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ABSTRACT The 2-dimensional irregular packing problems are important in the fabric industry. Under
several restrictions, fabric packing problems require placing a given set of parts within a fixed-width
rectangular sheet, aiming at a minimum length use. In textile industry production, the fabric packing
problems are usually large-scale with time limits, where the total number of parts is large, and a high-
utilization solution should be computed in several minutes. However, there are few existing works on large-
scale packing problems. In this paper, we propose a greedy adaptive search algorithm by constructing a
new evaluation function and introducing a new restricted local search strategy. In our algorithm, with a
given initial sequence of parts, we iteratively search the best-fit part in succeeding several parts and place
it on sheet. Moreover, we employ a two-stage heuristic searching algorithm to search over all the possible
sequences for a good initial sequence with high utilization. Numerical examples involve some large-scale
industrial instances, together with some large-scale instances generated from benchmarks. Numerical tests
show that our algorithm outperforms existing state-of-the-art solvers in large-scale packing problems. The
results show the potential of our algorithm to large-scale packing problems in industrial production.

INDEX TERMS Evaluation function, fabric, no-fit polygon, packing, restricted local search.

I. INTRODUCTION
In the fabric industry, solving the 2-dimensional irregular
packing problems is a critical operation in the cutting process.
The main purpose of these problems is to place a given set
of 2-dimensional parts within a rectangular sheet with a fixed
width and find the solution with the best utilization of the
sheet while no part overlaps with others. The utilization of the
packing results is important both economically and environ-
mentally. In fabric cutting problems, the total number of parts
is large, while the time limit is strict. Normally, a solution
should be generated within several minutes. In this paper,
we focus on constructing an efficient algorithm for solving
large-scale fabric packing problems. In general, large-scale
fabric cutting problems have the following properties:
• The contour of the part is not necessarily convex with a
large number of vertices;
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• Requires the minimum distance among parts;
• Each part can only be rotated by a finite set of angles,
including {0◦, 90◦, 180◦, 270◦};

• There may be some flaws in the fabric;
• The number of parts is large.
For irregular packing problems, a few programming-based

approaches are proposed. These approaches compute a solu-
tion by solving certain mathematical models for the pack-
ing problems. These proposed models include the mixed-
integer programming (MIP) model with a linear objective
function and mixed-integer constraints [2], [15], [22], [32],
[40], [42], nonlinear programming models with a nonlinear
objective function [14], [15], [29], [30], [44], and constraint-
based programming models where the packing problem is
described by constraints [12], [38], [39]. Interested readers
are referred to the references in the survey [33]. However,
since the irregular packing problem is NP-hard [23], it might
not be possible to compute an optimal solution within the
time limit. For example, computing the optimal solution for 5
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parts can take more than 6 hours [33]. Moreover, since these
exact mathematical models usually involve a considerable
number of variables and complex constraints [31], [33], gen-
erating a high- utilization solution with commercial solvers
is difficult to achieve, especially for large-scale packing
problems.

As illustrated in [21], the use of meta-heuristics and
hybrid algorithms as powerful optimization tools have been
applied to this problem. Sato et al. [41] summarized that
these approaches can be roughly divided into two categories:
searching over the sequence [5], [6], [9], [13], [16], [26], [35],
[45] and searching over the layout [21], [29], [41]. The main
difference resides in the techniques for generating the final
solution. In searching over the sequence approach, the final
solution is represented by a sequence of parts. However,
in the latter approach, the position of each item is directly
represented by their positions [7].

This difference directly impacts the searching strategy.
In searching over the sequence approach, the parts are placed
sequentially into the sheet without overlapping. As a result,
this approach applies heuristics algorithms searching for a
sequence with high utilization in the following steps:

1) Determine a sequence of the placement for parts. This
can be performed randomly or by sorting the parts
according to some measure, e.g., area or perimeter of
polygons [35];

2) Place the parts with some evaluation functions. Typ-
ically, a part is placed at the contour of the stencils
already placed. Some algorithms also allow the hole-
filling strategy, i.e., the part is placed in the holes
formed by previously placed parts [19], [24].

The most popular placement rule is the bottom-left pol-
icy [41]. In addition, Bennell and Song [8] proposed several
attributes considering mutual fitness under the bottom-left
policy. With a specific evaluation function, the challenge is to
determine the sequence of parts. Pinheiro et al. [36] adopted
a random-key genetic algorithm to simultaneously determine
the sequence and rotation. Moreover, Burke et al. [10] mod-
ified the greedy bottom-left layout construction by discretiz-
ing the horizontal search and applied a hill-climbing tabu
search. However, the bottom-left strategy usually results in
solutions with low utilization, and the beam search strategy
proposed by Bennell and Song [8] lacks efficiency, especially
for large-scale packing problems.

