et al. [13] compared
their defect prediction performance, and the experimental
results showed that the prediction performance of process
metrics was better. Moreover, the better process metrics were
code relative changemetrics, NR, and NML.Moser et al. [20]
compared their defect prediction performance, using 17 pro-
cess metrics, including NR, NDC, and NML. The exper-
imental results showed that the prediction performance of
these process metrics was significantly better than that of
code metrics, and the prediction performance of these pro-
cess metrics was similar to that of the combination of code
metrics and process metrics. Graves et al. [22] found that
for defect density prediction, the prediction performance of
metrics based on code change history was better than that
of code metrics. Madeyski and Jureczko [19] conducted an
empirical study on identifying which process metrics could
significantly improve the performance of defect prediction
models, using NR, NDC, NML, and number of defects in
previous version (NDPV) as process metrics. First, they ana-
lyzed the correlation between each process metric and the
number of defects. Then, they compared the performance
of the models which used only code metrics with that of
the models which used code metrics as well as one of the
process metrics. The experimental results showed that the
introduction of process metrics could significantly improve
the performance of defect prediction, especially NDC. Based
on this, Stanic and Afzal [23] conducted comparative experi-
ments on software metrics. The experimental results showed
that the prediction performance of process metrics was better
than that of code metrics, and there was no significant differ-
ence in the prediction performance of different combinations
of code metrics and process metrics. Choudhary et al. [30]
proposed new change metrics and extracted change metrics
from the GIT repositories. The change metrics they studied
included NR, NDC, NML, ANML, average number of com-
mits made by each developer, average lines of code worked
by each developer, and so on. Machine learning algorithms
were applied in changemetrics and codemetrics to build fault
prediction models. The experimental results demonstrated

that the use of change metrics in conjunction with code
metrics provided better performance than the models that had
individual metrics set, and the change metrics had a positive
impact on the prediction performance.

B. DEFECT PREDICTION OF EVOLVING PROJECTS
Defect prediction of evolving projects is also called cross-
version defect prediction. Defect prediction model is built
on the previous versions, and is used to predict the defects
in the current version. The classical defect prediction mod-
els include Naïve Bayes (NB) [36], K-Nearest Neighbor
(KNN) [37], Logistic Regression (LR) [38], Support Vector
Machine (SVM) [39], andMultilayer Perceptron (MLP) [40].
The main researches on defect prediction of evolving projects
can be divided into the following two types.

Some researches mainly focus on using existing and
newly proposed machine learning algorithms to build
cross-version defect prediction models, and evaluating
defect prediction performance under cross-version scenario.
Yang and Wen [41] compared the prediction performance of
RR and LAR with other classical algorithms under cross-
version scenario in terms of predicting the number of defects.
Shukla et al. [42] regarded cross-version defect prediction
as a multi-objective optimization problem for the first time,
considering both the prediction performance and the cost.
The experimental results showed that the multi-objective
optimization algorithm had a broad application prospect in
defect prediction of evolving projects. Martino et al. [43]
used genetic algorithm to search the optimal parameter con-
figuration for SVM to improve the prediction performance.
The experimental results showed that the performance of pro-
posed algorithm was better than the comparison algorithms
in cross validation scenario and cross-version validation sce-
nario. Liu et al. [44] proposed a recursive neural network
prediction model with the sequence of all metrics in the
continuous history version as the input. The experimental
results showed that in most cases, the proposed HVSM-based
RNN model had a significantly better effort-aware ranking
effectiveness than baseline models. Rathore and Kumar [45]
presented an approach that dynamically selected the best
learning techniques to predict the number of software faults.
The approach partitioned the validation dataset into different
module subset and determined the best learning technique
for each subset. For an unseen testing module, the approach
determined the subset from the validation dataset that had
modules similar to the given testing module, and the best
learning technique for the determined subset was the best
learning techniques for the testing module. They built and
evaluated the presented approach for intra-release prediction
and inter-releases prediction, demonstrating the effectiveness
of the approach for cross-version software defect prediction.

Other researchers proposed algorithms to solve the prob-
lem of data distribution inconsistency between the source
dataset and the target dataset in cross-version defect
prediction. Active learning was introduced into cross-
version software defect prediction to solve the problem of
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inconsistent data distribution. Lu et al. [46] proposed an
approach which took uncertain information as the strategy to
select special instances of the current version iteratively, and
then determine their classes manually and merged them into
the training set. Xu et al. [47] proposed an active learning
method based on uncertainty information and information
density to select special instances from the current version.

From the research status of process metrics and defect
prediction of evolving projects, we can observe that no such
work is available in the literature focusing on the factors that
influence the change of defect state in evolving projects. This
paper presents an empirical study on which process metrics
are significantly important to change of defects in evolving
projects. The process metrics used in this paper are NR, NDC,
NML, DCM, and ANML which are widely used, classical,
and defect-related.

