
Received April 17, 2020, accepted May 11, 2020, date of publication May 14, 2020, date of current version May 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994597

An Approach to Global Illumination Calculation
Based on Hybrid Cone Tracing
TAO LIU 1,2,5, JIN GAO3, AND ZHENGLING LEI4
1College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China
2Hubei Key Laboratory of Inland Shipping Technology, Wuhan 430063, China
3China Waterborne Transport Research Institute, Beijing 100088, China
4College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China
5School of Data Science and Technology, North University of China, Taiyuan 030051, China

Corresponding author: Zhengling Lei (zllei@shou.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602426, Grant 61672473, and
Grant 61702147, in part by the China Postdoctoral Science Foundation under Grant 2017M621932, in part by the Open Subject of the State
Key Laboratory of Engines (Tianjin University) under Grant K2019-14, and in part by the Fund of the Hubei Key Laboratory of Inland
Shipping Technology under Grant NHHY2019001.

ABSTRACT For 3D geographic information systems (GIS) or video game systems, global illumination (GI)
effect can greatly improve the understanding of the volumetric structure and the spatial relationships of
objects in the scene. However, GI effect is computationally expensive. It requires not only complex visibility
computations between arbitrary points but also the integration computation over a large number of directions.
These two computations become extremely difficult tasks for the real-time or interactive algorithms of the
dynamic scene. This paper proposes a lightweight GI calculation approach built upon a hybrid cone tracing
algorithm with which to approximate the GI effect of the open world scene in real time. First, the 3D scene
is divided into two types: complex meshes and height-field meshes. Second, the corresponding lightmaps of
the two meshes are generated and mipmaped, respectively. GPU hardware acceleration technology is used
to do the calculation efficiently. Finally, a hybrid cone tracing method is performed on the GPU to gather the
indirect lighting information for each shaded point. The method first carries out the cone-scene intersection
test and then carries out the light sampling and accumulation calculation. All tracing calculations are based on
the hybrid lightmap representation. In addition, the experiment results show the effectiveness of our method.
Compared with the 3D texture VCT method, memory consumption can be reduced by up to 80% in our
experiment.

INDEX TERMS Global illumination, cone tracing, real-time rendering, hybrid lightmap representation.

I. INTRODUCTION
GI effects can greatly improve the understanding of the
volumetric structure and the spatial relationships of objects
in the scene [1], and have been widely investigated since
the earliest days of graphics research. For modern 3D GIS
or video game systems, there is a growing need to offer a
realistic environment, where the GI effect plays an important
role. During these applications, almost all operations need the
user to interact with the 3D environment, i.e., move objects
around, construct buildings, or change the lighting dynami-
cally. This is where dynamic GI comes into play. Compared
with static pre-computed algorithms, dynamic GI algorithm
does account for highly dynamic environments. Therefore,

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno Garcia .

there is a high interest in developing real-time dynamic GI
algorithms.

Lighting algorithms that additionally describe the light at
a certain surface point as a function of other geometries
in the scene are hence called GI algorithms. GI algorithm
can drastically improve the realism of a rendered scene.
However, GI effect is computationally expensive. In order to
generate plausible results in various applications, including
movies, simulations, computer-aided design and computer-
aided manufacturing, and video games, a lot of GI algorithms
have been proposed. Such algorithms can be classified as
either realistic algorithm for a physically plausible result or
real-time algorithm for a fast approximation result.

Complete realistic rendering algorithms are not yet practi-
cal to compute in real-time for dynamic scenes. For exam-
ple, path tracing methods require a lot of computational

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 92061

https://orcid.org/0000-0002-1194-3253
https://orcid.org/0000-0002-3195-3168

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

consumption. They usually take a few minutes or even hours
to generate ground truth for each frame. With the introduc-
tion of new level programmable commodity GPU hardware
in 2002, there is an exploration in the number of real-time
algorithms [2]. Real-time algorithms which take as their tar-
get an art director’s ‘vision’, rather than a particular subset
of the physics of light. The representative method is the pre-
computed radiance transfer (PRT) technology, which uses the
cached light transport to allow new views and/or re-lighting of
a 3D scene to be generated in real time. This kind of method is
proposed to balance the computational load between run-time
and pre-processing costs. However, the PRT method needs
a long pre-computation time, and thus is not suitable for
the interactive re-lighting of dynamic scenes. To address the
limitations, Crassin et al. [3] proposed a voxel cone tracing
algorithm (VCT) to compute GI effect in real time, which
avoids costly pre-processing steps. The VCT algorithm is
based on a hierarchical voxel octree representation. It accel-
erates the integral calculation of the rendering equation [4] by
means of pre-filtering, and is a relatively high-quality method
for real-time dynamic illumination. However, although this
method results in plausible effects, maintaining such hierar-
chical voxel representation can limit the size of the scene.

In this paper, we propose a hybrid cone tracing algorithm
with which to approximate the GI effect of the open world
scene in real time. It not only maintains the advantage of
VCT method but also can adapt to more 3D scenes. First,
we introduce the theoretical foundation for the cone tracing
method and our lightmap computation method based on the
classification of meshes. The lightmap computation forms the
basis for subsequent calculations. Second, we design a hybrid
cone tracing method for use in combination with our hybrid
lightmap representation, which can significantly reduce the
number of intersection tests performed. This method requires
very little pre-processing and hence works well in dynamic
3D scenes.We evaluate the effect of ourmethodwith theVCT
method and the ray tracing method. Moreover, we observe a
significant improvement compared with the VCT method.

II. RELATED WORK
In this section, we present a brief review of previous works
on GI calculation.

Usually, light is scattered multiple times before reaching
the eye. The GI algorithm calculates this natural phenomenon
of the virtual scene. In the direction of realistic rendering,
researchers have investigated a large number of realistic GI
algorithms, including path tracing, photon mapping, many-
light, radiosity, metropolis light transport (MLT) [5]–[10].
These algorithms can build physically plausible GI effects,
some of which can be used together to build more accu-
rate results, but these algorithms require a long calculation
time and are generally not directly applicable to real-time
rendering.