Searching over the layout approach searches for a solu-
tion based on an initial solution, which is usually generated
by searching over the sequence approach. Starting from the
initial solution, the goal is to minimize the overlap within a
sheet with fixed length and height. This approach generates
a feasible solution if and only if the corresponding overlap
vanishes. As a result, in this approach, parts move freely,
and a separation method is usually employed to minimize
overlap. The no-fit polygon is used to determine the mutual
overlap among the parts. This model was adopted by Bennell
and Dowsland [6] to generate valid layouts using a tabu
search heuristic. Gomes and Oliveira [25] hybridized the

compaction and separation algorithms with a simulated
annealing algorithm.

In large-scale cases, the searching over the layout
approaches has a large continuous search space, which
becomes an obstacle for constructing efficient solvers [41].
Therefore, it is important to design an efficient searching over
the sequence algorithm to generate a high-utilization solution
in time limits. In addition, an efficient searching over the
sequence algorithm can provide a good initial solution for
searching over the layout approaches.

For large-scale packing problems, the correlated work is
limited.Most existing algorithms are tested on specific small-
scale or middle-scale cases, where the parts have simple
contours. The numerical performance of existing algorithms
on large-scale fabric packing problems is unknown.

In this paper, based on searching over the sequence
approach, we propose a greedy adaptive search (GAS)
method for large-scale fabric packing problems.We construct
an evaluation function, where the weights are dynamically
adjusted to achieve high fitness among parts while retaining
the robustness of the algorithm. To reduce the search space
and increase the one-pass utilization, inspired by the work
of Bennell and Song [8], we propose a greedy searching
technique where we search for the best-fit part in the con-
stitutive α parts and then place it on the sheet. The primar-
ily numerical experiments demonstrate that our algorithm
outperforms the existing open-source solver for large-scale
packing problems. In addition, on large-scale fabric packing
problems constructed from the ESICUP dataset, our algo-
rithm takes less CPU time and has comparable utilization
to some existing state-of-the-art algorithms, which is usually
based on searching over the layout approach.

The rest of this paper is organized as follows.We put all the
preliminaries, including the preprocessing and computing no-
fit polygon, in Section 2. In Section 3, we present the detailed
algorithm, and when a higher utilization rate is required,
we propose a two-stage heuristic algorithm. Numerical exper-
iments are reported in Section 4. In the last section, we draw
a brief conclusion.

II. PROBLEM DEFINITION
This section gives a specific problem definition of the irreg-
ular packing problem in the fabric industry. We have a list
of parts P = (P1,P2, . . . ,Pn), a list of their allowable
orientationsO = (O1,O2, . . . ,On) and their reference points
{r1, · · · , rn}. The sheet is a rectangular sheet C(W, L) with
fixed-width W and arbitrary length L, and our goal is to
minimize L. There are some flaws F = (F1,F2, . . . ,Fm) on
the sheet, let d(A,B) denote the minimum required spacing
between A and B, and ∂C(W ,L) denotes the boundary of
the container C(W ,L), where d(Pi,Pj) = d1, d(Pi,Fk ) =
d2, d(Pi, ∂C(W ,L)) = d3,∀i, j, k .
We denote polygon Pi ∈ P rotated by θi ∈ Oi as P

θi
i , P

θi
i :=

{(û cos θi + v̂ sin θi,−û sin θi + v̂ cos θi)|(û, v̂) ∈ Pi}, which
may be written as Pi for simplicity when the orientation is
0◦. We describe translations of polygons byMinkowski sums.
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Let xi = (xi1, xi2) be the translations of polygons, and wi be
the new position of their reference points, and we have xi =
wi−r

θi
i . Thus, the polygon placed at xi and rotated by θi can be

represented as Pxi,θii := Pθii ⊕xi = {p+xi|p ∈ P
θi
i }. A solution

to this problem is described by a set of translation vectors
(x1, x2, . . . , xn) and a set of orientations (o1, o2, . . . , on). Let
L∗ be the length of the sheet used for nesting, which is a
decision variable to be minimized. Therefore, we define the
problem in the fabric industry as follows:

minimize L∗

subject to L∗ = max
1≤i≤n

(u1|(u1, u2) ∈ P
θi
i ⊕ xi),

d(Pθii ⊕ xi,P
θj
j ⊕ xj) ≥ d1, 1 ≤ i ≤ j ≤ n

d(Pθii ⊕ xi, ∂C(W ,L)) ≥ d3, 1 ≤ i ≤ n

d(Pθii ⊕ xi,Fk ) ≥ d2, 1 ≤ i ≤ n, 1 ≤ k ≤ m

Pθii ⊕ xi ⊆ C(W ,L), 1 ≤ i ≤ n

xi = wi − r
θi
i , 1 ≤ i ≤ n

θi ∈ Oi, 1 ≤ i ≤ n

ri ∈ R2, 1 ≤ i ≤ n

L∗ ∈ R+, (1)

As described in our introduction, this programming is
difficult to solve due to its discreteness and nonconvexity,
especially in the large-scale case. To efficiently solve the
packing problem, we propose a novel algorithm based on
a greedy strategy with adaptively adjusted parameters. The
details of our proposed algorithm are presented in Section IV.

