
Received May 2, 2020, accepted May 9, 2020, date of publication May 14, 2020, date of current version May 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994773

Long-Short Term Echo State Network
for Time Series Prediction
KAIHONG ZHENG1, BIN QIAN1, SEN LI2, YONG XIAO1,
WANQING ZHUANG2, AND QIANLI MA 2, (Member, IEEE)
1Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China
2School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Corresponding author: Qianli Ma (qianlima@scut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61872148, in part by the Natural
Science Foundation of Guangdong Province under Grant 2017A030313355, Grant 2017A030313358, and Grant 2019A1515010768, and
in part by the Guangzhou Science and Technology Planning Project under Grant 201704030051 and Grant 201902010020.

ABSTRACT The Echo State Networks (ESNs) is an efficient recurrent neural network consisting of a
randomly generated reservoir (a large number of neurons with sparse random recurrent connections) and a
trainable linear layer. It has received widespread attention for its simplicity and effectiveness, especially for
time series prediction tasks. However, there is no explicit mechanism in ESNs to capture the inherent multi-
scale characteristics of time series. To this end, we propose a model consisting of multi-reservoir structure
named long-short term echo state networks (LS-ESNs) to capture the multi-scale temporal characteristics of
time series. Specifically, LS-ESNs consists of three independent reservoirs, and each reservoir has recurrent
connections of a specific time-scale to model the temporal dependencies of time series. The multi-scale echo
states are then collected from each reservoir and concatenated together. Finally, the concatenated echo states
representations are fed to the linear regression layer to obtain the results. Experiments on two time series
prediction benchmark data sets and a real-world power load data sets demonstrate the effectiveness of the
proposed LS-ESNs.

INDEX TERMS Time series prediction, echo state networks (ESNs), multi-scale temporal dependencies,
long short term reservoir.

I. INTRODUCTION
In the past few years, time series analysis has become a very
active research field. Commonly used techniques include
time series prediction [1], [2], classification [3], cluster-
ing [4], outlier detection [5], and so on. Time series pre-
diction is an attempt to predict the evolution of a system
or phenomenon through previously observed values. It has a
wide range of applications in agriculture, commerce, meteo-
rology, military, and medical fields. Manymethods have been
proposed for time series prediction, such as fully connected
feedforward neural network (FNN), support vector regression
(SVR), recurrent neural networks (RNNs), etc. References
[6]–[8]. Among these methods, RNNs show strong capabil-
ities in dealing with non-linear time series because of the
recurrent connections between neurons, which can approxi-
mate any non-linear system with arbitrary precision [9], [10].
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Although RNNs have achieved excellent performance
in many time series prediction tasks, it directly optimizes
recurrent weights by the BPTT algorithm, which suffers
from the problem of slow convergence, high computa-
tional cost, gradient vanishing/exploding, and local optimal
solutions [11]–[13]. Thus, currently, the number of RNNs’
hidden units is usually set to be relatively small, but this,
in turn, reduces the expression ability of the model [14].
Recently, an efficient recurrent network model was pro-
posed to solve the above problems by Jaeger [15], named
echo state networks (ESNs). A typical ESNs consists of an
input layer, a reservoir (a large number of sparsely con-
nected neurons, typically 100 to 1000), and an output layer.
The weights of input layer and the ones of the reservoir
are fixed after initialization, and the closed-form solution
directly obtains the output weights. Therefore, it does not
suffer from the slow convergence and training process, and
we can get the optimal global solution. It also avoids the
gradient vanishing/exploding problem. With these properties
and theoretical guarantee [16], [17], ESNs are widely used
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in the time series prediction tasks [18]–[21]. For example,
Song et al. [22] applied ESNs on real-time power load fore-
casting and achieved better performance of prediction than
feed-forward neural networks. Li et al. [23] addressed the
over-fitting problem existing in the pseudo-inverse algorithm
and solved the output weights of ESNs with the bayesian
framework, which further improved the performance of pre-
diction. Deihimi et al. [24] adopt the wavelet transform to
decompose the data and then input the decomposed compo-
nents to the ESNs, which achieved better prediction perfor-
mance. Chatzis and Demiris [25] proposed ESGP, combining
the ESNs and Gaussian processes, to provide a confidence
measure of the prediction values. To further improve the
non-linearity in reservoirs, Gallicchio and Micheli [26] pro-
posed ϕ-ESNs, adding a fixed random-projection layer of
ELMs [27] to a reservoir. Moreover, Butcher et al. [28], [29]
proposed R2SP, adding two ELMs to encode inputs and reser-
voir states, respectively. Their results showed that employing
ELMs as intermediate layers helps to improve the prediction
performance.

Although ESNs have performed well on time series pre-
diction, the existing work on ESNs has not explicitly captured
the inherent multi-scale characteristics of time series yet [24],
[30]. The traditional ESNs only have a single recurrent mod-
ule, which makes it challenging to capture the multi-scale
temporal features.