The introduction of new level programmable commodity
GPU hardware in 2002 leads to an exploration in the number
of real-time rendering algorithms. This paper mainly focuses

on the study of the real-time rendering algorithms. We will
analyze the real-time GI algorithms in detail. The core of the
real-time GI algorithm is how to collect surrounding optical
signals to approximate the rendering equation and take full
advantage of the high parallel computing power of GPU.
At present, the representative GI algorithms in real-time ren-
dering direction mainly include virtual point light method
(VPL) [11], reflective shadow map method (RSM) [12],
screen space method [13]–[15], PRT method [16], light
propagation volume method (LPV) [17], VCT method [3],
Real-time ray tracing method [18], [19]. Among them, PRT
method, VCT method, screen space method and real-time
ray tracing method are hot research issues. Since screen
space ambient occlusion (SSAO) method was first pro-
posed by Vladimir Kajalin in 2007, a large number of
improved algorithms, such as screen space volume obscu-
rance (SSVO), screen space directional occlusion (SSDO),
horizon based ambient occlusion (HBAO) and high definition
ambient occlusion (HDAO) [20], [21] have been investigated.
Real-time raytracing method is proposed in recent years and
has good development potential. The specific analysis of the
representative real-time GI algorithms is shown in Table 1.

In addition, in order to improve the efficiency of the GI
algorithm, researchers have carried out explorations on the
algorithm implementation. These efforts mainly focus on
the integration of rendering task and distributed computing,
aiming to make use of the powerful computing power of
computer clusters. DeMarle et al. [22] used the scene segmen-
tation method and a shared memory-based data communica-
tion to achieve interactive ray tracing. Based on the Manta
Interactive Ray Tracer rendering engine, Ize et al. [23] used
the bounding volume hierarchy (BVH) acceleration structure
and amulti-threadmemory sharingmethod to boost the speed
of distributed ray tracing.

At present, researchers have done a lot of research on
real-time GI rendering. However, the real-time GI algorithm
of large-scale virtual geographic scenes mainly focuses on
static scenes. Most algorithms need pre-computation, and
thus these algorithms are difficult to meet the needs of various
applications. There are few studies on the real-time GI calcu-
lation for large-scale dynamic virtual geographic scenes.

III. THEORETICAL FOUNDATION
First, we give the theoretical foundation of our algorithm.
Our algorithm mainly focuses on the diffuse effect. The
calculation of GI is essentially the solution process of the
rendering equation [4]. Kajiya’s rendering equation states that
the outgoing radiance Lo (x, ω) at a point x in direction ω is
the sum of an emitted radiance term and a reflected radiance
term, where the reflected radiance Lr (x, ωo) is calculated
according to (1).

Lr (x, ωo)=
∫
�+

Li(x, ωi)fr (x, ωi→ωo) < N (x), ωi >+ dωi.

(1)

92062 VOLUME 8, 2020

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

TABLE 1. Representative real-time GI algorithms.

where �+ is the upper hemisphere integral field oriented
around the surface normal N (x) at point x, fr (x, ωi → ωo) is
the bi-directional reflectance function (BRDF) of the surface
and < N (x), ωi >+ represents the dot product clamped to
zero.

Normally, the BRDF can be treated as a constant term ρ for
the diffuse color, and thus in the GI computation the reflected
radiance Lr (x, ωo) can be simplified as follows:

Lr (x, ωo) =
ρ

π

∫
�+

Li(x, ωi) < N (x), ωi >
+ dωi. (2)

Many techniques exist which try to simplify the integral∫
�+k

Li(x, ωi) < N (x), ωi >+ dωi by making various trade-

offs. We introduce a pre-filtering scheme-based cone tracing
simplification method. We can send out a few cones over
the hemisphere to collect illumination and approximate the
radiance of each cone using a constant term based on a filter
(for example, VCT method, which adopts the quadrilinear
interpolation and amip-map pyramid). The reflected radiance
Lr (x, ωo) can be simplified as follows:

Lr (x, ωo) =
ρ

π

n∑
k=1

Lk (x, ωk)
∫
�+k

< N (x), ωi >+ dωi. (3)

where n is the number of cones and Lk (x, ωk) is the filtered
radiance of each cone.

If we treat the term
∫
�+k
< N (x), ωi >+ dωi as a weighted

term for a further simplification, then the equation can be
written as:

Lr (x, ωo) =
ρ

π

n∑
k=1

Lk (x, ωk)Wk . (4)

IV. ALGORITHM REVIEW
In this section, we describe in detail the issue we deal with
and present the framework of our algorithm. The goal of
our algorithm is to allow real-time rendering of dynamic GI
effects, which has better scalability than the VCT method.

A. PROBLEM DEFINITION
GI effect is computationally expensive. It requires not only
complex visibility computations between arbitrary points but
also the integration computation over a large number of
directions. These two computations become extremely dif-
ficult tasks for the real-time or interactive algorithms of the
dynamic scene. We work on the integration of cone tracing
method and pre-filtering scheme in order to allow GI compu-
tation on open world scenes. The integration of cone tracing
method and pre-filtering scheme can dramatically reduce

VOLUME 8, 2020 92063

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

the computation cost of the visibility and integration shown
in (3).

In this paper, we suppose that the 3D scene of interest is
represented by triangle meshes and the scene can be divided
into pieces. Based on this assumption, we divide the scene
into different mesh types. For different mesh types, we use
different methods for lightmap calculations and then use a
unified model calculation for synthesis. Based on the theo-
retical foundation described in Section III, the cone tracing
approximation of the GI computation is reasonable. For dif-
ferent lightmap representations, we adopt different cone trac-
ing strategies and design efficient data structures to achieve
the cone tracing computation. Enough cones will make the
result of our algorithm closer to the accurate solution.