III. PREPROCESSING WITH GEOMETRY
A. SIMPLIFY THE PARTS
In this problem, the number of vertices of the parts can be
very large, which leads to complex geometrical computation
and results in numerical inefficiency. Thus, it is important for
us to reduce the vertices by simplifying the boundary of the
parts, for which we introduce two efficient approaches.

1) RAMER-DOUGLAS-PEUCKER ALGORITHM
Given a curve composed of line segments, Ramer-Douglas-
Peucker algorithm [18], [37] is a popular method for finding a
similar curve with fewer points. With a maximum simplified
error δ, this algorithm first selects two ends, A and B, from the
curve, and then finds the point C , which is the farthest from
line segment AB. If the distance from C to line segment AB is
less than δ, we simplify the curve AB as line AB and remove
all the other points on curve AB; otherwise, this algorithm
recursively calls itself to simplify the curve between A and C ,
as well as the curve between B and C , respectively. In brief,
the Ramer-Douglas-Peucker algorithm uses line segments to
approximate some successive vertices.

However, such approximation leads to a simplified bound-
ary of our parts, resulting in errors in calculating their mutual
distance. These errors can result in violations in the constraint
on the distance among parts. To avoid such a violation,

FIGURE 1. Ramer-Douglas-Peucker algorithm.

FIGURE 2. Clean the concave based on area.

we need to expand the parts, which causes the loss of the
overall utilization of the generated results. Hence, we need
to perform a more detailed simplification of the parts with
fewer vertices.

2) CLEAN THE CONCAVE BASED ON AREA
The main purpose of this algorithm is to simplify those
vertices that form a concave boundary of the parts, which
is called a locally tiny concave structure in the following
paragraph. Here, the locally tiny concave structure denotes
three consecutive vertices E,F,G where the area of triangu-
lar EFG is less than δs, and if we draw a line between E and
G, F is in the interior of the newly formed contour. Fig. 2
provides an illustrative example for the so-called locally tiny
concave structure.

With a fixed tolerance δs, in each iteration, our algorithm
searches for a locally tiny concave structure among all ver-
tices of the given contour. If we find such vertices E,F,G,
we remove the vertex F , edges EF and FG, then add a new
edge EG to the contour. The algorithm stops when there is no
locally tiny concave structure in the simplified contour.

B. PREPROCESSING WITH THE MINKOWSKI SUM
1) GENERATING NO-FIT POLYGON (NFP)
The no-fit polygon (NFP) and inner-fit polygon (IFP) were
first proposed by Art Jr [3] and applied in detecting the
overlap between two parts. The NFP/IFP is a polygon that
defines the legal placement relationship of one part to another
part or sheet. More precisely, each part has a reference point,
which can be any point inside or outside the part. Given two
parts Pi and Pj, the NFP of parts Pi and Pj is the set of points
where if the reference point of part Pj is placed, then the two
parts overlap. In the rest of the paper, we denote the no-fit
polygon between two parts, Pi and Pj by NFPij. The boundary
of NFPij and its exterior are the feasible regions where part
Pj can be placed so as not to overlap part Pi. Similar to NFP,
with a selected reference point for any part Pi, its IFP denotes
the set of points where if the reference point is placed, part Pi
is placed inside the sheet. In the rest of our paper, we denote
the inner-fit polygon of the part i by IFPi.

To compute the NFP and IFP for all parts, several
approaches have been proposed in the literature, such as the
sliding method [11], the Minkowski sum [7], a combination
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FIGURE 3. Polygon Pi and Pj .

FIGURE 4. Construction of NFPij .

of region splitting and the Minkowski sum approach [1].
Assume parts Pi and Pj have ei and ej edges, respectively,
then the computational complexity of computing NFPij is up
to O(e2i e

2
j ) [4], [20].

In this paper, we apply the Minkowski sum to generate
pairwise NFP among parts. The mathematical formulation of
the Minkowski sum for generating NFP of parts Pi and Pj
with reference point ri, rj can be defined as follows:

NFP(Pi,Pj) = {ri + vi−vj|vi ∈ Pi, vj ∈ Pj}. (2)

The no-fit polygon has the following properties:
• Pi and Pj overlap if and only if rj ∈ NFP(Pi,Pj);
• Pi and Pj touches if and only if rj ∈ ∂NFP(Pi,Pj);
• If Pk = −Pi,Pl = −Pj, then
NFP(Pk ,Pl) =−NFP(Pi,Pj)+ ri − rk .