Recently, some literature proposed to model multi-scale
features by stacking ESNs, such as [31], [32]. However, since
the size of the reservoir is usually very large, stacking ESNs
will inevitably pass some redundant information to the high-
level and also impact the efficiency of the model [33]. More-
over, the stacking methods tend to model long-term features
with the stacking of layers [34] andmay ignore some essential
short-term features [35].

To this end, we propose a long-short term echo state net-
works (LS-ESNs) to capture the multi-scale features of time
series. LS-ESNs extracts the multi-scale temporal features
with the multiple independent reservoirs that possess differ-
ent recurrent connections. Specifically, LS-ESNs consists of
three reservoirs, a long-term reservoir, a typical reservoir, and
a short-term reservoir. The long-term reservoir is capable of
capturing the long-term temporal dependency feature by skip
connections. But this is the first time exploited in the RC
approaches. The typical reservoir is consistent with the tradi-
tional ESNs based on the Markov hypothesis. And the short-
term reservoir is capable of capturing the short-term temporal
dependencies by ‘‘Eliminating memory’’, which only consid-
ers the impact of recent history memory. After that, the echo
states from theses three reservoirs are concatenated together,
forming the multi-scale temporal representations. Finally,
the predictions are obtained by feeding the concatenated
representations to the output layer. To verify the effective-
ness, we conduct experiments on two time series prediction
benchmark data sets and one real-world power load data set.
We compared our model with other commonly used time
series predictionmethods. The experimental results show that

FIGURE 1. Echo state networks.

the prediction performance of LS-ESNs is significantly better
than other compared methods. The main contributions of this
paper can be summarized as follows:
• We propose a novel multi-scale ESN-based network
named LS-ESNs, which is composed of three indepen-
dent reservoirs, and each reservoir has a different recur-
rent connection for capturing different temporal scale
dependencies.

• With the training-free reservoirs and output weights
obtained by the closed-form solution, the LS-ESNs pos-
sess high-computational efficiency for modeling com-
plex temporal data.

• Compared with the several baseline methods, LS-ESNs
achieves better performances on two prediction bench-
mark data sets and the real-word power load data set.

The remainder of this paper is organized as follows.
In Section II, we briefly introduce the traditional ESNs.
Section III introduces the details of the proposed method
LS-ESNs. Section IV shows the experimental results and
analysis of the well-known prediction benchmark and some
real-world time series. Finally, we conclude in Section V.

II. ECHO STATE NETWORKS
A typical ESNs consists of an input layer, a recurrent layer,
called reservoir (with a large number of sparsely connected
neurons), and an output layer. The connection weights of the
input layer and the reservoir layer are fixed after initialization,
and the output weights are trainable and obtained by solving
a linear regression problem. The structure of the echo state
network is shown in Figure 1.
u(t) ∈ RD×1 denotes the input value at time t of the

time series, Win ∈ RN×D (D is the dimension of the input)
represents the connection weights between the input layer
and the hidden layer, Wres ∈ RN×N (N is the number of
neurons) denotes input-to-hidden layer connections weights,
and Wout ∈ RL×N (L is the dimension of the output) is the
output weights from the hidden layer to the output layer. The
state transition equation can be expressed by Equation (1):

x(t) = γ · tanh(Winu(t)+Wresx(t − 1)

+ (1− γ ) · x(t − 1)) (1)

y(t) = Woutx(t) (2)
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FIGURE 2. The general architecture of LS-ESNs. The LS-ESNs consist of multiple independent reservoirs, and each reservoir has a
different recurrent connection. The long-term reservoir (top) is capable of capturing long-term temporal dependency feature with skip
step (set skip step k = 3, then the state of t4 directly dependent on the t1). The typical reservoir (middle) bases on the Markov
hypothesis (the state of t4 directly dependent on the t3). The short-term reservoir (bottom) is capable of capturing short-term temporal
dependency feature (set short dependency scope m = 3, then the state of t4 only dependent on t2, t3, wiping out the state outside this
scope). Concatenating all the echo states from different reservoirs into the multi-scale temporal feature and then fed it to the output
layer to get the final prediction.

where u(t), x(t) ∈ RN×1 and y(t) refer to the input, state
of the reservoir and output, respectively. γ denotes the leaky
rate, which integrates the previous state into the current one.
tanh(·) and · denote the activation function in reservoir and
multiplication, respectively.

The main hyper-parameters of an ESNs are the input scale
IS, the spectral radius SR and sparsity α.
• IS is used for the initialization of the matrixWin, and the
elements ofWin are scaled between −IS to IS.

• SR is the spectral radius ofWres, given by

Wres = SR ·
W

λmax(W )
(3)

where λmax(W ) is the largest eigenvalue ofmatrixW and
elements ofW are generated randomly in [−0.5, 0.5].