B. ALGORITHM FRAMEWORK
As shown in Fig. 1, our approach is mainly divided into
two steps: lightmap computation and hybrid cone tracing.
We first divide the given 3D scene into two types: com-
plex meshes and height-field meshes. Two type lightmaps
are used to receive incoming radiance from dynamic light
sources. We use 2D texture to represent the lightmap of
the height-field mesh, while use 3D texture to represent the
lightmap of the complex mesh. This will provide us with a
GPU-friendly data structure, whose computation is highly
parallelizable. The radiance storage computation is done
by rasterizing or voxelizing the corresponding mesh from

FIGURE 1. The flow chart of hybrid cone tracing method.

all light sources. Then, the lightmap values are mipmaped
(filtered) into higher levels. We rely on the GPU hard-
ware acceleration technology to do the calculations. Finally,
we design a hybrid cone tracing method for use in combina-
tion with our hybrid lightmap representation, which can sig-
nificantly reduce the number of intersection tests performed.
The hybrid cone tracing method is performed to do the final
gathering. This method requires very little pre-processing and
hence works well in dynamic 3D scenes.

V. LIGHTMAP COMPUTATION
To address the storage consumption problem with the previ-
ously proposed VCT method, we propose a hybrid lightmap
representation method that can be applied to more 3D scenes.
For a given 3D scene/mesh, the corresponding lightmap is a
discrete sample of the incoming radiance and mesh geometry
information. In our algorithm, lightmap will serve as our
means of rapidly computing the visibility and integration
of the rendering equation for any point in the scene we
wish to light. In Subsection A, the judgment calculation of
whether a mesh can be represented by height field is intro-
duced. In Subsection B, we introduce the multi-resolution
sampling strategy for the hybrid lightmap representation.
In Subsection C, a unification strategy for the hybrid repre-
sentation is presented.

A. JUDGMENT OF HEIGHT FIELD REPRESENTATION
When the 3D scene model is loaded, we firstly do the judg-
ment calculation of whether a mesh can be represented by
height field. For each mesh, the calculations are as follows:

Step1: calculate the bounding box of the mesh, and then
use the bottom surface of the bounding box with a certain
mesh resolution to sample this mesh to get a height field
simplification of the mesh. For each sample point (x, z),
the sample value y(x, z) is the maximum value along the
Y axis.

Step2: compute the geometric difference between the mesh
and the height field simplification mesh. This calculation is a
quite common task in mesh processing [24], [25]. However,
many accurate comparison algorithms are computationally
inefficient. And the situation we discussed is relatively simple
and does not involve the problem of model pose adjustment.
Thus, we use parallelization Hausdorff distance method to do
the judgment, which is enough for this problem. Hausdorff
distance is calculated according to (5) in this paper.

d(X ,Y) = avg
x∈X

(inf
y∈Y
‖x − y‖)/D. (5)

where X represents the vertex set of the original mesh,
Y represents the vertex set of the height field simplification
mesh, avg(·) denotes the average of the Euclidean distance,
inf
y∈Y
‖x − y‖ searches for each x the closest point y and cal-

culates the Euclidean distance, D depicts the body diagonal
of the bounding box. D is used to eliminate the influence of
model units. This calculation is realized based on compute
shader and octree acceleration structure. Each vertex x is

92064 VOLUME 8, 2020

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

assigned a compute thread. If d(X ,Y) is less than a certain
value, then the mesh can be represented by height field.
The threshold is usually a small value. In our experiment,
the threshold is set to 0.001. In order to improve the calcula-
tion efficiency, center of gravity of each triangle can be used
to replace the vertex point in the distance calculation.

B. MULTI-RESOLUTION SAMPLING
As described above, the 3D scene is divided into two types:
complex meshes and height-field meshes, based on the judg-
ment of whether the mesh can be represented by height
field. For different mesh types, we use different methods
for lightmap calculations. In our multi-resolution sampling
method, given a 3D mesh, if it can be represented by
the height-field mesh, then the lightmap of this mesh is a
2D texture.

For a complex mesh, we use 3D lightmap texture to receive
the incoming radiance and cache the spatial attribute of the
mesh. The 3D texture is calculated by the GPU hardware
rasterizer (voxelization) [26]. Usually, the resolution 256 ×
256 × 256 for a piece of the open world scene can meet the
visual requirements. Then, the lightmap is mipmaped. GPU
hardware acceleration technology is used to do the calculation
efficiently. Each voxel of the lightmap contains the diffuse
albedo and normal information of the geometry and is used
later to do the GI calculation [3]. Since the voxel grid is
recreated each frame, the multi-resolution sampling is fully
dynamic and does not rely on any pre-computations.

For a height-field mesh whose surface can be described
as a single valued function of two coordinates (x, z), the 2D
lightmap texture is used to cache the incoming radiance and
geometry information. Firstly, the mesh is rasterized accord-
ing to the resolution of the 2D lightmap texture. Each pixel
stores the incoming radiance of the corresponding grid point,
and the alpha channel is used to store the height value of
the grid point. This will not only reserve the height infor-
mation for the subsequent calculations but also significantly
reduce the storage space. Then, the lightmap is mipmaped.
In the mipmap process, the lightmap is used to implement
filtering of the scene geometry information. The calculation
is repeated each frame as the voxelization process. Also,
GPU hardware acceleration technology is used to do the
calculation.

At last, for each mesh, a corresponding lightmap is gen-
erated and filtered. This kind of direct GPU representation
will be very helpful for the GI computation. Changes of light
source and geometry do not affect the average frame rate of
the algorithm.