III. CASE STUDY
First, we describe the code metrics and process metrics used
in this paper. Then, we provide the experimental datasets.
Next, we give the data preprocessing operation. Finally, we
report the experimental design.

A. SOFTWARE METRICS
Softwaremetrics can be divided into codemetrics and process
metrics. The former describes the scale and complexity of
software source code, and the latter describes the complexity
of software development process [14], [15].

Code metrics used in this paper include: i) code size met-
ric (LOC), ii) McCabe cycle complexity metric, iii) object-
oriented metric [12]. These metrics can be extracted from the
source code by Ckjm1 tool.
As NR, NDC, NML, DCM, and ANML are the most clas-

sical and widely used process metrics, and they are strongly
related to defects, we select them as the experimental objects.
The first three are the same as those in literature [19], and can
be extracted from SVN and CVS by using BugInfo2 tools.
The last two were proposed in literature [27] and [20] respec-
tively, and can be calculated by the ratio of NML to other
software metric. The following gives a detailed description
of these five process metrics.
• Number of Revisions (NR) is a metric related to the
development process, which refers to the total number
of versions submitted by software developers to the ver-
sion control system from the completion of the previous
version to the completion of the current version.

• Number of Distinct Committers (NDC) is a metric based
on developer information, which refers to the total num-
ber of developers participating in the development from
the completion of the previous version to the completion
of the current version.

• Number of Modified Lines (NML) is a metric based on
code change history, which refers to the total number of

1https://www.spinellis.gr/sw/ckjm/
2 https://kenai.com/projects/buginfo - not available now

added, deleted, and modified code lines submitted from
the completion of the previous version to the completion
of the current version.

• Degree of CodeModification (DCM), obtained by divid-
ing the number of modified lines by the total number
of lines, i.e. DCM = NML / LOC, is one of the code
relative change metrics. DCM represents the degree of
code modification, that is, the average times each line of
code has been modified.

• Average Number of Modified Lines (ANML), obtained
by dividing the number of modified lines by the number
of revisions, i.e. ANML=NML / NR, is one of the code
relative change metrics. ANML represents the degree of
code modification, that is, the number of modified lines
involved in each submission.

B. EXPERIMENTAL DATASETS
NR, NDC, NML, and 20 code metrics of this study are
downloaded from the database3 created by Madeyski and
Jureczko [19], whereas DCM and ANML are calculated
based on the existing data. We determine the classes
of each instance based on whether the previous version
has defects or not and whether the current version has
defects or not. And the classes of these datasets include
‘‘introduction of defects’’, ‘‘elimination of defects’’, and
‘‘others’’. So, each instance of these datasets is a software
module in the current version, consisting of 20 code metrics,
five process metrics, and a class, that is, the change of defect
state from the previous version to the current version.

These project versions in the database meeting following
three conditions are removed from the dataset created by
Madeyski and Jureczko [19]. i) The first version of each
project does not have evolution history and five process
metrics, so we do not list those project versions, such as ant-
1.3 and camel-1.0. ii) It is unable to collect all five process
metrics for some projects, including poi, pbeans, ivy, log4j,
velocity, prop-1-192, prop-2-225, prop-3-285, prop-4-347,
prop-5-185, and prop-6. So, we also do not use them as
experimental objects. iii) Some project versions with very
high class imbalance rate have very few instances of intro-
duction of defects or elimination of defects, including camel-
1.2 which has only two instances of elimination of defects,
205 instances of introduction of defects, and 558 instances of
others, xalan-2.7, and xerces-1.4.4. Such a high class imbal-
ance rate and a small number of minority class will affect the
experimental results, so we do not use these project versions
as experimental datasets. The remaining projects including
seven open source software projects with 18 versions and five
commercial projects with 19 versions are the experimental
subjects. These software projects are all Java projects and
from different application fields.

Table 1 lists the detailed information of these experi-
mental datasets. The first to three columns are the project
name, version number, the number of all classes in the

3 http://madeyski.e-informatyka.pl/tools/software-defect-prediction/
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TABLE 1. The experimental datasets.

version respectively. The fourth and sixth columns are the
number of the instances from defect-free to defective (intro-
duction of defects) and the number of the instances from
defective to defect-free (elimination of defects) respectively.
The fifth and seventh columns are the proportion of the
instances from defect-free to defective and the proportion of
the instances from defective to defect-free respectively.