Similarly, with sheet C(W ,L), the IFP of part Pi can be
expressed as

IFP(Pi) =
⋃
v

{v− ri + Pi ⊆ C(W ,L)}. (3)

2) OFFSET TO KEEP SPACING
As described in the introduction, a minimum distance among
any parts, denoted as d1, is required in irregular fabric shape
packing problems. To guarantee that the minimum distance
among the parts is no less than d1, we choose to dilate the
contour of each part. Moreover, when these dilated parts do
not intersect, the minimum distance of all placed parts is
no less than d1. For part i, to compute its enlarged parts
Pxi,θii , we enlarge its original contour Pxi,θii by computing its
Minkowski sum with a circle:

P̃xi,θii = {v+ w|v ∈ Pxi,θii ,w ∈ B d1
2
}. (4)

where B d1
2

denotes the circle with radius d1
2 . Based on the

enlarged parts, the constraint d(Pθii ⊕ xi,P
θj
j ⊕ xj) ≥ d1 in (1)

is equivalent to P̃xi,θii not intersecting P̃
xj,θj
j . In addition, in the

packing problem, a minimum distance between parts and the
boundary of the sheet is also required. In this case, we shrink
the boundary of the sheet by d2 −

d1
2 and denote the shrunk

sheet as C̃(W ,L), i.e.,

C̃(W ,L) =
⋂

w∈B
d3−

d1
2

C(W ,L)− w.

With such notations, the second constraint in (1) can be refor-
mulated as P̃xi,θii ⊂ C̃(W ,L) for 1 ≤ i ≤ n. Additionally,
the minimum distance between the parts and flaws should be
larger than d3. Similarly, we can enlarge the boundary contour
of the flaws by d3−

d1
2 and denote them as F̃i. More precisely,

F̃ = {v+ w|v ∈ F,w ∈ B
d2−

d1
2
}.

Thus, the third constraint in (1) can be reshaped as the non-
overlapping between F̃i and P̃

xj,θj
j .

IV. ONE-PASS PACKING ALGORITHM
Let � contain the indexes of all placed parts; then, the legal
movement for part i is

W (P̃xi,θii ) := IFP(P̃xi,θii ) \
⋃
j∈�

NFP(P̃
xj,θj
j , P̃xi,θii ), (5)

where

IFP(P̃xi,θii ) :=
⋂

v∈C̃(W ,L)\F̃

{
v+ rθii − P̃

xi,θi
i

}
, (6)

denotes the inner-fit polygon of P̃xi,θii for sheet C̃(W ,L) with
flaws F̃ .

The heuristic algorithmTOPOS-‘‘Técnicas deOptimizacão
para o Posicionamento de Figuras Irregulares" proposed by
Oliveira et al. [35] has two essential concepts that differ from
the conventional bottom-left approach: how to select the next
part and how to place the selected part. To select the next
part, as well as its position and orientation, Oliveira et al.
[35] defined two heuristics strategy: local search and initial
sort. Their TOPOS algorithm proposed evaluation criteria to
evaluate the score for all unplaced parts with any possible
placement and rotations. Then, the TOPOS algorithm per-
forms the local search for all unplaced parts, where it selects
a part with the smallest score and chooses the position and
rotation corresponding to the smallest score. The framework
of the TOPOS algorithm can be stated as follows:

1) Compute the score for all unplaced parts with all pos-
sible positions and rotations;

2) Choose the part as well as the corresponding position
and rotation with the smallest score, and place it on the
sheet;

3) Return to step 1 until all parts are placed.
In each iteration of the TOPOS algorithm, the part to be
placed is selected from all the unplaced parts, which leads to
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FIGURE 5. The overlap among parts.

expensive geometric computations in computing the score of
all unplaced parts, especially in large-scale cases. In addition,
although TOPOS selects the best-fit part from all unplaced
parts, as discussed in Section IV-B, the pursuit of a local
optimum may lead to a low-utilization solution.

Based on the searching-over-sequence approaches and
TOPOS algorithm, we propose an algorithm for large-scale
fabric packing problems, where the solution is generated by
selecting a new part and adding to the partial solution of
already placed parts. In our algorithm, we propose several
improved evaluation criteria to evaluate the score for all
unplaced parts. In addition, to balance the local optimum and
global optimum, we restrict the depth of the greedy searching
and propose an improved local search strategy that adopts the
previous information to adjust the current score. Moreover,
inspired by the initial sorting strategy in [8], we propose a
new choice for the initial sorting in our algorithm.

A. EVALUATION FUNCTION
In this subsection, we present a detailed evaluation criterion
to evaluate the score of part P̃xi,θii , which is denoted as s(P̃xi,θii )
in the rest of our paper. As described in [8], [35], we select the
following attributes as the basis of our criteria for determining
the next piece and its position: length of placed parts L0
and area of overlap between certain enclosures S0. When
we select part Pi and place it to ui with rotation angle θi,
the length of all placed parts can be represented as

L1(P̃
xi,θi
i ) = max

(u,v)∈
⋃
j∈�∪i(P̃

xj,θj
j )

{u}. (7)

In addition, we denote the dilation enclosure of P̃xi,θii as
Qxiθii , i.e.,

Qxi,θii = {u+ v|u ∈ P̃xi,θii , v ∈ Bw}. (8)

Therefore, the overlap regions for any selected part Pk with
translation xk and rotation θk can be defined as:

S0(P̃
xi,θi
i ) = Area

(
{Qxk ,θkk }

⋂(⋃
i∈�

Qxi,θii

))
. (9)

Fig. 5 illustrates the overlap among parts Pi,Pj and Pk .
Parts Pi,Pj are already placed into the sheet, and part Pk is
selected. In Fig. 5, the grey regions denote the origin contour
for all three parts, while the regions enclosed in the dashed
line denote their dilation. In addition, the black region denotes
their overlapping regions S0.