• α denotes the proportion of non-zero elements inWres.
The main characteristics of ESNs can be summarized as

the following aspects:
• A multiple high-dimensional projection method is
employed by ESNs to capture the dynamics of the input,
which makes the reservoir provide strong nonlinear
mapping capabilities.

• Echo State Property (ESP) [15], [36]: The ESP means
that inputs with more similar short-term history will
evoke closer echo states, which ensure the dynamical
stability of the reservoir. ESP also provides the ESNs an
important capability called ‘‘fading memory’’ or ‘‘short-
term memory.’’ With this short-term memory, the input
history information from some time past will not easily
fade away. This is guaranteed by limiting the spectral
radius of recurrent connection weights to less than 1.

• None of the input and recurrent weights are trained, and
the closed-form solution of linear regression can obtain
the output weights.

III. LONG-SHORT TERM ECHO STATE NETWORKS
A. PROPOSED METHOD
To enhance the ability of ESNs to model multi-scale temporal
features, we propose a long-short term echo state networks
(LS-ESNs). LS-ESNs is composed of multiple independent
reservoirs with different recurrent connections. Each reser-
voir is capable of capturing the different temporal scale
dependency. The long-term reservoir captures the long-term
dependency feature by skip connection, the typical reservoir
is consistent with traditional ESNs based on the Markov
hypothesis, and the short-term reservoir captures the short-
term dependency feature by using the dependency scope m
to only consider the impact of recent m history states. Then,
the original time series is represented by the different tempo-
ral dependency scale echo states collected from these three
reservoirs. Finally, the concatenated echo states are fed into
the output layer to obtain the prediction result.

Themodel is shown in Figure 2, and it is composed of three
different temporal dependency scale reservoirs, long-term
reservoirs, typical reservoirs, short-term reservoirs. We will
give the state transition equations of three different reservoirs,
respectively. Note that, u(t) ∈ RD×1 denotes the input of
time t-th.

1) THE LONG-TERM RESERVOIR
The long-term reservoirs state xlong(t) ∈ RN×1 (N is the size
of the reservoirs) is updated by Equation (4) as follows:

xlong(t) = γ · tanh(Winu(t)+Wresxlong(t − k)

+ (1− γ ) · xlong(t − k)) (4)

where k is the length of the skipped step, the bigger the
value is, the longer temporal scale and a wider range of
dependencies are. γ , Win and Wres denote the leaky rate,
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TABLE 1. The detailed hyper-parameter settings of LS-ESNs on the power load forecasting data sets and and the benchmark data sets.

connection weights from the input to the reservoir and the
reservoir to itself, respectively.

Especially, the representations of the original time series
at time step t depend on the state at time step t − k and the
input at t-th. Thus, Equation (4) explicitly models the more
long-term dependency with a bigger value of skip step k .

2) THE TYPICAL RESERVOIR
The typical reservoirs state xtypical(t) ∈ RN×1 is updated by
Equation (5) as follows:

xtypical(t) = γ · tanh(Winu(t)+Wresxtypical(t − 1)

+ (1− γ ) · xtypical(t − 1)) (5)

where xtypical(t−1) refers to the state of time t−1. Especially,
the representations of the original time series at time step t is
dependent on the previous time step t−1 and the input at t-th.

3) THE SHORT-TERM RESERVOIR
The short-term reservoirs state xshort (t) ∈ RN×1 aims to cap-
ture short-term dependencies and is updated by Equation (8)
as follows:

xshort (t) = γ · tanh(Winu(t)+Wresx(t − 1)

+ (1− γ ) · x(t − 1)) (6)

x(t − 1) = γ · tanh(Winu(t − 1)+Wresx(t − 2)

+ (1− γ ) · x(t − 2)) (7)
...

x(t − m+ 1) = γ · tanh(Winu(t − m+ 1)+Wresx(t − m)

+ (1− γ ) · x(t − m)) (8)

where m represents the short-term dependency scope,
x(i), i = t −m+ 1, t −m, . . . , t − 1 denote the intermediate
iteration state. The short-term reservoirs capture the short-
term dependency feature by considering only the history
states from time step t − m to time step t − 1.

The short-term reservoir is very different from the typical
one, because in the update formula of the typical reservoir,
the time t − 1 can contain relative long history information,
while in the short-term reservoir, t − 1 only considers the
history information within them time steps. In practice, when

calculating the short-term reservoir state xshort (t) at time step
t , the state x(t − m) at time step t − m is re-initialized by
sampling from the standard normal distribution, and loop m
steps to obtain the state x(t) at time step t , which is finally
assigned to xshort (t)). x(i), i = t − m + 1, t − m, . . . , t − 1
refers to the intermediate states and will not be collected in
the echo state matrix. In contrast, xshort (t) will be collected
into the echo state matrix.

