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ABSTRACT This paper presents the development of an indirect adaptive state-feedback controller to
improve the disturbance-rejection capability of under-actuatedmultivariable systems. The ubiquitous Linear-
Quadratic-Regulator (LQR) is employed as the baseline state-feedback controller. Despite its optimality, the
LQR lacks robustness against parametric uncertainties. Hence, the main contribution of this paper is to
devise and retrofit the LQR with a stable online gain-adjustment mechanism that dynamically adjusts the
state weighting-coefficients of LQR’s quadratic cost-function via state-error dependent nonlinear-scaling
functions. An original self-mutating phase-based adaptive modulation scheme is systematically formulated
in this paper to self-adjust the state weighting-coefficients. The scheme employs pre-calibrated secant-
hyperbolic-functions whose waveforms are dynamically reconfigured online based on the variations in
magnitude and polarity of state-error variables. This augmentation dynamically alters the solution of
the Riccati-Equation which modifies the state-feedback gains online. The proposed adaptation flexibly
manipulates the system’s control effort as the response converges to or diverges from the reference. The
efficacy of proposed adaptive controller is validated by conducting hardware-in-the-loop experiments to
vertically stabilize the QNET 2.0 Rotary Pendulum system. As compared to the standard LQR, the proposed
adaptive controller renders rapid transits in system’s response with improved damping against oscillations,
while maintaining its asymptotic-stability, under bounded exogenous disturbances.

INDEX TERMS Hyperbolic functions, linear quadratic regulator, cost-function, rotary inverted pendulum,
self-tuning control, state weighting-coefficients.

I. INTRODUCTION
The adaptive systems are used to efficiently compensate
the rapid dynamic variations in the plant by autonomously
modifying the controller’s characteristics [1]. Hence,
they are immensely favored for controlling multivariable
under-actuated systems, such as, self-balancing robots, rotor-
crafts, and robotic manipulators, etc [2], [3]. The rotary
inverted pendulum is a nonlinear and open-loop unstable
system that is widely used as a benchmark to analyze the
efficacy of control algorithms for under-actuated systems [4].

A plethora of feedback controllers have been designed
to optimally stabilize the self-erecting pendulums [5]. The
proportional-integral-derivative (PID) controllers are widely
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favored due to their simple structure and reliable yield [6].
However, the linear weighted sum of error variables limits
their performance under abrupt parametric variations [7].
The fractional-order controllers are generally preferred due
to their capability of realizing the system’s un-modeled
nonlinearities [8]. However, the offline selection of frac-
tional orders is an ill-posed problem. The fuzzy controllers,
despite their flexibility, require elaborate qualitative logi-
cal rules and offline tuning of a multitude of parameters
to deliver robust control effort [9]. The sliding mode con-
trollers, despite their robustness, unavoidably inject chat-
tering in the system’s response [10], [11]. The ubiquitous
Linear-Quadratic-Regulator (LQR) is a state-feedback con-
troller that yields stable and optimal control decisions by
minimizing a quadratic performance criterion that captures
the state and control-input variations [12]. However, owing
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to its dependence on state-space model, the LQR’s perfor-
mance gets severely degraded under the influence of model
variations and identification errors [13].

The performance limitations associated with the conven-
tional controllers for rotary pendulums can be rectified by
augmenting the baseline feedback controller with an online
adaptation law that dynamically alters the controller’s charac-
teristics in real-time [14]. Such adaptivemechanisms enhance
the system’s response speed, damping strength, and resilience
against exogenous disturbances [15]. These attributes help in
achieving good position-regulation accuracy, across a broad
range of conditions, which is normally unattainable via lin-
ear compensators [16], [17]. The model-reference-adaptive-
system minimizes the error between the outputs of the actual
system and a reference model in order to modify the critical
control parameters [18]. However, accurate identification of
the reference model is a difficult task due to the complex
dynamics of higher-order systems [19].