C. UNIFICATION CALCULATION
During the cone tracing, the conemay pass from one lightmap
representation to another. Given the hybrid lightmap repre-
sentation, to ensure that theGI computation has a unified cone
tracing result, it is necessary to do the unification calculation
between different lightmap representations. In the final cal-
culation, the use of the currently described hybrid lightmap

representation can bemathematically described as (6) and (7).

voxelvalue+= accVoxel(distance,mesh1, 3Dlightmap). (6)

texelvalue+= accTexel(distance,mesh2, 2Dlightmap). (7)

where distance represents the forward distance of cone trac-
ing, mesh1 represents the spatial attribute of the complex
mesh, mesh2 denotes the morphological characteristic of the
height-field mesh, accVoxel and accTexel depict the accumu-
lation functions of the lightmap. The mesh term represents
different ways of dealing with the mesh and lightmap. The
actual unification of the cone tracing calculation should be the
unification of distance. That is, we should unify the forward
distance in each lightmap space. Therefore, we calculate the
distance in each lightmap (3D lightmap texture / 2D lightmap
texture) layer based on the world coordinate system and unify
the distances according to the mipmap level and the forward
distance of cone tracing in the world coordinate system.
Of course, if the resolution of 2D lightmap is an integer
multiple of the resolution of 3D lightmap, the unification
calculation will be simpler.

The detailed steps of this process are described as follows:
Step1: use unified metric space to calculate the lightmaps

of the complex mesh and the height-field mesh, respectively.
That is, the complex mesh and the height-field mesh are
scaled to a uniform scale [Dx, Dy, Dz] for lightmap com-
putation (voxelization and rasterization). We calculate the
bounding boxes of the two types of mesh and use the bound-
ing box of the union of the calculated bounding boxes as
the reference. Then, we scale the two types of mesh to the
reference size.

Step2: adopt (8) to calculate the Level Of Detail (LOD)
level of the current lightmap, during the cone tracing.

Lv = log2(diameter/xelworldsize). (8)

where diameter represents the forward distance of cone
tracing in the world coordinate system, xelworldsize repre-
sentsmax(Dx,Dy,Dz)/voxel_resolution for the 3D lightmap
and represents max(Dx,Dy,Dz)/texel_resolution for the 2D
lightmap. The derivation of this equation is based on the
power-of-two mip-map scheme.

Step3: perform the coordinate correction calculation
according to (9).

pos = pos_pre ∗ max(Dx,Dy,Dz)/max

(boundingbox(x), boundingbox(y), boundingbox(z)).

(9)

where pos_pre represents the original coordinate,
boundingbox(x) represents the x-coordinate of the bounding
box of the mesh, boundingbox(y) represents the y-coordinate
of the bounding box of the mesh and boundingbox(z) repre-
sents the z-coordinate of the bounding box of the mesh.

VI. HYBRID CONE TRACING
To use the hybrid lightmap representation, we propose a
hybrid cone tracing method that can efficiently complete

VOLUME 8, 2020 92065

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

the GI computation. Based on the theoretical foundation
described in Section III, the core of the cone tracing approx-
imation method is to calculate the filtered radiance of each
cone. We use a step-by-step fitting cube method to achieve
this calculation. In the step-by-step fitting cube method,
cone tracing can essentially be seen as the calculations
of intersection of the fitting cube and the scene and light
sampling. Therefore, we divide the cone tracing process into
three steps: step-by-step intersection test and skip, light sam-
pling and step-by-step accumulation model. In Subsection A,
we introduce the intersection test and skip method, includ-
ing intersection calculation of the fitting cube and the 3D
lightmap, intersection calculation of the fitting cube and
the 2D lightmap and the skip strategy. In Subsection B,
we present the light sampling method, including light sam-
pling calculation of 3D lightmap and light sampling of 2D
lightmap. At last, the step-by-step accumulation model is
introduced in Subsection C.

A. INTERSECTION TEST AND SKIP METHOD
In our hybrid cone tracing method, each cone is generated
based on the tangent space of the surface point. The essence
of the step-by-step fitting cube method is to fit the sample
space of the cone along the central axis of the cone step by
step. In each step, an axis-aligned fitting cube is constructed.
The schematic diagram is shown in the left part of Fig. 2.
The step-by-step intersection test and skip method is mainly
used to solve the intersection calculation between the fitting
cube and the filtered scene represented by the lightmap and
perform skip judgment based on the result of intersection
test. We use the step-by-step refinement and early rejection
strategy to increase computational efficiency. All calculations
are expressed by vector calculations and symbolic judgments,
which have a good computational efficiency.

FIGURE 2. The schematic diagram for the step-by-step fitting cube
method. Left: 3D schematic diagram for the step-by-step fitting cube.
Right: The schematic diagram for the fitting cube calculation.

For the intersection calculation of the fitting cube and
the 3D lightmap, the calculations are conditionally limited
and optimized to combine the calculation of the height-field
cone tracing. This intersection calculation not only judges the
intersection situation, but also finds the intersection points
for the subsequent calculations. We adopt axis-aligned fit-
ting cube to fit the sample space step by step. This kind
of calculation method can quickly perform the intersection
test, which saves a large amount of 3D triangle intersection

calculations compared to the cone axis-aligned fitting cube.
We derive the calculation formula for the fitting cube. Our
method performs the simple scale S and translation T trans-
formations on the unit cube at the origin to calculate the fitting
cube. This is more efficient than the complex rotation and
translation calculations of the cone axis-aligned fitting cube.
The schematic diagram is shown in the right part of Fig. 2.
Detailed calculations are as follows.

If the vector v is parallel to the X-axis (or Y-axis, or Z-axis),
then the operators are calculated according to (10).{

S = d/
√
2,

T = sp+ v ∗ (dis+ S/2).
(10)

If the vector v is not parallel to the X-axis, Y-axis, and
Z-axis, then the operators are calculated according to (11).{
S = (d1 + d2)/

√
3,

T = sp+ v ∗ (dis+ cos(θ1) ∗ d1)+(d2−d1)/2 ∗ f1.
(11)

The parameters of (9) and (10) are as follows:
v−unit vector of the central axis of the cone;
sp−start point of the cone;
d−radius of the cone bottom in the current sample space;
dis−forward distance of cone tracing;
f1−unit vector of the body diagonal of the unit cube;
d1 = d/2/sin(θ1);
d2 = (dis+ cos(θ1) ∗ d1) ∗ sin(θ/2)/sin(θ1 − θ/2);
θ−cone angle;
θ1 = acos(v ∗ f1/(|v| ∗ |f1|)).
Then, we perform the intersection calculation. There are

four kinds of spatial relationship between the 3D lightmap
and the fitting cube: 3D lightmap contains fitting cube, fitting
cube contains 3D lightmap, 3D lightmap intersects with fit-
ting cube and 3D lightmap does not intersect with fitting cube.
Based on the above fitting cube calculation, we adopt the
following equation to perform the intersection test calculation
and calculate the intersection points:

[X ,Y ,Z] = [X1
[L1,U1],Y

1
[L1,U1],Z

1
[L1,U1]]

∩ [X2
[L2,U2],Y

2
[L2,U2],Z

2
[L2,U2]]. (12)

where, [X ,Y ,Z] represents the intersection point, [X1
[L1,U1]

,

Y 1
[L1,U1]

,Z1
[L1,U1]

] represents the bounding box of the 3D
lightmap and [X2

[L2,U2]
,Y 2

[L2,U2]
,Z2

[L2,U2]
] represents the

bounding box of the fitting cube. It can be seen from the
equation that this calculation is very efficient, avoiding com-
plex triangle-triangle intersection test and intersection point
calculation. Based on the final intersection calculation result,
we can quickly make a skip decision. If the fitting cube
intersects with 3D lightmap, further calculations can be per-
formed; otherwise, the sample space is just skipped.

For the intersection calculation of the fitting cube and
the 2D lightmap, the schematic diagram is shown in Fig. 3.
In the calculation process of the intersection judgment
of the fitting cube and the 3D texture, the intersection
judgment of the fitting cube and the height-field mesh is

92066 VOLUME 8, 2020

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

FIGURE 3. The schematic diagram for the height-field cone tracing
method. The orange square indicates where the sample is to be taken.

simultaneously performed. The sampling rule of the
height-field cone tracing is that sampling is started at the
minimum height of the cone and abandoned at the maximum
height of the cone.

We design a hierarchical min-max summed area table
(HSAT) method to realize the judgment calculation effi-
ciently. Since the cone tracing on the height-field mesh
is based on the hierarchical 2D lightmap in the hybrid
representation-based cone tracing, we perform the min-max
SAT calculation [27], [28] for each layer to optimize the inter-
section test calculation. Based on the min-max SAT of each
layer of the 2D lightmap, the fast approximate calculation of
minimum andmaximumheight in the projection quadrilateral
(the vertical projection of the fitting cube) of the height-field
mesh can be realized.

Generating a box-filtered value using a summed-area table
requires sampling the summed-area table at the four corners
of a rectangular filter region [Srt , Slb, Slt , Srb]. The filtered
value is calculated according to (13).

sfilter =
Srt + Slb − Slt − Srb

wx ∗ wy
(13)

where wx and wy are the width and height of the filter kernel,
Srt is the right-top sample of the filter kernel, Slb is the
left-bottom sample of the filter kernel, Slt is the left-top
sample of the filter kernel and Srb is the right-bottom sample
of the filter kernel.

Maximum value of the filter kernel can be approximated
by (14). This method uses some expensive floating point
operations, but its run time is constant in the kernel width.
The crux of the method is the following approximation cal-
culation, which works well for 0 < xi < 1, p� 1.

maxNi=1xi ≈ (
1
N

N∑
i=1

xpi)
1/p. (14)

The minimum filter can be implemented by finding the
maximum of the inverse value and then inverting the result.

Based on the filtered value, the intersection judgment of
the fitting cube and the height-field mesh can be efficiently
implemented. By using the intersection judgment result,
we can achieve a fast step-by-step skip test in the step-by-step
fitting cube method.

B. LIGHT SAMPLING
In our algorithm, we use a step-by-step fitting cube method
to calculate the filtered radiance of each cone. Based on the
intersection calculation of the fitting cube and the lightmap,
the light sampling calculation is performed in the fitting cube
step by step.

We want to incorporate the GI effect on any point p,
from all surrounding objects in the scene, not just the effect
of nearby concavities. The fact is that objects at a greater
distance should have a lesser, blurrier effect than those near
the point p. So, we use a pre-filtering scheme-based step-
by-step multi-resolution sampling method. Each sample (at a
distance dis) can be treated as capturing the occlusion effects
of objects at a distance dis. To simulate the increasing blurring
effect, our method uses distance-based pre-filtered copies of
the lightmap in each step. The fitting cube size for each step
is proportional to each dis. This maps well to the GPU texture
implementation. The pre-filtered lightmap textures are stored
in the mip-map chain in the video memory. Based on the
calculation method of LOD level described in Subsection B
of Section V, the lightmap texture can be efficiently sampled
using LOD level biased texture load instructions in the pixel
shader.

Light sampling in the fitting cube consists of the light
sampling of the irregular projection region in the 2D lightmap
and the sampling of the 3D lightmap, as shown in Fig. 4.
Therefore, the core of the light sampling method is how to
quickly sample the average value of the irregular region of
the 2D lightmap and the average value of the intersection part
of the 3D lightmap formed by the 3D lightmap and the fitting
cube.

FIGURE 4. The schematic diagram for the light sampling of the hybrid
lightmap representation.

For the light sampling calculation of the 3D lightmap,
we use the geometric center of the intersection part to sam-
ple the corresponding pre-filtered copy of the 3D lightmap.
Based on the intersection calculation of the fitting cube and
the 3D lightmap, geometric center of the intersection points
can be calculated and used to sample the 3D lightmap. The
geometric center is calculated according to (15).

M = (

∑n
k=1 xk
n

,

∑n
k=1 yk
n

,

∑n
k=1 zk
n

). (15)

where n is the number of the intersection points.
M is the center of gravity of the intersection part. That

is, we use the regional volume distribution as an attribute to

VOLUME 8, 2020 92067

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

measure the irregularity of the model. Based on the geometric
center and the scale information of the sample space, we use
quadrilinear interpolation to ensure a smooth effect. We set
a threshold for the size of the intersection part. If the size of
the intersection part is less than the threshold, then the light
sampling calculation can be canceled. We use the bounding
ball to do this test. If the radius is less than a certain value, then
the calculation can be canceled. During the implementation,
there is a self-influence phenomenon that needs to be dealt
with. The sample point will be offset in normal direction of
the point p to eliminate the bright spot caused by the first
sample of the cone tracing.