The first criterion we select is the length of all placed parts,
proposed by Bennell and Song [35] and Bennell and Song
et al. [8] to reduce the total length of the used sheet, which
is equivalent to improving the utilization of the final result.
However, directly using L0 in the evaluation will cause an
imbalance among different parts. For example, if an absolute
measure of the length is used, the algorithm will choose to
pack the long pieces at its final stage and undermine the
global utilization of the final solution. Hence, we must define
attributes as a relative measure of the piece length or area.
To balance the magnitude of these measures for all pieces,
we modify the measure of the part P̃xi,θii with length li in the
first criteria as

L1(P̃
xi,θi
i ) =

L0(P̃
xi,θi
i )

li
. (10)

In addition, the area of overlap between enclosures S0 is an
essential factor in the evaluation function to force the parts
placed close to each other and thus improve the total utiliza-
tion. However, if we directly maximize the total overlap area
between parts to provide an incentive for the highest area of
overlap, the algorithm prefers to choose large parts and place
them first. To balance the choice among parts, we modify
the measure for overlap by introducing the perimeter of the
selected part as a penalty. More precisely, for part P̃xi,θii with
perimeter qi, the measure is

S1(P̃
xi,θi
i ) =

S0(P̃
xi,θi
i )

qi
. (11)

Based on the two attributes above, part Pi is placed on the
sheet with position xi and rotation θi at the k-th round scored

s(P̃xi,θii ) = L1(P̃
xi,θi
i )− γ2S1(P̃

xi,θi
i ). (12)

It is worth mentioning that the importance of these two
attributes is different at each stage of the algorithm. At the
beginning, only a few parts are placed on the sheet. Hence,
placing the selected parts to the position that fits well is
more important than minimizing the total length. As a result,
in our algorithm, we first estimate a utilization rate γ1 for our
solution and its corresponding length L̃ =

∑n
i=1 Area(Pi)
γ1W

, then
compute the score by

s(P̃xi,θii )

=

{
0.01 · L1(P̃

xi,θi
i )− γ2S1(P̃

xi,θi
i ), L0(P̃

xi,θi
i ) ≤ L̃;

L1(P̃
xi,θi
i )− γ2S1(P̃

xi,θi
i ), L0(P̃

xi,θi
i ) > L̃.

(13)

B. RESTRICTED LOCAL SEARCH WITH DEPTH
In the TOPOS algorithm, the local search heuristic does
not pack the parts following a predetermined order. Instead,
the next part is selected from all available unpacked parts
greedily according to the given evaluation criteria [8], [35].
However, for large-scale packing problems with hundreds
of parts, recurrently evaluating all unplaced parts is costly.
Therefore, in our algorithm, we only search for the best
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FIGURE 6. Example of restricted local search with depth, where depth=3.

part in the consecutive α parts, where α is the searching
depth. We call this searching procedure searching in the pool
for simplicity in the rest of the paper. This behavior of the
algorithm is displayed in the example in Fig. 6. As illus-
trated in our numerical experiments, limiting the searching
depth is efficient in computing the placement. In most cases,
this strategy can generate better results when compared with
the classical TOPOS algorithm. In this paper, we denote
Score(Pi, k) as the smallest score for part Pi at the k-th round.
More precisely, let Wi,k denote the possible movement for
part Pi at the k-th round, and Score(Pi, k) has the following
expression:

Score(Pi, k) = min
θi∈Oi,xi∈Wi,k

s(P̃xi,θii ). (14)

When Pi is not in the pool at the k-th round, we set
Score(Pi, k) = +∞. Since all possible movements are infi-
nite, in our algorithms, we choose Wi,k as all the vertices of
W (P̃xi,θii ).
Although selecting the best-fit part in our algorithm results

in a partial solution with high utilization in the early stage,
there may still exist some irregular parts that do not fit well
with others. In the TOPOS algorithm, these irregular parts
are never selected until all others are placed. In this case,
the TOPOS algorithm generates a poor placement in its final
stage, which results in poor utilization.

To solve this problem, we introduce two factors to adjust
the final score and select the part with the smallest score.

Here are two rules to balance the preference for all
unplaced parts:

1) The longer part Pi is in the pool, the more likely it will
be selected in the next evaluation;

2) When the score of part Pi is considerably smaller than
its largest score, it is likely to be selected in this evalu-
ation.

For those irregular parts, these two rules guarantee that
they will not be backlogged until the final stage of our
algorithm. If a part is kept in the pool for a long time,
it must be difficult for this part to fit well with the placed
parts, so we add a penalty to its score and force a choice
in the next few iterations. In this paper, t(Pi, k) represents
the number of rounds that Pi remains in the pool at the k-th
iteration.