In self-tuning systems, generally a set of pre-defined ana-
lytical (or logical) rules are adopted to vary the controller-
parameters [20]. The gain-scheduling mechanism employs
pre-defined switching rules to commute between specif-
ically designed linear controllers under different operat-
ing conditions [21]. However, the individual calibration
of a large number of linear controllers that offer good
control performance and asymptotic-stability is a cumber-
some task. The linear-parameter-varying (LPV) technique
is an automatic gain-scheduler that dynamically changes
the parameters of system’s state-space model as a func-
tion(s) of state-variables [22]. Despite the robustness and
stability of this technique, it is difficult to derive accurate
LPV models for nonlinear systems owing to their complex
dynamics [23]. The State-Dependent-Riccati-Equation based
control strategies are widely favored to control the inher-
ently unstable systems with nonlinear dynamics [24].
However, it is quite hard to accurately define the state-
dependent coefficient matrices that fully realize the sys-
tem’s nonlinear characteristics. The technique involving
online dynamic adjustment of weighting-factors of the
optimal controller’s cost-function, to indirectly self-tune
the state-feedback gains, has garnered a lot of attention
recently [25].

The augmentation of nonlinear scaling functions with
linear compensators to self-adjust critical gains is exten-
sively used in controlling non-minimum phase systems
[26], [27]. The nonlinear-type state-feedback controllers
significantly improve the system’s response speed, damp-
ing against disturbances, tracking accuracy, and control
input economy [28]–[30]. There are two main categories
of nonlinear-scaling functions that are widely used. The
most commonly used category involves adaptive parameter
adjustment using only the magnitude of the state-error vari-
ables [14]. The second category involves the online parameter
adjustment based on the magnitude as well as the direction-
of-variation (or phase) of the state-error [31]. The inclusion
of phase information in the modulation scheme improves the

adaptability of controller as the response deviates from or
converges towards the reference [32].

The main contribution of this paper is to devise an origi-
nal indirect phase-driven self-tuning controller for an under-
actuated rotary inverted pendulum system. The proposed
work aims at improving the system’s damping against fluc-
tuations and response speed, while preserving its stability
across the entire operating regime. The indirect dynamic
adjustment of the state-feedback gains is done by adaptively
modulating the state weighting-coefficients associated with
the controller’s quadratic cost-function. The updated coef-
ficients modify the solution of Riccati Equation, and hence
the state-feedback gains, after every sampling interval. The
nonlinear scaling of state weighting-coefficients is initiated
by using a conventional paradigm that employs pre-calibrated
set of Secant-Hyperbolic-Functions (SHFs) to manipulate the
weights according to the movement of system’s time-domain
response [33]. However, to further enhance the controller’s
adaptability and resilience, the aforementioned paradigm is
methodically evolved by formulating a unique self-mutating
structure of SHFs to adaptively modulate the coefficients.
The proposed adaptation law uses real-time measurements of
magnitude and polarity of state-error variables to automati-
cally mutate a growing SHF into a decaying SHF, and vice-
versa. The self-mutating SHF arrangement offers efficient
and smooth transition of state-feedback gains across a wide
range of operating conditions. It strengthens the controller’s
damping against overshoots and reduces transient-recovery
time under exogenous disturbances. The benefits afforded
by the proposed adaptive controller are verified via credible
hardware-in-the-loop experiments conducted on the QNET
2.0 Rotary Pendulum (Rot-Pend) board [14].

The idea of adaptively tuning the state weighting-
coefficients via the proposed original ‘‘self-mutating
SHFs’’, to enhance the robustness of self-tuning LQR for
under-actuated systems, has not been attempted previously in
the available open literature. Hence, this papermainly focuses
on the realization of this novel idea.

The remaining paper is organized as follows. The mathe-
matical model of the Rot-Pend is presented in Section 2. The
theoretical background of LQR is discussed in Section 3. The
design of proposed adaptive control procedure is presented
in Section 4. The self-mutating weight adjustment scheme
is formulated in Section 5. The details regarding the exper-
imental analysis are presented in Section 6. The article is
concluded in Section 7.