For the light sampling of the 2D lightmap, we adopt a
morphology search method based on the cone direction. The
radiance of point p on the height field is calculated based on
the weighted average calculation of the normal direction and
the cone direction. Based on the intersection calculation of the
fitting cube and the 2D lightmap, the morphology search
method first divides the projection region, and then performs
the morphology digital differential analyzer (DDA) search,
including backface culling and dynamic tracing distance. The
segmentation of the projection region is shown in Fig. 5.

FIGURE 5. The schematic diagram for the projection segmentation. The
red solid line box represents the projection of the 3D lightmap on the
height-field mesh, the red dashed box represents another case of the 3D
lightmap projection, the blue solid line box represents the projection of
the fitting cube, and the blue dashed line indicates the segmentation of
the projection of the fitting cube.

In the second step, the projection segmentation is subdi-
vided, and the height-field morphology search is performed
along the projection direction of the cone direction using the
2D DDA method. When there is an occlusion, the previous
height is used to determine whether or not the subsequent
sampling is retained. So, this is a dynamic distance tracing.
The radiance of the center point of the sub-mesh is taken as

the radiance of the sub-mesh, and the height of the center
point is used as the height of the sub-mesh.

Similar to the light sampling of the 3D lightmap, we also
need to handle the self-influence phenomenon.

C. ACCUMULATION MODEL
Based on the emission-absorption optical model introduced
in [29], [30], the accumulation model is used to accumulate
the sampling results of each step along the cone. The detailed
steps of this calculation are described as follows:

Case 1: the fitting cube only intersects with the 3D
lightmap. In each step, the occlusion a can be calculated from
the alpha channel of the 3D lightmap. We update the values
using the front-to-back accumulation.

Case 2: the fitting cube only intersects with the 2D
lightmap. We can adopt (16) to calculate the occlusion a in
each step.

a = (h2 ∗ A2 − h1 ∗ A1)/(h2 ∗ A2). (16)

where h1 and h2 are the average heights of the two sample
spaces, A1 and A2 are the occluded areas of the cross sections
of the cone. In order to achieve fast approximation calcula-
tion, we use (17) to calculate the occlusion a in each step
based on the approximate similar triangle principle.

a =
step_diameter

current_step_length
. (17)

where step_diameter represents the size of the sample space
and current_step_length represents the current forward dis-
tance of cone tracing. Based on our experiments, this approx-
imation calculation can have a high efficiency and a good
effect.

Mix intersection case: As shown in Fig. 4, the intersection
of the fitting cube and the 3D lightmap is consistent between
two adjacent levels. Therefore, the sampling value of 3D
lightmap is first attenuated by the occlusion a calculated by
the method of ‘Case 1’. Then, the overall average height in
each sample space is calculated based on the sample values
of 2D lightmap and 3D lightmap. At last, the method of
‘Case 2’ is used to calculate the final accumulation value.

Once the cone falls completely into the 3D lightmap during
the tracing process, the ‘Case 1’ method is used to do the cal-
culation based on the assumption that cone does not penetrate
the 3D lightmap after entering the 3D lightmap.

VII. RESULTS AND DISCUSSION
We implemented our hybrid cone tracing method on an
NVIDIA GTX 1080 system with an Intel Core i7-6700 CPU.
We achieve real-time frame rates on complex scenes. The
dynamic incoming radiance (energy and direction) is injected
into the hybrid lightmap representation. In our implemen-
tation, the complex mesh is voxelized with a compute pass
that generates and mipmaps the corresponding 3D lightmap.
Usually sparse voxel octree is not fast enough to use per-
frame in a real-time application. 3D texture based on the
GPU hardware acceleration technology is used to do the

92068 VOLUME 8, 2020

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

calculation efficiently. The 3D lightmap is generated based on
the bounding box of the complexmesh. The height-fieldmesh
is rasterized with a compute pass that generates and mipmaps
the corresponding 2D lightmap. We create a HSAT compute
pass that is able in a single draw call, to efficiently gener-
ate the hierarchical min-max summed area table in parallel.
At last, the scene is rendered with a final shading pass that
samples the hybrid lightmap represent. In the final shading
pass, the hybrid cone tracing method is used to do the final
gathering. In this paper, we only deal with the diffuse.

Fig. 7 shows the accurate solution created by the V-Ray
(Adv 3.40.01) & 3DS MAX 2017. Fig. 6 shows the GI effect
that our method achieves for the application case (1850K
triangles) with a 7-level 3D lightmap (1283 virtual resolu-
tion) and an 11-level 2D lightmap (20482 virtual resolution).
We use 6 cones to do the final gathering. The screen res-
olution of all these cases is 1280 × 720. On the applica-
tion scene, the average frame rate of our method is 50FPS.
Compared with the effect of VCTmethod (Fig. 8), our hybrid
cone tracing method results in a more detailed description of
the GI effect. We use an 8-level 3D lightmap (2563 virtual
resolution) for the VCT method. On the application scene,
the average frame rate of VCTmethod is 80FPSwith 6 cones,
for the 1280× 720 viewport.

FIGURE 6. The effect of our hybrid cone tracing method. Shadowing in
this image comes from the shadow map (4096 × 4096 resolution).

It can be seen from the result that the effect of our algorithm
looks pleasing and has smaller deviation from the accurate
solution compared with the VCT method. Our algorithm can
capture much more indirect lighting information. Compared

FIGURE 7. The effect of ray tracing. The ground truth is rendered with
V-Ray. We use the V-Ray shadow and brute force GI setting.

FIGURE 8. The effect of 3D texture voxel cone tracing method. Shadowing
in this image comes from the shadow map (4096 × 4096 resolution).

with the ray tracing method, our algorithm yields roughly
correct results. The ray tracing method takes 67 seconds
to achieve the result in the same hardware environment.