In addition, when an irregular part makes considerable
progress in its score, we consider that this part has found
a relatively suited position at this moment. Thus, this
part is preferred in the current selection. This factor is
defined as:

c4 := Score(Pk , k)− max
j≤k,Score(Pi,j)6=+∞

Score(Pi, j). (15)

Then, we obtain the final evaluation score in (16).

Finalscore(Pi, k) = Score(Pi, k)− γ3t(Pi, k)+ γ4c4. (16)

Then, based on FinalScore, when given parameters
γ1, γ2, γ3, γ4 and depth α, we compute the final solution by
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Algorithm 1.We also provide a flowchart in Fig. 7 to describe
the algorithm vividly. It is worth mentioning that the best-fit
part corresponds to the smallest score.

Algorithm 1 Greedy Adaptive Search (GAS)
Input: Predefined sequence j1, ..., jn, parameters

γ1, γ2, γ3, γ4, depth α
Output: Final utilization rate and packing results
1: Initialization: k = 0, � = ∅, Pool = {jk+1, ..., jk+α};
2: while k ≤ n do
3: Computes Score(Pi, k) for i ∈ Pool;
4: Choose i∗k := argmini∈PoolScore(Pi, k) and its corre-

sponding best position x∗ik and rotation θ∗ik :

x∗ik , θ
∗
ik = argmin

θik ∈Oik ,w∈W (P̃
xik

,θik
ik

)

s(P̃
xik ,θik
ik );

5: Place part Pik with position x∗ik and rotation θ∗ik , � =
� ∪ {i∗k};

6: if k + α + 1 ≤ n then
7: Pool = (Pool ∪ {jk+α+1}) \ {i∗k};
8: end if
9: k ++;

10: end while

C. INITIAL SEQUENCE
Our algorithm starts from a predefined sequence and searches
for a solution with high utilization. To enhance the perfor-
mance of the local search, we select the predefined sequence
in descending order according to the following rules:
• area of the polygon.
• perimeter of the polygon.
• area of the smallest rectangle containing the polygon.
• area of polygon · (1 − irregularity), where irregular-
ity is calculated from the area of the polygon divided
by the area of the smallest rectangle containing the
polygon.

D. TWO-STAGE HEURISTIC
In our algorithm, if we wish to compute a solution with
higher utilization, we can search over the parameters
γ k1 , γ

k
2 , γ

k
3 , γ

k
4 , α

k as well as the sequences. However, since
the number of all possible sequences equals n!, directly
searching over the sequence is costly and lacks efficiency.
As described in Algorithm 1, in each iteration, our algo-
rithm chooses the best-fit part in the consecutive α parts,
which can be regarded as a modification to the predefined
sequence. Consequently, adjusting parameters results in a
different evaluation function, leading to a different inserting
sequence for the parts. Since our algorithm only involves 5
parameters, searching for a better parameter in such a low-
dimensional space is more efficient than searching over all
possible predefined sequences. As a result, we propose a
two-stage searching strategy, where we first search for good

FIGURE 7. Flowchart of the GAS algorithm.

parameters and then search over the predefined sequences for
better utilization with fixed parameters.

In our algorithm, we first search by heuristics for param-
eters {γ ∗1 , γ

∗

2 , γ
∗

3 , γ
∗

4 , α
∗
}. In each iteration of our algo-

rithm, the score of parameters {γ1, γ2, γ3, γ4, α} is evalu-
ated as the best utilization of the final solution with all
four predefined sequences. Then, with the fixed parame-
ters {γ ∗1 , γ

∗

2 , γ
∗

3 , γ
∗

4 , α
∗
}, we heuristically search for a better

predefined sequence. The detailed algorithm is presented in
Algorithm 2. The genetic algorithm framework, as well as the
scheme for selection, crossover and mutation in Algorithm 2,
can be found in [43].

V. COMPUTATIONAL RESULTS
Two groups of instances were tested using the GAS: the
data provided by the Alibaba Cloud and some of the bench-
mark instances. The data provided by the Alibaba Cloud are
real data in industrial production; shirts, trousers and other
parts are combined for packing, and the numbers of both
parts and vertices are relatively large. The classic bench-
mark instances include various materials, and we chose fabric
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TABLE 1. Data from Alibaba Cloud and Benchmark ESICUP instances. TNI:Total number of instances. NIT: number of item types. ANV: average number of
vertices. CANV: cleaned average number of vertices. AO: admissible orientations.

TABLE 2. Maximum and average utilization of real cases from Alibaba Cloud obtained by GAS and DeepNest. Avg:average. Uti:Utilization.