At each time step t , the representations of the orig-
inal time series in different time scales are obtained
by Equations (4), (5), and (8), respectively, denoted as
xlong(t), xtypical(t), xshort (t). Finally, the representations of
different scales feature of the time series are concatenated as
the multi-scale temporal representations denoted by X (t) =[
xlong(t), xtypical(t), xshort (t)

]
∈ R3N×1 and then are fed into

the linear output layer as follows:

y(t + 1) = fout (WoutX (t)) (9)

Rewriting Equation (9) in matrix form and setting fout to
be identify function, we have:

Y = WoutX (10)

The weights of the output layer are trained by minimizing
the loss function as follow:

L(Wout ) = ‖T −WoutX‖22 + λ‖Wout‖
2
2 (11)

where T ∈ RT×1 denotes the teacher signal, Wout ∈ RT×3N

represents the output layer weights, and λ is the regulariza-
tion coefficient. The output layer weights can be solved by
the closed-form solution of Equation (11) with the pseudo-
inverse solution method [37], which is given by as follows:

Wout = (XTX + λI )−1XTT (12)

B. ALGORITHM DESCRIPTION
In this section, we describe the details of our proposedmethod
LS-ESNs.

1) DATA PREPROCESSING AND NETWORK INITIALIZATION
• (1) The original data M = [m(1), ,m(t), ,m(T )] is nor-
malized by the Equation (13). The time series after pro-
cessing is represented asU = [u(1), , u(t), , u(T )]. Then
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we divided U into three parts with the ratio of 7:1:2: the
training set UTrain, the validation set UVal and the test
set UTest . UTrain[1 : T − step] and UTrain[step + 1 : T ]
are taken from UTrain as input signal Uinput and teacher
signal Ytarget in the training phase respectively, Also,
UTest [1 : T−step] andUTest [step+1 : T ] are taken from
UTest as input signal and teacher signal in the test phase.
Step represents the prediction horizon. The validation set
UVal is used for tune hyper-parameters.

u(i) =
m(i)− min(M )

max(M )− min(M )
(13)

• (2) Set the size of reservoirs N , spectral radius SR, input
scale IS and other hyper-parameters. The input layer
weights Win and the recurrent connection weights Wres
are sampled from the standard normal distribution and
fixed during the training phase.

2) THE TRAINING ALGORITHM OF LS-ESNs
Note that only the output layer weights are trainable while we
fix the weights of the input layer and the ones of the reservoir
with a spectral radius less than 1 after initialization, which is
the necessary condition stability of ESNs and ESP.
• (1) The training data set Utrain is fed to the long-term
reservoirs, the typical reservoir, and the short-term reser-
voir, respectively. Then we can obtain the different scale
features of original time series by Eq. (4), (5), and (8)
step by step. We collect the echo states of each reservoir
to get the long-term, typical, and short-term temporal
features, denoted by xlong, xtypical and xshort respectively.

• (2) Concatenate all the features obtained by step (1) as
the multi-scale representations of time series denoted
by Xtrain = [xtrain_long, xtrain_typical, xtrain_short ] ∈
R3N×T . The weights of output layer can be obtained by
Equation (12).

3) THE PREDICTION ALGORITHM OF LS-ESNs
• (1) Select all the optimal hyper-parameters according to
the performance on the validation sets.

• (2) The testing data set UTest [1 : T − step] is fed into
the long-term reservoir, the typical reservoir and the
short-term reservoir respectively. Thenwe can obtain the
different time-scale features of original time series by
Eq. (4), (5), and (8) step by step.

• (3) Concatenate all the features obtained by step (2) as
the multi-scale representations of time series denoted
by Xtest = [xtest_long, xtest_typical, xtest_short ] ∈ R3N×T .
Input the concatenated features into the well-trained
output layer to obtain the prediction Ypre = WoutXtest .

The complete algorithm of LS-ESNs is given by
Algorithm 1.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity of
our proposed LS-ESNs. Assuming an LS-ESNs has 3 reser-
voirs, where sizes of the reservoirs are all fixed by N . Given

Algorithm 1 Long-Short Term Echo State Networks (LS-
ESNs)
Input: Utrain :input in training phase; Y : teacher signal;

Utest : input in testing phase; N : size of reservoir;
IS : input scale; SR : spectral radius;
γ : leaky rate; k : skip step;
m : short dependency scope;
λ : regularization coefficient;

Output:
Ypre : prediction result.

1: for t = 0 : Ttrian − 1 do
2: compute xtrain_long(t) according to Eq. (4)
3: compute xtrain_typical(t) according to Eq. (5)
4: compute xtrain_short (t) according to Eq. (8)
5: end for
6: X = concat(xtrain_long, xtrain_typical, xtrain_short )
7: Wout = (XTX + λI )−1XTY
8: for t = 0 : Ttest − 1 do
9: compute xtest_long(t) according to Eq. (4)
10: compute xtest_typical(t) according to Eq. (5)
11: compute xtest_short (t) according to Eq. (8)
12: end for
13: Xtest = concat(xtest_long, xtest_typical, xtest_short )
14: Ypre = WoutXtest

T -lengthD-dimensional input time series, we can analyze the
computational complexity of LS-ESNs as follows.