From Table 1, we can observe that the process of software
evolution is the process of continuously introducing defects
and eliminating defects. In some versions, most of classes
eliminate defects, and a few of classes introduce defects,
such as prop-1-44 and prop-2-265. More classes eliminate
defects and fewer classes introduce defects indicates that the
software is evolving towards a better direction. In other ver-
sions, most of classes introduce defects, and a few of classes
eliminate defects, such as ant-1.4 and ant-1.6. This shows
that these projects evolved improperly. These 37 datasets
have the same 20 code metrics and five process metrics, and
they have different proportions of introduction of defects and
elimination of defects. So, these datasets can be used as the
experimental datasets to evaluate the influence of these five
process metrics on the change of defect state in evolving
projects.

C. DATA PREPROCESSING
Proper data preprocessing can improve the quality of the
dataset, and is beneficial to experimental research, so we
conduct data preprocessing operations, including data nor-
malization processing and class imbalance processing.

Different metrics have different ranges, which may affect
the relationship between each metric and the change of
defect state. To alleviate the negative impact of different
ranges on the evaluation results, we use Maximum-Minimum
method [48] to normalize the values of all metric to [0, 1]. The
equation of data normalization processing is as follows:

M ′ij =
Mij −Min(Mi)

Max(Mi)−Min(Mi)
(1)

where M ′ij represents the value of the ith metric of the jth

instance after normalization,Mij represents the value of the ith

metric of the jth instance before normalization,Max(Mi) rep-
resents the maximum value of the ith metric of all instances,
Min(Mi) represents the minimum value of the ith metric of all
instances.

The experimental datasets suffer from varying degrees
of class imbalance problem, and the class imbalance prob-
lem can influence the experimental results. We use SMOTE
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(Synthetic minority over-sampling technique) [49] to handle
the class imbalance problem of these datasets. SMOTE gen-
erates synthetic numeric values for the minority classes only,
to balance the number of the instances of the minority classes
with that of the majority class. Generating synthetic values
refers to generating new values from the existing instances
in the dataset. For example, for each minority class instance
X , SMOTE selects an instance Xk from the nearest neighbors
of X randomly, and then selects a point randomly on the line
between X and Xk as the newly synthetic instance of minority
class. More description of SMOTE can be referred from the
work presented by Chawla et al. [49]. The synthetic value X ′

is given by (2).

X ′ = X + (Xk − X )× δ (2)

where δ is a random number between 0 and 1.

D. EXPERIMENTAL DESIGN
The aim of this paper is to compare the importance of a
single process metric to the change of defect state, including
introduction of defects and elimination of defects, in evolving
projects. Figure 1 provides an overview of our empirical
study.

FIGURE 1. The overview of our empirical study.

According to the overview of our empirical study, to study
on which process metrics are more important to the change
of defect state, we need to analyze the correlation between
each processmetric and the change of defect state and analyze

the classification performance of each process metric for the
change of defect state. The following research questions are
addressed in this study.

RQ1: How is the correlation between each process metric
and introduction or elimination of software defects?

RQ2: What is the ability of each process metric to classify
introduction of defects and elimination of defects?

For RQ1, there are manymethods to calculate the class cor-
relation, which can be divided into three categories: i) meth-
ods based on statistical theory, such as Pearson Correlation
Coefficient and Chi-Square, ii) methods based on instances,
such as Relief and ReliefF, iii) methods based on informa-
tion entropy theory, such as Information Gain, Gain Ratio,
and Symmetric Uncertainty. We use six classical methods
of class correlation measurement, including Pearson Correla-
tion Coefficient, Chi-Square, ReliefF, InformationGain, Gain
Ratio, and Symmetric Uncertainty, which cover all the above
three categories, to conduct the class correlation analysis.
This experiment is implemented byWeka4, a specialized tool
for machine learning and data mining, to ensure these class
correlation measurement methods are accurate.

Pearson Correlation Coefficient is a method to evaluate
the importance of a metric to the classification by measuring
the linear correlation between each metric and the classes.
Pearson Correlation Coefficient of variable X and variable Y
is given by (3).

Pearson (X ,Y ) =
cov(X ,Y )
σXσY

=
E((X − µX )(Y − µY ))

σXσY

=

∑
XY −

∑
X

∑
Y

N√∑
(X2)− (

∑
X )2
N

√∑
(Y 2)− (

∑
Y )2
N

(3)

Chi-Square is a kind of nonparametric statistical value used
to verify whether a metric is related to the class distribution.
The null hypothesis is that they are not related. Then, the pos-
sibility of null hypothesis is measured by calculating the
distance between the observed value and the expected value
when null hypothesis is established. The greater the distance
is, the less possible the null hypothesis is, and the more
likely it is that the metric distribution is related to the class
distribution. Chi-Square is given by (4).