II. MATHEMATICAL MODEL
The Rot-Pend is an inherently unstable system with highly
nonlinear dynamics, which make it an ideal candidate
to examine and validate the robustness of the proposed
phase-driven adaptive control system [34]. The hardware
schema of the Rot-Pend setup is shown in Figure 1. The yaw
motion of pendulum’s arm is denoted as α.
The arm rotates about the z-axis via a permanent magnet

DC motor, which provides the required energy to swing-up
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FIGURE 1. Simplified schematic of a rotary inverted pendulum.

the pendulum’s rod. The angular displacement of the rod is
referred to as θ . The state-space representation of a linear
dynamical system is given by (1) and (2).

ẋ (t) = Ax (t)+ Bu(t) (1)

y (t) = Cx (t)+ Du(t) (2)

where, x is the state-vector, y is the output-vector, u is the
control input signal, A is the state-transition matrix, B is the
input matrix,C is the output matrix, andD is the feed-forward
matrix. The state-vector and the control input-vector of the
Rot-Pend system are identified in (3) and (4), [34].

x (t) =
[
α (t) θ (t) α̇ (t) θ̇ (t)

]T (3)

u (t) = Vm (4)

where, Vm is voltage signal applied to control the DC motor.
The nominal state-space model of the Rot-Pend system is
defined in (5), [14].

A =


0 0 1 0
0 0 0 1
0 a1 a2 0
0 a3 a4 0

 , B =


0
0
b1
b2

 ,

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , D =


0
0
0
0

 (5)

where,

a1 =
rM2

p l
2
pg

JpJe + Jel2pMp + JpMpr2
,

a2 =
−KtKm

(
Jp +Mpl2p

)
(
JpJe + Jel2pMp + JpMpr2

)
Rm
,

a3 =
Mplpg

(
Je +Mpr2

)
JpJe + Jel2pMp + JpMpr2

,

a4 =
−rMplpKtKm(

JpJe + Jel2pMp + JpMpr2
)
Rm
,

b1 =
Kt
(
Jp +Mpl2p

)
(
JpJe + Jel2pMp + JpMpr2

)
Rm
,

b2 =
rMplpKt(

JpJe + Jel2pMp + JpMpr2
)
Rm

The system’s model parameters are clearly described and
their values are identified in Table 1 [14].

TABLE 1. Model parameters of QNET 2.0 rotary pendulum system.

III. PRIMARY STATE-FEEDBACK CONTROLLER
The LQR is a state-feedback controller that has gained a lot
of traction in the field of multivariable control systems [35].

It delivers optimal control decisions by minimizing a
quadratic cost-function that captures the variations in state-
variables and control-input associated with the linear mul-
tivariable system. The quadratic cost-function is shown
in (6), [36].

Jlq =
1
2

∫
∞

0

[
x (t)TQx (t)+ u (t)TRu(t)

]
dt (6)

where, Q ∈ R4×4 and R ∈ R are the state and con-
trol weighting-matrices, respectively. The state and control-
weighting matrices are selected such that Q = QT

≥ 0 and
R > 0, respectively. For the given system, these matrices are
symbolically represented as shown in (7).

Q = diag
(
qα qθ qα̇ qθ̇

)
, R = m (7)

where, qx and m are the real-numbered positive state and
control weighting-coefficients of these matrices, respectively.
The state weighting-coefficients are heuristically selected by
iteratively minimizing the cost-function Je, shown in (8),
to attain the best position-regulation accuacy.

Je =
∫
∞

0
|eα (t)|2 + |eθ (t)|2 + |u (t)|2 dt

such that, eθ (t) = π − θ (t) , eα (t) = αref − α (t) (8)
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The initial angular displacement of pendulum’s arm is cho-
sen as its reference position, αref , for every experimental trial.
A small value of m renders peak servo requirements which
often leads to actuator saturation.Whereas, a larger value ofm
degrades the time-optimality of pendulum’s angular response
while attempting to minimize the control energy expenditure.
Hence, in this research, the value of m is fixed at unity. The
selected coefficients of Q and R matrices are shown in (9).

Q = diag
(
32.8 52.2 6.1 2.5

)
, R= 1 (9)

The selected coefficients are used to compute the solu-
tion, P, of the Algebraic Riccati Equation (ARE) shown
in (10).