For the high-dimensional projection of input and the update
step of echo state in long-term reservoir computing Equa-
tion (4), its complexity can be computed by

Clong = O(αTN 2
+ TND) (14)

where α represents the sparsity of the reservoir and is usually
very small (set to 0.05 in our experiment).

For the typical reservoir computing Equation (5), its com-
plexity can be computed by

Ctypical = O(αTN 2
+ TND) (15)

For the short-term reservoir computing Equation (8), its
complexity can be computed by

Cshort = O(αmTN 2
+ mTND) (16)

where m represents the scope of short-term dependency.
The dimension of LS-ESNs is formed by concatenating the

echo states of long-term, typical, and short-term reservoir,
where its size is 3N . In this way, the complexity of solving
the regression problem in Eq. (12) can be computed by

Creg = O((3N )3 + 2(3N )2T + (3N )2 + 3NTD) (17)

Thus in total, the computational complexity of LS-ESNs
can be given by

CLS−ESNs = Clong + Ctypical + Cshort + Creg
= O(2αTN 2

+ 2TND+ αmTN 2
+ mTND

+ (3N )3 + 2(3N )2T + (3N )2 + 3NTD) (18)
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FIGURE 3. Visualization of the data set. (a) the customer No.3, (b) the
customer No.4, (c) the customer No.10, and (d) Sunspot data set.

Since the size of reservoir N is typically 100 to 1000 and the
dimension of the input time series D is usually much smaller
than N , we can assume that N � D. Moreover, if T is much
larger than N , then we have T � N , and m is a constant. The
computational complexity of LS-ESNs is

CLS−ESNs ≈ O(TN 2) (19)

A traditional ESN’s computational complexity can be given
by

CESNs = Ctypical + Creg
≈ O(TN 2) (20)

We can see that the complexity of LS-ESNs is basically
the same as that of traditional ESNs. Therefore, LS-ESNs
remains the high computational efficiency of traditional
reservoir computing networks.

IV. EXPERIMENTS
In this section, we first verify the proposed method LS-
ESNs on two time series prediction benchmark data sets, and
then we apply it to a read-world power load prediction. The
two time series prediction benchmark data sets are Monthly
Sunspot [38] and Lorenz [39], respectively. The real-world

power load data is collected from large customers (large
factories) in a particular area of China on our own.

To evaluate the effectiveness of proposed long-short
term echo state networks (LS-ESNs), we compare with
nine baseline models. These methods can be divided into
two categories: 1) the traditional methods, including Fully
connected feedforward neural network(FNN) [40], support
vector regression (SVR) [41], RNN [8], LSTM [42]. 2) the
ESN-based methods, inlcuding ϕ-ESNs [26], R2SP [28],
[29], MESM [32], deepESN [31] and the constructed ESN-
based method, multiple echo state networks (M-ESNs).
Compared With Traditional Methods: We first compare

our model with SVR, FNN, RNN, and LSTM. SVR and
FNN that usually use sliding windows for time series pre-
diction. For example, if setting the sliding window size to 4,
the input is {ut−4, ut−3, ut−2, ut−1} and the target output is
ut (ut denotes input value at time step t of the time series).
For a fair comparison, we also apply the mechanism of the
sliding window to make a prediction for RNN and our model
LS-ESNs. For all of these methods, we search the window
size from {12, 24, 48}. For SVR, the kernel parameters are
searched from{0.01, 0.1, 1, 10}. For the FNN, the batch-size
are searched from{10, 20, 30, 40} and the hidden size are
searched from{10, 20, 30}. For the RNN and LSTM, the hid-
den size is searched from {10, 20, 30} and the batch-size are
searched from {10, 20, 30, 40}.
Compared With ESN-Based Methods: To be consistent

with the settings of the existing ESN literature rather
than using sliding windows to make predictions, we adopt
the values of previous time-steps as the inputs and the
ones at the next time-step as the output. For example,
the inputs are {ut−4, ut−3, ut−2, ut−1} and the target output
are ut−3, ut−2, ut−1, ut , respectively. Furthermore, we con-
struct a baseline model named multiple echo state network
(M-ESN) with three traditional independent reservoirs to ver-
ify the effectiveness of the various recurrent connections in
LS-ESNs. In other words, we replace the long-term reservoir,
and the short-term reservoir by two typical reservoirs and
Equation (5) updates the states of reservoirs in the M-ESNs.
The sizes of the reservoirs in ϕ-ESNs, R2SP, MESM and
M-ESNs are consistent with the LS-ESNs and the values are
searched from{300, 600, 900} for all of these methods.

We here focus on the one-step-ahead prediction. Thus, all
of themethods are required to learn themapping from the cur-
rent input u(t) to the target output y(t), where y(t) = u(t + 1).
We experimented ten times independently and reported the
average results and standard deviations.