Algorithm 2 Greedy Adaptive Search Modified by Genetic
Algorithm (GAS+ GA)
Input: Initial sequences seq1, ..., seq4, size of the

population N , initial population for parameters
{γ

u,0
1 , γ

u,0
2 , γ

u,0
3 , γ

u,0
4 , αu,0}, where u = 1, ...,N ,

population size for sequencesM
Output: Final utilization rate and packing results
1: Initialization: k = 0;
2: while Continue do
3: Compute the fitness for each individual in the popula-

tion by

max
i=1,2,3,4

(utilization of GAS(seqi, γ
u,k
1 , γ

u,k
2 , γ

u,k
3 , γ

u,k
4 , αu,k )),

for u = 1, ...,N ;
4: Select individuals by tournament selection;
5: Crossover by arithmetic crossover;
6: Mutate by Gaussian mutation;
7: k = k + 1;
8: end while
9: Choose the parameters γ ∗1 , γ

∗

2 , γ
∗

3 , γ
∗

4 , α
∗ that corre-

sponds to the highest fitness;
10: Mutate and crossover seq1, ..., seqn to generate the initial

population for sequence {seq1, ..., seqM };
11: while Continue do
12: Compute the fitness for each sequence in the pop-

ulation by GAS(seqi, γ ∗1 , γ
∗

2 , γ
∗

3 , γ
∗

4 , α
∗), for i =

1, ...,M ;
13: Select sequences by tournament selection;
14: Perform crossover by partially matched crossover;
15: Mutate by inversion mutation;
16: end while

material including shirts and trousers to test the GAS. For
each instance, independent of the group, the algorithm was
executed ten times. The algorithm was tested on an Intel(R)
Core(R) Silver 4110 CPU @ 2.1 GHz, with 32 cores and
394 GB of memory.

A. TEST INSTANCES
In Table 1, we summarize some basic characteristics of the
test instances; all the cases admit orientation 0◦, 180◦.
Data 1-4 are large-scale industrial datasets collected by

the Alibaba Cloud and can be retrieved from their website.1

These datasets have over 250 parts with the mean vertices
over 70, showing that the problems are large-scale with
the complex contour of the parts. As illustrated in Table 1,
the proposed two preprocessing algorithms in Section 2.1 sig-
nificantly reduce the mean vertices for the parts. Moreover,
a certain cutting gap needs to be reserved among the parts,
and some of the sheets have flaws in it, which need to be
avoided during packing.

The other two datasets were generated from benchmarks
in ESICUP2 datasets. Since our algorithm is dedicated to
solving the large-scale fabric packing problem, we select
the fabric packing datasets ’shirts’ and ’trousers’ from the
ESICUP datasets. In addition, these two datasets are small-
scaled, so we generate large-scale instances by copying the
shapes of these two instances four times.

B. TEST RESULTS
In our numerical examples, GAS + GA denotes our
greedy adaptive search modified by the generic algorithm.
We tested the performance of both GAS and GAS+GA. The
GAS algorithm is a fast deterministic algorithm, so we only
need to run one time. Based on GAS, GAS+GA is amodified
nondeterministic algorithm. Therefore, we present both the
best utilization and average utilization in Table 2-3.

In our numerical experiments, the mutation rate in GAS+
GA equals 0.3, the crossover rate equals 1 and the tourna-
ment size is 2. In addition, since the search space of the
sequences is much larger than the search space of all param-
eters, we choose the population sizes N = 16 and M = 64
in Algorithm 2. Additionally, the max generation for the first

1https://tianchi.aliyun.com/competition/entrance/231749/information.
2https://www.euro-online.org/websites/esicup/data-sets/.

VOLUME 8, 2020 91483



X. Hu et al.: GAS: A New Approach for Large-Scale Irregular Packing Problems in the Fabric Industry

TABLE 3. Maximum and average utilization of benchmark instances obtain by GAS and other best solutions in the literature. Avg:average. Uti:Utilization.

FIGURE 8. Data1 (85.36%).

FIGURE 9. Data2 (86.06%).

FIGURE 10. Data3 (86.31%). Black parts denote the flaws.

FIGURE 11. Data4 (85.31%). Black parts denote the flaws.

stage is 10, while the second stage of Algorithm 2 stops when
its runtime exceeds the time limit.

Data 1-4 were made public recently, so no paper has com-
parable test results on these instances. Since the algorithm
code in previous papers is not open-source, we compared the
results by running the open-source software DeepNest [17]
and showed the results in Table 2. The final results of GAS+
GA on Data 1-4 are presented in Fig. 8-11. From Table 2,
we can conclude that GAS+GA is more stable and efficient
than DeepNest. On data 1-4, the results of our algorithm were
3% - 4% higher than the optimal value of the DeepNest’s.
Furthermore, we ran GAS+GAwith two different evaluation
functions to illustrate the superiority of restricted local search
with depth, as presented in Section IV-B. One uses (16) as
its evaluation function, and the other uses (16) with fixed
α = 1. It is worth mentioning that when we fix α = 1, both
γ3 and γ4 are inactive and set to 0 since they are designed
for adjusting the placing order in the pool. As can be seen

from Table 2, the restricted local search with depth strategy
indeed improves the utilization and delivers better packing
results.