VOLUME 8, 2020 92069

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

However, our method can produce visual plausible results in
real time. Despite being physically incorrect, in the sense of
approximately capturing the physics of light bouncing from
one diffuse surface to another, our method is this kind of
simple, free yet pleasing trick which can go a long way in
the real-time application.

We also compared our method with the 3D texture VCT
method in the term of GI memory consumption. GI memory
consumptions for the two methods are shown in Table 2.

TABLE 2. Memory consumption comparison.

Compared with the 3D texture VCT method, our method
requires less GPU memory for the GI computation because
it is based on a hybrid lightmap representation. However,
compared with the VCT method, our method requires more
skip tests and samplings and thus is slower. The additional
computations for the 2D lightmap significantly degrade the
time performance. The VCT method does not consider the
mesh characteristics. It simply uses the 3D lightmap to filter
and sample the incoming radiance of the scene.

The core of our method is to divide the 3D scene into
two types and use different processing methods, based on
the judgment of whether the mesh can be represented by
height field. In this way, we can not only achieve the expected
results, but also reduce memory consumptions. This scheme
will allow the scale of the application scenario of pre-filtering
cone tracing strategy to be enlarged. Although we use the
HSAT method in the height-field cone tracing, the morphol-
ogy search method of the 2D lightmap slows the performance
of the height-field cone tracing method. Therefore, a more
efficient sampling strategy is needed. Although our method
can not accelerate the frame rate, it can get better results under
the premise of guaranteeing the effective use of memory.

As reported in [3], our method also suffers from light
leaking due to the discrete representation of the geometry
and irradiance. The leaking phenomenon can be reduced by
increasing the resolution of the lightmap.

With the development of RTX technology [31], GPU
hardware and cloud computing, ray tracing is getting more
and more attention. However, current algorithms do not
achieve complete real-time ray tracing. These methods
require high-performance graphics cards and heavy filter-
ing. These methods are not yet suitable for most application
scenarios. And, filtering is based on deep learning methods.
The generalization ability of the method needs further
study, especially for many real-time generated 3D scenes.
Of course, we also believe that real-time ray tracing methods
have a bright future. Our method focuses on lightweight
real-time GI. The main contributions of our method are

hybrid representation and intersection calculation method.
This will be useful for RT-based methods, because the core of
RT-based methods includes intersection calculation method.
And, no matter what, data representation and intersection
calculation are of great important for the GI calculation.

VIII. CONCLUSION
This paper proposes a hybrid cone tracing method for per-
forming GI computation on open world scenes. Unlike the
previously proposed VCT method, our method can get better
results under the premise of guaranteeing the effective use of
memory. The method is scalable for high polygonal scenes
and requires very little pre-processing. It can be applied to
dynamic scenes.

Our method has some limitations. It uses the morphology
search method during the height-field cone tracing process,
which performs a lot of searching and sampling. This is an
important factor affecting efficiency.

Our method can allow the scale of the application scenario
of pre-filtering cone tracing strategy to be enlarged. With
enough cones, our algorithm will tend to ray tracing. Further
work has to be done in terms of computation optimization.
A more efficient sampling strategy is needed.

REFERENCES
[1] W. A. Stokes, J. A. Ferwerda, B. Walter, and D. P. Greenberg, ‘‘Perceptual

illumination components: A new approach to efficient, high quality global
illumination rendering,’’ ACM Trans. Graph., vol. 23, no. 3, pp. 742–749,
Aug. 2004.

[2] A. Evans, ‘‘Fast approximations for global illumination on dynamic
scenes,’’ in Proc. ACM SIGGRAPH Courses (SIGGRAPH), Boston, MA,
USA, 2006, pp. 153–171.

[3] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, ‘‘Interactive
indirect illumination using voxel cone tracing,’’ Comput. Graph. Forum,
vol. 30, no. 7, pp. 1921–1930, Sep. 2011.

[4] J. T. Kajiya, ‘‘The rendering equation,’’ in Proc. 13th Annu. Conf. Comput.
Graph. Interact. Tech., New York, NY, USA, 1986, pp. 143–150.

[5] A. Keller, ‘‘Instant radiosity,’’ in Proc. 24th Annu. Conf. Comput. Graph.
Interact. Techn. (SIGGRAPH), New York, NY, USA, 1997, pp. 49–56.

[6] E. Veach and L. J. Guibas, ‘‘Metropolis light transport,’’ in Proc. 24th
Annu. Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), New York,
NY, USA, 1997, pp. 65–76.

[7] B. Walter, P. Khungurn, and K. Bala, ‘‘Bidirectional lightcuts,’’ ACM
Trans. Graph., vol. 31, no. 4, pp. 1–11, Aug. 2012.

[8] Y. Huo, R. Wang, S. Jin, X. Liu, and H. Bao, ‘‘A matrix sampling-
and-recovery approach for many-lights rendering,’’ ACM Trans. Graph.,
vol. 34, no. 6, pp. 1–12, Nov. 2015.

[9] Y. Huo, R. Wang, T. Hu, W. Hua, and H. Bao, ‘‘Adaptive matrix column
sampling and completion for rendering participating media,’’ ACM Trans.
Graph., vol. 35, no. 6, pp. 1–11, Nov. 2016.

[10] T. Müller, M. Gross, and J. Novák, ‘‘Practical path guiding for effi-
cient light-transport simulation,’’ Comput. Graph. Forum, vol. 36, no. 4,
pp. 91–100, Jul. 2017.

[11] J. Novák, T. Engelhardt, and C. Dachsbacher, ‘‘Screen-space bias com-
pensation for interactive high-quality global illumination with virtual point
lights,’’ in Proc. Symp. Interact. 3D Graph. Games (I3D), San Francisco,
CA, USA, 2011, pp. 119–124.

[12] C. Dachsbacher and M. Stamminger, ‘‘Reflective shadow maps,’’ in Proc.
Symp. Interact. 3D Graph. Games (SI3D), Washington, DC, USA, 2005,
pp. 203–231.