χ2
=

r∑
i=1

nc∑
j=1

(Oi,j − Ei,j)2

Ei,j
(4)

where r respects different values of a metric, nc is the num-
ber of classes, Oij and Eij respect the observed number of
instances and the expected number of instances whose metric
value is i in class j.
Unlike the first two methods, ReliefF does not directly

calculate the correlation between the metric and the classes,
but gives each metric an importance coefficient which mea-
sures the ability of the metric to distinguish the instances of

4 https://www.cs.waikato.ac.nz/ml/weka/
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different classes, and then updates the coefficient iteratively.
The coefficient is given by (5).

W (A)′ = W (A)−
k∑
j=1

diff (A, S,Hj)/(mk)+
∑

C /∈class(S) p(C)
1− p(class(S))

k∑
j=1

diff (A, S,Mj(C))

 /(mk)
(5)

where diff (A,R1,R2) is the distance between instance R1
and R2 on the metric A, Hj is the instance with the same
class as S, Mj(C) is the instance with the different class
from S, m is the times S is randomly selected, and k is the
number of the nearest neighbor instances of S selected each
time.

Information Gain measures the amount of information
brought for classification by the metric about the classes,
which is calculated by subtracting the information entropy of
dataset S divided by metric A from the information entropy
of original dataset S. The value of Information Gain is given
by (6).

IG(S|A) = H (S)− H (S|A) (6)

where H is the information entropy.
Information Gain Ratio introduces split information on the

basis of Information Gain, which offsets the impact of the
number of the metric values on the amount of Information
brought for classification by the metric. The value of Infor-
mation Gain Ratio is given by (7).

GR(A) =
IG(S|A)
SplitE(A)

(7)

Symmetric Uncertainty is a nonlinear correlation measure-
ment method. Symmetric Uncertainty of the metric A and the
classes is given by (8).

SU (S|A) = 2×
IG(S|A)

H (S)+ H (A)
(8)

The process of class correlation analysis of process metrics
is shown in Procedure 1. First, two data preprocessing opera-
tions are conducted on 37 datasets, including data normaliza-
tion processing and class imbalance processing (lines 2 to 3).
And then, the correlation between each process metric and
the change of defect state is evaluated by each class correla-
tion measurement method (line 5). Last, the ranking of pro-
cess metrics is obtained according to their class correlation
(line 6).

For RQ2, we need to construct classification models. Less-
mann [4] showed that most of the classification algorithms
had similar performance and had no significant difference.
Therefore, we select five classical and effective classifica-
tion algorithms: Naive Bayes (NB) [36], K-nearest Neighbor
(KNN) [37], Logical Regression (LR) [38], Support Vector
Machine (SVM) [39], and Multilayer Perceptron (MLP) [40]
to construct the classification models of introduction of

Procedure 1 Class Correlation Analysis of Process Metrics
Input: processMetric ∈ {NR, NDC, NML, DCM, ANML},

DATA ∈ {D1, D2, . . . , D37},
Selector ∈ {Pearson Correlation Coefficient,
Chi-Square, ReliefF, Information Gain,
Gain Ratio, Symmetric Uncertainty}

Output: Class correlation values of each process metric and
Ranker.
1 Begin
2 for each DATA do
3 DATA’← preprocess DATA; /∗ normalization, class

imbalance processing ∗/
4 for each Selector do
5 correlation← Selector(DATA’); /∗ calculate class

correlation value of each
processMetric ∗/

6 Ranker← sort process metrics according to class
correlation;

7 end for
8 end for
9 End

defects and elimination of defects, and verify the consistency
of five classification algorithms. Similarly, this experiment is
implemented by Weka. For KNN, K is set to 5, and for other
algorithms, we use the default parameters of Weka.

In this paper, we use the combination of all code met-
rics and each process metric to build the classification
model. 10 times 10-fold cross validation is used. First,
divide a dataset into ten equal parts. Then, select nine of
them as training set, the remaining one as testing set, and
repeat 10 times to ensure that each part is tested. Next,
the average value of 10 times is taken as final performance.
Finally, repeat the above three processes 10 times to allevi-
ate the effect of randomness. We select Recall, F-Measure,
AUC, and MCC as performance evaluation measures to
compare the performance of these classification models.
Because we focus on introduction of defects and elimina-
tion of defects, eight evaluation measures are used in total,
including Recall-Introducedefects, Recall-Removedefects,
F-Measure-Introducedefects, F-Measure-Removedefects,
AUC-Introducedefects, AUC-Removedefects, MCC-
Introducedefects, and MCC-Removedefects. These per-
formance evaluation measures can be calculated by the
confusion matrix, as shown in Table 2.

TABLE 2. The confusion matrix.