The commonly used strategies grid search for hyper-
parameters setting can not apply for LS-ESNs due to its
large parameter space. Therefore, we use Genetic Algo-
rithms (GA), which is a heuristic optimization method that
generates high-quality solutions for optimization and search
problems [43]. In the following experiment, we adopt the
metric of MSE to optimize hyper-parameter, including IS,
SR, and γ . Note that, the GA is also applied to optimize
all the ESN-based method (i.e., ϕ-ESNs, R2SP, MESM,
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TABLE 2. Genetic Algorithms (GA) search settings.

TABLE 3. Average results with standard deviations of one-step-ahead
prediction for Monthly Sunspot data set.

TABLE 4. Average results with standard deviations of one-step-ahead
prediction for Lorenz data set.

deepESN and M-ESNs). Moreover, we select the optimal
hyper-parameters (skip connection step k , dependent scope
m, regularization coefficient λ, and sparsity α) according to
the performances on the validation sets. The λ are searched
from

{
10−4, 10−2, 1, 102

}
. The k and m are both searched

from {2, 4, 6, 8, 10, 12}. The impacts of skip step k and
dependent scope m will be discussed in the section of hyper-
parameter analysis. The details of the GA parameters settings
are given in Table 2.

A. EVALUATION METRIC
The performance of all methods is evaluated by three widely
used metrics: the mean squared error (MSE), the normalized
root mean squared error (NRMSE), and the symmetric mean
absolute percentage error (SMAPE). They are used by most
of the ESN-based methods and can be formulated as follows.

MSE =
1
T

T∑
t=1

(yt − ŷt )2 (21)

NRMSE =

√√√√∑T
t=1(yt − ŷt )2∑T
t=1(yt − y)2

(22)

SMAPE =
1
T

T∑
t=1

|yt − ŷt |
(|yt | + |ŷt |)/2

× 100% (23)

where T denotes the length of the target signals. yt , ŷt and y
are the ground truth, prediction and mean value, respectively.

B. TIME SERIES PREDICTION BENCHMARK
DATA SETS
The descriptions of two classic time series prediction bench-
mark data sets are as follows:

• Monthly Sunspot [38]: The sunspot number is a dynamic
manifestation of the strong magnetic field in the Sun’s
outer regions. The study found that the number of
sunspots has a very close statistical relationship with
solar activity. Due to the complexity of potential solar
activity and high non-linearity of the sunspot series,
forecasting and analyzing these series is a challeng-
ing task, and it is often used to evaluate time series
prediction models capability. The World Data Cen-
ter SILSO provides an open-source 13-month smooth
monthly sunspot series. From July 1749 to Novem-
ber 2016, there were a total of 3,209 sample points.
Since the last 11 points are still temporary and may be
revised, we remove these points using only the remain-
ing 3198 observation points for a one-step prediction
task [33].

• Lorenz [39]: The Lorenz system is one of the most typi-
cal benchmark tasks for time series prediction, which is
described as follows:

dx
dt
= −ax(t)+ ay(t)

dy
dt
= bx(t)− y(t)− x(t)z(t)

dz
dt
= x(t)y(t)− cz(t)

(24)

where a = 10, b = 28, and c = 8/3. We use the Runge-
Kutta method to generate a Lorenz time series sample of
length 2500 from the initial conditions (12, 2, 9), usually
with a step size of 0.01. The generated time series is then
normalized to [−1, 1]. Here we select the data of the x-
axis for one-step time series prediction task.

As shown in Tables 3 and 4, our proposed LS-ESNs out-
perform all the baselines in terms of the lower metric ofMSE,
SMAPE, and NRMSE, demonstrating that the multi-scale
temporal dependency feature does improve the prediction
performance.

Moreover, we also plot the prediction curve of the
baselines on the Monthly Sunspot data set, removing
the methods SVR and FNN due to the poor predic-
tion performance. As shown in Figure 4, in most smooth
regions, most of the methods can obtain excellent predic-
tive performance. However, on non-smooth, complex regions
(circled by the blue box in the figures), our proposed
LS-ESNs predict more accurately than others, which indi-
cates that the multi-scale temporal dependency features help
to describe complex local patterns, improving the prediction
performance.
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TABLE 5. Average results of MSE with standard deviations of one-step-ahead prediction for real-world power load forecasting data sets.

TABLE 6. Average results of SMAPE with standard deviations of one-step-ahead prediction for real-world power load forecasting data sets.

TABLE 7. Average results of NRMSE with standard deviations of one-step-ahead prediction for real-world power load forecasting data sets.

C. REAL-WORLD POWER LOAD FORECASTING
The expansion of modern power grids and the rapid spread
of smart grids have increased requirements for power oper-
ations and accurate dispatching. Among them, power load
forecasting is a critical way to improve the stability of the
power grid system and achieve accurate power dispatching.
Accurate power load forecasting can help save energy and
reduce production costs, and increase the competitiveness of
the enterprise market.