[13] T. Akenine-Moller, E. Haines, and N. Hoffman, ‘‘Global illumination,’’
in Real-Time Rendering, 3rd ed. Natick, MA, USA: AK Peters, 2008,
pp. 327–430.

[14] T. Ritschel, T. Grosch, and H.-P. Seidel, ‘‘Approximating dynamic global
illumination in image space,’’ in Proc. Symp. Interact. 3D Graph. Games
(I3D), Boston, MA, USA, 2009, pp. 75–82.

92070 VOLUME 8, 2020

T. Liu et al.: Approach to GI Calculation Based on Hybrid Cone Tracing

[15] B. J. Loos and P.-P. Sloan, ‘‘Volumetric obscurance,’’ in Proc. ACM SIG-
GRAPH Symp. Interact. 3D Graph. Games, Washington, DC, USA, 2010,
pp. 151–156.

[16] P.-P. Sloan, J. Kautz, and J. Snyder, ‘‘Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments,’’
ACM Trans. Graph., vol. 21, no. 3, pp. 527–536, Jul. 2002.

[17] A. Kaplanyan and C. Dachsbacher, ‘‘Cascaded light propagation vol-
umes for real-time indirect illumination,’’ in Proc. ACM SIGGRAPH
Symp. Interact. 3D Graph. Games (I3D), Washington, DC, USA, 2010,
pp. 99–107.

[18] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,
D. Nowrouzezahrai, and T. Aila, ‘‘Interactive reconstruction of Monte
Carlo image sequences using a recurrent denoising autoencoder,’’ ACM
Trans. Graph., vol. 36, no. 4, pp. 1–12, Jul. 2017.

[19] P. Moreau, M. Pharr, and P. Clarberg, ‘‘Dynamic many-light sampling
for real-time ray tracing,’’ in High-Performance Graphics-Short Papers,
M. Steinberger and T. Foley, Eds. Aire-la-Ville, Switzerland: The Euro-
graphics Association, Jul. 2019.

[20] L. Bavoil andM. Sainz. (2008). Screen space Ambient Occlusion. [Online].
Available: https://developer.download.nvidia.com/SDK/10.5/direct3d/
Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf

[21] S. Herholz, T. Schairer, andW. Straßer, ‘‘Screen space spherical harmonics
occlusion (S3HO) sampling,’’ in Proc. ACM SIGGRAPH Posters (SIG-
GRAPH), Vancouver, BC, Canada, 2011, Art. no. 76.

[22] D. E. DeMarle, C. P. Gribble, S. Boulos, and S. G. Parker, ‘‘Memory
sharing for interactive ray tracing on clusters,’’ Parallel Comput., vol. 31,
no. 2, pp. 221–242, Feb. 2005.

[23] T. Ize, C. Brownlee, and C. D. Hansen, ‘‘Real-time ray tracer for visu-
alizing massive models on a cluster,’’ in Proc. 11th Eurographics Conf.
Parallel Graph. Visual. (EGPGV), Llandudno, U.K., 2011, pp. 61–69.

[24] P. Cignoni, C. Rocchini, and R. Scopigno, ‘‘Metro: Measuring error on
simplified surfaces,’’ Comput. Graph. Forum, vol. 17, no. 2, pp. 167–174,
Jun. 1998.

[25] T. Liu, J. Gao, and Y. Zhao, ‘‘An approach to 3D building model retrieval
based on topology structure and view feature,’’ IEEE Access, vol. 6,
pp. 31685–31694, 2018.

[26] M. Schwarz and H.-P. Seidel, ‘‘Fast parallel surface and solid voxelization
on GPUs,’’ ACM Trans. Graph., vol. 29, no. 6, pp. 1–10, Dec. 2010.

[27] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra, ‘‘Fast
summed-area table generation and its applications,’’ Comput. Graph.
Forum, vol. 24, no. 3, pp. 547–555, Sep. 2005.

[28] H. Tulleken. (2010). Simple, Fast Approximate Minimum/Maximum Fil-
ters. [Online]. Available: http://code-spot.co.za/2010/04/16/simple-fast-
approximate-minimum-maximum-filters/

[29] N. Max, ‘‘Optical models for direct volume rendering,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 1, no. 2, pp. 99–108, Jun. 1995.

[30] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, and
D. Weiskopf, ‘‘Real-time volume graphics,’’ in Proc. ACM SIGGRAPH
Course Notes, Los Angeles, CA, USA, 2004, Art. no. 29-es.

[31] G. Pascal and L. Martin-Karl. (2018). Practical Realtime Raytrac-
ing With RTX From Concepts to Implementation. [Online]. Available:
https://www.nvidia.com/en-us/events/siggraph/schedule/

TAO LIU was born in China, in 1988. He received
the M.S. and Ph.D. degrees in traffic infor-
mation engineering and control from Dalian
Maritime University, Dalian, China, in 2011 and
2015, respectively. He is currently an Associate
Professor with the College of Transport and
Communications, Shanghai Maritime University,
China. He is involved in the area of computer
graphics. His current research interests include
real-time rendering, model feature analysis, and
3D display techniques.

JIN GAO was born in China, in 1989. He received
the B.S. degree in communication engineering
from Hainan University, Haikou, China, in 2011,
and the M.S. degree in traffic information engi-
neering and control from Dalian Maritime Uni-
versity, Dalian, China, in 2013. He is currently
an Engineer with the China Waterborne Trans-
port Research Institute, China. His current
research interests include transport simulation and
3D visualization.

ZHENGLING LEI was born in China, in 1988.
She received the M.S. and Ph.D. degrees in traffic
information engineering and control from Dalian
Maritime University, Dalian, China, in 2011 and
2014, respectively. She is currently a Lecturer
with the College of Engineering Science and
Technology, Shanghai Ocean University, China.
Her current research interests include optimization
theory, ADRC control, and energy optimization
techniques.

VOLUME 8, 2020 92071