Recall refers to the ratio of the number of instances cor-
rectly predicted as class k to the total number of instances
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with class k , that is, true positive rate. It is defined as

Recallk =
TPk

TPk + FNk
(9)

False positive rate (pf) is the ratio of the number of
instances incorrectly predicted as class k to the total number
of instances which are not of class k , and is shown as follows:

pfk =
FPk

FPk + TNk
(10)

Precision is the ratio of the number of instances correctly
predicted as class k to the total number of instances predicted
as class k , and is shown as follows:

Precisionk =
TPk

TPk + FPk
(11)

F-Measure is the harmonic average of Recall and Preci-
sion, and is shown as follows:

F −Measurek =
2× Recallk × Precisionk
Recallk + Precisionk

(12)

Area Under the Curve (AUC) is the area under Receiver
Operating Characteristic curve (ROC). The curve describes
the relationship between true positive rate and false pos-
itive rate. The abscissa represents false positive rate, and
the ordinate represents true positive rate. Each point on the
curve corresponds to a classification threshold. AUC is not
affected by class imbalance as well as is independent from
the prediction threshold.

Matthews Correlation Coefficient (MCC) represents the
correlation coefficient between actual classification and pre-
diction classification. MCC is calculated from four values in
the confusion matrix. It is defined as

MCCk

=
TPk × TNk − FPk × FNk

√
(TPk + FPk )(TPk + FNk )(TNk + FPk )(TNk + FNk )

(13)

The values of Recall, F-Measure, and AUC range from
0 to 1, and the MCC ranges from −1 to 1. The higher the
value is, the better the performance of classification model is.

The process of classification performance analysis of pro-
cess metrics is shown in Procedure 2. First, two data prepro-
cessing operations are conducted on 37 datasets, including
data normalization processing and class imbalance process-
ing (lines 2 to 3). And then, the process metric to be evaluated
is remained, and other process metrics are removed, that
is, the combination of all code metrics and each process
metric are used to build each classification model (line 5).
Last, we conduct 10 times 10-fold cross validation to build
and evaluate the performance of each classification model
(lines 6 to 20). First, the order of instances is upset, and the
dataset is divided into ten equal parts (lines 7 to 8). Secondly,
we use nine parts as training data, and the left one as testing
data in turn (lines 9 to 11). Thirdly, we use five classification
algorithms to train each classifier on training set respectively

Procedure 2 Classification Performance Analysis of Process
Metrics
Input: processMetric ∈ {NR, NDC, NML, DCM, ANML},

DATA ∈ {D1, D2, . . . , D37},
Learner ∈ {NB, KNN, LR, MLP, SVM}

Output:Measure ∈ {Recall-Introducedefects,
Recall-Removedefects, F-Measure-Introducedefects,
F-Measure-Removedefects, AUC-Introducedefects,
AUC-Removedefects, MCC-Introducedefects,

MCC-Removedefects}
1 Begin
2 for each DATA do
3 DATA’← preprocess DATA; /∗ normalization, class

imbalance processing ∗/
4 for each processMetric do
5 DATA’’← reserve all code metrics and metric, and

delete other process metrics of DATA’;
6 for each times ∈ [1, 10] do /∗10 times 10-fold cross

validation∗/
7 DATA’’’← randomize the order of instances for

DATA’’;
8 binData← generate 10 bins from DATA’’’;
9 for each fold ∈ [1, 10] do
10 testingData← binData[fold];
11 trainingData← DATA’’’ - testingData;
12 for each Learner do
13 classifier← Learner(trainingData);
14 evaluate eight classification performance values

of classifier on testingData;
15 end for
16 end for
17 for eachLearner do
18 Measure← evaluate average performance of each

processMetric;
19 end for
20 end for
21 end for
22 end for
23 End

(lines 12 to 13). Fourthly, we use eight performance evalua-
tion measures to evaluate classification performance of each
classifier (lines 14). Fifth, we take the average value of ten
folds as the classification performance of each process metric
(lines 17 to 19). Last, we repeat the above processes ten times
(lines 6 to 20).

As well as comparing the class correlation values and
classification performance values, we conduct Wilcoxon
matched-pair signed-rank test [50] with 95% confidence
interval, a nonparametric test method for two or more related
samples, to test whether the difference of class correlation
values among five process metrics is significant and whether
the classification performance difference of five process met-
rics is significant. This statistical method has been widely
used in SDP [51], [52]. The original assumption is that there
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FIGURE 2. Class correlation values of five process metrics on six measurement methods.

is no significant difference among five process metrics when
the confidence interval is 95%. If the P value is below 0.05,
the original hypothesis is rejected, that is, there is significant
difference among five process metrics.