Therefore, we apply LS-ESNs to the power load forecast-
ing data set collected from large customers (factories) in a
particular area of China on our own. It records the hourly
power load of large customers from January 2017 to Decem-
ber 2018. Since the original data contains missing values,
for each large customer, we selected the longest completed
continuous sub-sequence as the new data set. The statistical
information of the new data set is shown in Table 8.We visual-
ize the load data of the large customer NO.3, No.4 and No.10,
as shown in Figure 3, NO.3 and No.10 both present strong
nonlinearity and seasonality and No.4 exhibits the violently

TABLE 8. Statistics of the used real-world power load data set.

fluctuating characteristics. We conducted the experiments on
these sampled data sets. Besides, the hyper-parameter settings
of LS-ESNs on power load forecasting are searched by GA
again, and shown in Table 1.

LS-ESNs are compared with the two types of methods
mentioned before separately on the real-world power load
data sets.
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FIGURE 4. The plot of the prediction on the Monthly Sunspot data set. (a) One-step prediction of the ϕ-ESNs. (b) One-step prediction of the R2SP.
(c) One-step prediction of the M-ESNs. (d) One-step prediction of the proposed LS-ESNs.

TABLE 9. Average results of MSE with standard deviations of one-step-ahead prediction for real-world power load forecasting data sets.

Compared With ESN-Based Methods: As shown in
Tables 5, 6 and 7, our proposed LS-ESNs outperform all
the baselines again in terms of the lower metric of MSE,

SMAPE, and NRMSE. The results further demonstrate the
effectiveness of our proposed LS-ESNs and the benefit of
the multi-scale temporal dependency features. To further
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FIGURE 5. Absolute error plot on power load large customer data sets, The left plot is the absolute error curve of each model on the large customer
No.6, and the right is the large customer No.9.

TABLE 10. Average results of SMAPE metric with standard deviations of one-step-ahead prediction for real-world power load forecasting data sets.

TABLE 11. Average results of NRMSE metric with standard deviations of one-step-ahead prediction for real-world power load forecasting data sets.

analyze the performance, we conduct a pairwise comparison
for each ESN-based method against LS-ESNs. Specifically,
we conduct the Nemenyi non-parametric statistical rank order
test [44] on MSE, SMAPE, and NRMSE average rank. And
the results are shown in Figure 6. Horizontal lines join the
clustering methods that are not statistically significantly dif-
ferent. The critical difference is 2.850, which means that the
two methods are not significantly different at the p < 0.05
level when their rank difference is less than 2.850. LS-ESNs
achieve the best average ranks on all measures. LS-ESNs
are significantly superior to M-ESNs at the p < 0.05 level

on all measures and significantly better than R2SP at the
p < 0.05 level on NRMSE measure. Although LS-ESNs is
not statistically significantly better than ϕ-ESNs, deepESN
and MESM, it is numerically superior to them in the average
rank of MSE, SMAPE, and NRMSE.
Compared With Traditional Methods: As shown in

Tables 9, 10 and 11, LS-ESNs achieve nine bests on MSE,
eight bests on SMAPE, six bests on NRMSE which are the
best result among all comparison methods. Also, LS-ESNs
achieves the best average rank. The results further demon-
strate the effectiveness of our proposed LS-ESNs and the
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FIGURE 6. Critical difference diagram over the average rank of (a) MSE,
(b) SMAPE, (c) NRMSE of LS-ESNs and five ESN-based methods on the
power load data sets. The methods connected in one group are not
significantly different at p < 0.05 significance level.

FIGURE 7. Critical difference diagram over the average rank of MSE(a),
SMAPE(b), NRMSE(c) of LS-ESNs and five traditional methods on the
power load data sets. The methods connected in one group are not
significantly different at p < 0.05 significance level.

benefit of the multi-scale temporal dependency features. To
further analyze the performance, we conduct a pairwise com-
parison for each traditional method against LS-ESN. Specif-
ically, we conducted the Nemenyi non-parametric statistical
rank order test [44] on MSE, SMAPE, and NRMSE average
rank. And the results are shown in Figure 7. Horizontal
lines join the clustering methods that are not statistically
significantly different. The critical difference is 2.728, which
means that the two methods are not significantly different at
the p < 0.05 level when their rank difference is less than
2.728. LS-ESNs again achieve the best average ranks on all
measure. LS-ESNs is significantly superior to SVR at the
p < 0.05 level under all measures. Although LS-ESNs is not
statistically significantly better than LSTM, RNN, FNN, it is

TABLE 12. Memory capacity results (higher is better) achieved by
deepESN, LS-ESNs and conventional ESNs.

numerically superior to them in the average rank of MSE,
SMAPE, and NRMSE.

We randomly selected 2 large customers to plot the abso-
lute error curve. As shown in Figure 5, our proposed method
LS-ESNs achieve the best performance with minimum error.