Benchmark instances have been massively tested in the
literature, but few articles tested the cases that have been
multiplied. Hu et al. [27] proposed a fast algorithm and
tested that algorithm on ’shirts*4’, Elkeran and Ahmed [21]
proposed a guided cuckoo search and obtained the best layout
of the ’shirt’ as 88.96%, Sato et al. [41] applied the raster
penetration map and achieved the best results for trousers as
90.06%.Moreover, these two algorithms are based on search-
ing over the layout approach, which lacks scalability and effi-
ciency for large-scale packing problems, as described in our
introduction. Compared with the algorithms above, as shown
in Table 3, our algorithm shows advantages both in oper-
ational efficiency and utilization on large-scale problems.
Additionally, we present the final packing results in Fig. 12
and Fig. 13.
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FIGURE 12. Shirts*4 (89.30%).

FIGURE 13. Trousers*4 (91.10)%.

FIGURE 14. Utilization of Algorithm GAS + GA on Datasets 1-4 for
different time limits.

FIGURE 15. Difference between the best compaction in the literature and
the GAS+GA utilization for different time limits.

C. COMPUTATIONAL PERFORMANCE DISCUSSION
In 2-dimensional irregular packing problems, most of the
existing approaches have been tested on the ESICUP dataset.
Most cases in the ESICUP dataset are small-scale or medium-
scale and have simple shapes. However, in this paper,
we focus on large-scale packing problems where a piece of
cloth is usually 50 metres to 200 metres. Additionally, due
to the lack of open-source code, we compared our algorithm
with DeepNest, a state-of-the-art open-source solver based on
bottom-left strategy and improved by deep learning [17]. In

our previous numerical examples, we multiplied the number
of benchmark instances and performed GAS+ GA and effi-
ciently achieved higher utilization results. In addition, we per-
formed GAS on the data provided by the Alibaba Cloud and
achieved high-utilization results, which were 3% - 4% better
than those by DeepNest.

However, the lack of open-source code makes it difficult
to determine the quality of our algorithm and compare it
with other approaches, which were tested with different run-
ning environments and computational capacities. To enhance
the comparison analysis of our algorithm, a computational
performance study of GAS + GA was conducted, and the
numerical results are presented in this subsection. During the
execution of GAS+GA on all our test examples, the utiliza-
tion of the solutions was sampled at each 60-second interval.
In addition, we ran the first stage in GAS + GA for 10
generations and then terminated the second stage in GAS +
GA when the running time exceeded 1, 200. This procedure
is equivalent to setting stricter time limits on GAS + GA.
Since datasets 1-4 have not been tested by existing works,
we present the changes in the utilization rate in Fig14 to
illustrate the detailed performance of GAS + GA. In addi-
tion, because trousers*4 and shirts*4 have not been tested
by existing efficient approaches, we present the difference
between GAS+GA and the best-in-literature utilization rates
for trousers and shirts in the ESICUP dataset. The difference
is presented in Fig. 15.

The testing results in Fig. 14 and Fig. 15 show similar
tendencies on all testing examples. It can be noted that the
utilization increasesmore intensely in the first stage of GAS+
GA, which coincides with our discussion in Section IV-B and
illustrates the high efficiency of our two-stage algorithm. This
provides further evidence that a reduced time limit does not
greatly impact the results for these cases.

VI. CONCLUSION
The greedy adaptive search algorithm (GAS) is designed
to solve large-scale fabric packing problems. Inspired by
TOPOS, we construct a dynamically adjusted evaluation
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function as well as a restricted local search strategy. In addi-
tion, we proposed a two-stage genetic algorithm, searching
for both proper parameters and input sequences.

In our algorithm, the overlap is detected by the no-fit
polygon, which is computed in parallel in our preprocessing
step. Because the contours of the parts in the fabric packing
problem can have a large number of vertices, we introduce
two algorithms to simplify the contours and thus acceler-
ate the geometric computation in the preprocessing stage.
As illustrated in Table 1, our proposed approaches reduce
approximately 50% of the vertices.

Then, we tested two sets of instances by using the proposed
GAS + GA. We first compare GAS + GA with GAS + GA
(α = 1), GAS andDeepNest on our test problems. The results
illustrate that GAS+GA is more efficient and stable, and our
proposed restricted local searchwith the depth strategy results
in higher utilization results thanDeepNest, even in one pass of
the algorithm. In addition, tests using benchmark cases show
that GAS + GA yields competitive solutions, producing the
best solution in the literature on our test instances, whichwere
generated from shirts and trousers in the ESICUP dataset.

In conclusion, on large-scale packing problems, our algo-
rithm is significantly better than existing open-source soft-
ware and papers. The GAS shows innovation in both the eval-
uation function and the idea of the penalty in restricted local
search. The potential of applying the GAS + GA to large-
scale packing problems in the fabric industry emerges, and
wewill continuously work on developing efficient algorithms
on large-scale packing problems.
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