Even though the significance test results show that it has
reached the significant level, if the effect size is too small,
it also lacks practical value. So, in order to further illus-
trate the degree of different among five process metrics in
terms of class correlation and classification performance,
we also apply Cohen’s d value [53] to calculate the difference
between NDC and other process metrics. Cohen’s d is the
effect size, which is not affected by the number of samples.
It is defined as

Cohen′s d =
µ1 − µ2√
(σ 2

1 + σ
2
2 )/2

(14)

where µ1 and µ2 represent the average value of each sample,
and σ1 and σ2 represent the standard deviation. The effect size
of Cohen’s d can be divided into four levels: Cohen′s d <

0.2(Negligible, N), 0.2 ≤ Cohen′s d < 0.5 (Small, S),
0.5 ≤ Cohen′s d < 0.8(Medium, M) and Cohen′s d ≥
0.8(Large, L).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we not only show the correlation between
each process metric and the change of defect state, and the
classification performance of each process metric in figures,
but also perform statistical analysis on the class correla-
tion values of each process metrics and the classification

performance of each process metric respectively, to verify
whether the experimental results are of practical value.

A. CORRELATION BETWEEN EACH PROCESS
METRIC AND CLASSES
In this experiment, Pearson Correlation Coefficient, Chi-
Square, ReliefF, Information Gain, Gain Ratio, and Sym-
metric Uncertainty are used to measure the correlation
between each process metric and the change of defect state.
Figure 2 shows the class correlation of five process metrics
obtained by six class correlation measurement methods on
seven open source software projects with 18 versions and
five commercial projects with 19 versions respectively. The
abscissa represents the projects in Table 1, and the ordinate
represents the class correlation values.

According to Figure 2, we can observe that NDC process
metric can obtain the highest class correlation values among
five process metrics in all class correlation measurement
methods and almost all projects, followed by NR, and ANML
has higher class correlation values compared with NML,
whereas DCMobtains the lowest class correlation among five
process metrics.

To further explore whether there is significant difference
among NDC and other process metrics on the class cor-
relation, the Wilcoxon matched-pair signed-rank test with
95% confidence interval is applied. If the P value is below
0.05, the original hypothesis is rejected, that is, NDC is
significantly better than other process metrics. Table 3 shows
the significance test results. In Table 3, the bold P value is
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TABLE 3. The significance test results of NDC and other process metrics
on class correlation.

below 0.05, and ‘‘1’’ indicates that NDC is not superior to
other process metric.

From Table 3, we can observe that there is a significant
difference among NDC and other process metrics for almost
all class correlation measurement methods.

In addition, to give a clearer comparison among NDC and
other process metrics on the class correlation, we compare
the effect size over all 37 datasets between NDC and other
process metrics according to Cohen’s d, and the Cohen’s d
result is shown in Table 4.

TABLE 4. The Cohen’s d results of NDC and other process metrics on
class correlation.

From Table 4, we can observe that compared with other
process metrics, in almost all of the class correlation mea-
surement methods, the class correlation of NDC can produce
a certain effect size, even a large effect size.

In short, we conclude that for these six class correlation
measurement methods, the correlation between NDC and
the change of defect state is significantly higher than that
between other process metrics and the change of defect state,
and has a certain amount of effect NDC, andNR is the second,
whereas DCM is the last. In addition, ANML is superior
to NML.

B. CLASSIFICAITON PERFORMANCE OF
PROCESS METRICS
This experiment uses NB, KNN, LR, MLP, and SVM as clas-
sification algorithms, and all code metrics and each process
metric as input variable, to build classification models, and
then compares their performance, to study on which process
metrics have better classification performance for the change
of defect state. Boxplots on five classification algorithms are
drawn to clearly and intuitively compare the performance
of all process metrics on all projects respectively, as shown
in Fig. 3 (a), (b), (c), (d), and (e). The abscissa represents five

process metrics, and the ordinate represents the classification
performance values. The red line represents the median of
all performance measure values of each metric, and the blue
square represents the average value of all performance mea-
sure values of each metric.

From Figure 3, we can find the following conclusions.
i) In terms of Recall, the performance values of five process

metrics are similar, but according to the average values, NDC
is the best.

ii) In terms of F-Measure, the classification performance
of NDC is the best, followed by NR, and ANML ranks third.

iii) In terms ofAUC, the performance values of five process
metrics are all superior to the performance of random classi-
fication, which is 0.5. Further to say, the median and average
AUC values of all process metrics are all above 0.7, and some
even hit 0.9, which indicates that classification models can be
accepted. Similarly, the classification performance of NDC is
the best, followed by NR and ANML.

iv) In terms of MCC, the performance of NDC is the
best, followed by NR and ANML. The values of process
metrics are all above 0, indicating that the predicted classes
are positively correlated with the actual classes. Further to
say, the average performance values of process metrics are
all above 0.2, which indicates that their classification perfor-
mance values are good.

v) The classification performance of all process metrics for
elimination of defects is better than that for introduction of
defects, especially of NDC and NR.

vi) The advantage of NDC in elimination of defects is more
obvious than that in introduction of defects.