D. MEMORY CAPACITY TASK
In this section, we will analyze the memory capability of
LS-ESNs. This task provides a measure of the short-term
memory capacity of RC networks by evaluating howwell it is
possible to echo delayed versions of the inputs [31]. The data
used by the task is a univariate time series, and the value of
each time setp is uniformly sampled from [−0.8, 0.8]. The
task aims to reconstruct the history signals. For each time
step t , we consider the target values yk (t) = u(t − k), k =
0, 1, . . . ,∞. The score of MC is defined as:

MC =
∞∑
k=0

r2(u(t − k), yk (t)) (25)

where r2(u(t−k), yk (t)) refer to the squared correlation coef-
ficient between the input with delay k and the correspond-
ing reconstructed value yk (t) (higher is better). In practice,
the MC score can be computed by considering only a finite
number of delayed signals.

In this paper, we set up an MC task similar to [31], by con-
sidering a number of delays equal to 200. The input signal
contained 6000 steps, 5000 of which used for training, and
the remaining 1000 for the test. We independently repeat the
experiment ten times to report the mean MC score.

The MC score on the test set achieved by deepESN,
LS-ESNs and conventional ESNs are reported in Table 12.
As shown in Table 12, LS-ESNs achieves the best MC
score among all the comparison methods, which indicates
the skipping connections can enhance the memory ability of
conventional ESN. In particular, LS-ESNs obtain the bestMC
value of 53.01 with an improvement of 28% compared to the
value achieved by deepESN and 33% compared to the value
achieved by conventional ESNs.

E. ABLATION STUDY
The long-term reservoir with the larger value of skip step k
in LS-ESNs can capture the more long-term trends of time
series, and the short-term reservoir can capture the more local
patterns of time series, making LS-ESNs capable of capturing
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FIGURE 8. The prediction performance of LS-ESNs for the skip step k and short dependency scope m (measured by the MSE).

multi-scale temporal dependency features. Hence, we remove
one or both of long/short-term reservoirs and compare them
with the full model LS-ESNs to verify the effect of each
reservoir.

The ablation study results are shown in Figure 9. We per-
formed an ablation study on the power load data of two ran-
domly selected large factories, resulting in two sub-graphs.
ESN represents the typical reservoir, ESN+Short represents
the combination of the traditional ESNs and the short-term
reservoir, ESN+Long represents the combination of the tra-
ditional ESNs and the long-term reservoir, and LS-ESNs
represents the full model.

As shown in Figure 9, the best prediction performance is
obtained by including long-term reservoir, typical reservoir,
and short-term reservoir. Containing either the long-term or
short-term reservoir can significantly improve the prediction
performance. Compared with ESN+Short and ESN+Long,
LS-ESNs achieve about 30% and 15% error reduction, indi-
cating that the long-term temporal dependency feature is
more important for time series prediction.

F. HYPER-PARAMETER ANALYSIS
Here, we provided the analysis on the hyper-parameter,
skip step k , and short dependency scope m. As shown
in Figure 3(d), The sunspot data set exhibits obvious long-
term characteristics of periodicity and trend, which requires
a large k to capture this long-term dependence. As shown
in Figure 8(a), when the value of k is relatively large, a better

FIGURE 9. Ablation study on power load large customers data sets. The
top plot is the ablation study on large customer No.2, and the bottom one
is large customer No.6.

MSE is obtained. However, increasing k does not always
significantly help. Because when the value of k is too small,
it is not enough to model long-term dependent features. If the
value of k is too large, it may lead to ignoring too much
information. Therefore, there is a relatively suitable value of
k for each parameter setting. On the other hand, when the
value of m is relatively small, LS-ESN obtains a better MSE,
as shown in Figure 8(c). This is because No.4 (Figure 3(b))
shows a phenomenon of violent fluctuations, and there is no
obvious long-term trend and periodicity. Thus, we need to
model short-term features. The Lorenz dataset also exhibits
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similar behavior. The other datasets in Figure 8 tend to have
relatively large k and achieve lower MSE.
Summarizing the above analysis reveals the long-term

reservoir is ideal for capturing long-scale temporal depen-
dency features and short-term reservoir is suitable for cap-
turing short-scale temporal dependency features. In addition,
Figure 8 also illustrates that LS-ESN is sensitive to the skip
step k and short dependency scope m to some extent.

V. CONCLUSION
In this paper, the long-short term echo state networks
(LS-ESNs) are proposed to effectively capture multi-scale
temporal features by the multiple independent reservoirs with
different recurrent connections. The experiments on the two
time series prediction benchmark data sets and a real-world
power load data set demonstrate the effectiveness of the
proposed LS-ESNs. Moreover, we analyzed the effect of each
reservoir on the performance of the LS-ESNs and discussed
the impact of skip step k and short dependency scope m.

LS-ESNs currently only can capture themulti-scale tempo-
ral dependency features of univariate time series and cannot
model the relationship between the variables that exist inmul-
tivariate time series. The future work will consider enhancing
LS-ESNs to model the multiple variable dependencies and
apply them to multivariate time series prediction.
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