So, we can conclude that the classification performance of
all processmetrics for elimination of defects is better than that
for introduction of defects. And among five process metrics,
NDC can obtain the best classification performance for the
change of defect state in all evaluation measures, followed
by NR, and ANML ranks third, which is better than NML.
In addition, the advantage of NDC in elimination of defects
is more obvious than that in introduction of defects.

To determine the statistical significance between the classi-
fication performance of NDC and that of other process met-
rics, the Wilcoxon matched-pair signed-rank test with 95%
confidence interval is applied. Table 5 shows the significance
test results of eight evaluation measures between NDC and
others on five classification algorithms.

From Table 5, we can observe that there is a significant dif-
ference between the classification performance of NDC and
that of other process metrics in most evaluation measures and
all five classification algorithms, especially for elimination of
defects.

In addition, to give a clearer comparison among NDC
and other process metrics on the classification performance,
we compare the effect size over all 37 datasets between NDC
and other process metrics according to Cohen’s d, and the
Cohen’s d result is shown in Table 6.

From Table 6, we can observe that compared with other
process metrics except NR, in almost all of the classification
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FIGURE 3. Boxplots of eight evaluation measures of five process metrics obtained by five classification algorithms across 37 datasets with
SMOTE.
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FIGURE 3. (Continued.) Boxplots of eight evaluation measures of five process metrics obtained by five classification algorithms across
37 datasets with SMOTE.

algorithms and evaluation measures, NDC can achieve a
smaller or even larger effect on the classification perfor-
mance. At the same time, compared with the introduction of
defects, NDC has more effect on elimination of defects.

In conclusion, the classification performance of NDC is
significantly better than other process metric in most eval-
uation measures, and can obtain a certain amount of effect.
And NDC is more important for the elimination of defects
than for the introduction of defects. Therefore, we suggest
that when the number of defects is large, we should reduce the
number of developers, whereas when the number of defects is
small, the number of developers can be increased to improve
the development efficiency. Moreover, the classification per-
formance of ANML is better than that of NML. Therefore,
we suggest that when predicting software defect, we should

extract NDC and the code relative change metrics, not
only NML.

C. DISCUSSION ABOUT DIFFERENT CLASS
IMBALANCE PROCESSING
In this study, the experimental datasets suffer from varying
degrees of class imbalance problem, so we use SMOTE
to handle the class imbalance problem of the experimen-
tal datasets before conducting the experiments. There are
plenty of class imbalance handling methods, such as under-
sampling and over-sampling. To avoid the influence of
different class imbalance handling methods on the classifi-
cation performance, we also compare the classification per-
formance for the change of defects state among five process
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TABLE 5. The significance test results of the classification performance between NDC and others on NB, KNN, LR, MLP, and SVM with SMOTE.

TABLE 6. The Cohen’s d results of the classification performance between NDC and others on NB, KNN, LR, MLP, and SVM with SMOTE.

metrics on under-sampling and over-sampling respectively.
Figures 4 and 5 show the boxplots of F-Measure and AUC
values of five process metrics obtained by MLP and SVM
across 37 versions of 12 projects with over-sampling and
under-sampling respectively.

From Figures 4 and 5, we can observe that the median and
average of AUC values are all above 0.7, so we can accept
these classification models. In addition, the classification
performance of all process metrics for elimination of defects
is better than that for introduction of defects. Moreover, NDC
can obtain the best classification performance for the change
of defect state among five process metrics, followed by NR,
and ANML ranks third, which are better than NML. The
advantage of NDC in elimination of defects is more obvious
than that in introduction of defects. We also conduct exper-
iments on other evaluation measures and other classifiers,
and the same results have been obtained, which are not fully

listed for space reasons. The conclusion is consistent with the
datasets processed with SMOTE.

We conduct the Wilcoxon matched-pair signed-rank test
at a confidence level of 95%. Tables 7 and 8 show the
significance test results in terms of over-sampling and
under-sampling respectively. We also compare the effect
size over all 37 datasets with over-sampling and under-
sampling between NDC and other process metrics according
to Cohen’s d, and the Cohen’s d results of over-sampling and
under-sampling are shown in Tables 9 and 10 respectively.

From Tables 7 to 10, we can observe that NDC generally
achieves the best classification results. And there is a sig-
nificant difference between the classification performance of
NDC and that of other process metrics in most evaluation
measures with over-sampling and under-sampling, and NDC
can obtain a smaller or even larger effect on the classification
performance. We also conduct the Wilcoxon matched-pair
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FIGURE 4. Boxplots of F-Measure and AUC values of five process metrics
obtained by MLP and SVM across 37 datasets with over-sampling.

signed-rank test and Cohen’s d on other evaluation measures
and other classifiers, and the same results have been obtained,
which are not fully listed for space reasons. So, we can
conclude that the experiment results with other class imbal-
ance handling methods is consistent with SMOTE, and class
imbalance handling method has no effect on the experimental
results.

V. THREATS TO VALIDITY
In this section, we describe the threats to validity of our study
in construct validity, internal validity, external validity, and
conclusion validity.

A. THREATS TO CONSTRUCT VALIDITY

In this paper, we use Recall, F-Measure, AUC, and MCC
to present the classification performance. These results can

FIGURE 5. Boxplots of F-Measure and AUC values of five process metrics
obtained by MLP and SVM across 37 datasets with under-sampling.

be further refined by using other performance evaluation
measures.

Also, we use the jar package provided by Weka tool to
implement our study. Weka is a tool used for machine learn-
ing and data mining. We believe that Weka is reliable.

B. THREATS TO INTERNAL VALIDITY
In this paper, most popular and widely used algorithms
were considered. We select six class correlation measure-
ment methods and five classical classification algorithms to
conduct the experiments. In fact, there are other class cor-
relation measurement methods and classification algorithms.
Comparison can be done among a greater number of algo-
rithms. We will include more techniques in the comparative
analysis to provide new results in the future.

Also, we focus on five classical, widely used, and defects-
related process metrics. There are other process metrics, such
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TABLE 7. The significance test results of F-Measure and AUC between NDC and others on MLP and SVM over 37 datasets with over-sampling.

TABLE 8. The significance test results of F-Measure and AUC between NDC and others on MLP and SVM over 37 datasets with under-sampling.

TABLE 9. The Cohen’s d results of F-Measure and AUC between NDC and others on MLP and SVM over 37 datasets with over-sampling.

TABLE 10. The Cohen’s d results of F-Measure and AUC between NDC and others on MLP and SVM over 37 datasets with under-sampling.

as the age of class files and experience of developers. Com-
parison can be done among other process metrics to get more
useful conclusions.

C. THREATS TO EXTERNAL VALIDITY
The seven open source projects and five commercial projects
used in our study are all Java projects, and are different
in application fields, scales, and the proportion of introduc-
tion of defects and elimination of defects. Consequently, our
empirical study is universal, and the conclusions are general.
These results can be further refined by using a greater number
of datasets. Increased number of datasets will strengthen the
experimental results.

D. THREATS TO CONCLUSION VALIDITY
In the second experiment, in order to eliminate the effect
of randomly dividing the instances, we performed 10 times
10-fold cross validation. In addition, Wilcoxon matched-pair
signed-rank test and Cohen’s d are used to test whether the
experimental result among five process metrics is statistically
significant and calculate the effect size.

VI. CONCLUSION
Software defect prediction is the application of machine
learning in software engineering. In this paper, we focus on
the change of defect state of software modules, including
introduction of defects and elimination of defects. We inves-
tigate which process metrics are significantly important to
change of defects in evolving projects by conducting an
empirical study on 18 release versions of seven open source
projects and 19 release versions of five commercial projects.
In detail, we compare the class correlation values among
five process metrics by using six class correlation mea-
surement methods, and the classification performance val-
ues among five process metrics in terms of four evaluation
measures by using five classification algorithms. We also
perform statistical analysis ofWilcoxonmatched-pair signed-
rank test and Cohen’s d to verify whether the experimental
results are statistically significant and calculate the effect
size. The experimental results indicate that among these
five process metrics, Number of Distinct Committers (NDC)
plays a significantly important role in the change of defect
state, especially for elimination of defects, and Number of
Revisions (NR) is the second, whereas Degree of Code
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Modification (DCM) is the last. In addition, Average Num-
ber of Modified Lines (ANML) is superior to Number of
Modified Lines (NML). Based on the experimental results,
some suggestions for software development and software
defect prediction are also discussed.We suggest that when the
number of defects is large, software development managers
should reduce the number of developers, whereas when the
number of defects is small, the number of developers can be
increased to improve the development efficiency. Moreover,
ANML is more related to the introduction of defects and
the elimination of defects than NML, and the classification
performance of ANML is better than that of NML. Therefore,
we suggest that when predicting software defect, we should
extract the code relative change metrics as well as NDC, not
only NML.

In the future, comparison can be done among other process
metrics by using more datasets, class correlation measure-
ment methods, classification algorithms, and performance
evaluation measures to get more useful conclusions of soft-
ware development and software testing.
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