ATP + PA− PBR−1BTP + Q= 0 (10)

where, P ∈ R4×4 is a symmetric positive-definite matrix. The
solution of ARE guarantees an asymptotically-convergent
control behavior if the system is controllable. This is a suf-
ficient proof of stability for the LQ control systems. Finally,
the matrix P is used to calculate the Kalman gain vector, K ,
as shown below.

K = R−1BTP (11)

The fixed Kalman gain vector calculated offline in this
research is K =

[
−6.18 137.42 −4.42 18.81

]
. The linear

control law in (11) is also retrofitted with additional control
terms associated with the integral-of-error in α and θ , in order
to damp the angular fluctuations while tracking the refer-
ence [37]. The consolidated integral controller is expressed
in (12)

uI (t) = K I ε (t) =
[
KIα KIθ

] [ εα (t)
εθ (t)

]
such that, εα (t) =

∫ t

0
eα (τ )dτ, εθ(t)=

∫ t

0
eθ (τ )dτ (12)

The integral gains are tuned via trial-and-error by itera-
tively minimizing the cost-function Je, shown in (8), to obtain
optimum position-regulation behavior. The selected integral
gains are given by K I =

[
−2.06 −7.47× 10−6

]
. The linear

control law is given by (13).

u (t) = −Kx (t)+ K I ε (t) (13)

IV. PROPOSED ADAPTIVE CONTROLLER DESIGN
In order to synthesize a stable self-tuning LQR, the state-
feedback gains are dynamically adjusted after every sampling
interval by using an indirect hierarchical adaptive modulation
scheme. Where in, the coefficients of state-penalty matrix,
qx , are modified online using phase-driven nonlinear scaling
functions [25]. This arrangement obviates the requirement
of empirically tuning the qx under different operating condi-
tions. The pre-calibrated nonlinear scaling functions utilize
the real-time measurements of the state-error variables to
adaptively modulate the values of qx . The resulting time-
varying state weighting-matrix, Q (t), is shown in (14).

Q (t) = diag
(
qα (t) qθ (t) qα̇ (t) qθ̇ (t)

)
(14)

The value of ρ is fixed at unity to regulate the control input
expenditure and position-regulation accuracy under every
operating condition. The corresponding Riccati Equation is
shown in (15), [24], [36].

ATP (t)+P (t)A−P(t)BR−1BTP (t)+Q (t) =−Ṗ(t) (15)

In an infinite-horizon control problem, the derivative-term
Ṗ (t) converges to zero [36]. Hence, the Riccati Differential
Equation is simplified to Matrix Riccati Equation as follows.

ATP (t)+ P (t)A− P (t)BR−1BTP (t)+ Q (t)= 0 (16)

The solution, P̂ (t), of the aforementioned Riccati Equa-
tion is automatically updated after every sampling interval.
This arrangement modifies the Kalman gains. The expression
for time-varying Kalman gain vector is given in (17).

K (t) = R−1BTP (t) (17)

The proposed Self-Tuning-Regulator (STR) is defined as
follows.

û (t) = −K (t) x (t)+ K I ε (t) (18)

The integral gains in K I are maintained at their original
(prescribed) values. The proposed adaptive control system
is shown in Figure 2. This scheme avoids the learning bur-
den of extended state-observers used in conventional active
disturbance-rejection controllers for uncertain systems [26].

FIGURE 2. Block diagram of proposed adaptive control framework.

The stability proof for the proposed adaptive controller is
obtained by considering the following Lyapunov function.

V (t) = x (t)TP (t) x (t) > 0, for x (t) 6= 0 (19)

The time-derivative of V (t) must be negative-definite for
the system to be asymptotically-stable [36]. The expression
of the first-derivative of V (t) is provided as follows [36].

V̇ (t) = x (t)T
(
Ṗ (t)+ ATP (t)+ P (t)A

−P (t)BR−1BTP (t)
)
x (t) (20)
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By substituting the matrix Riccati Equation, given in (15),
in the above expression, the V̇ (t) is simplified as follows.

V̇ (t) = −
(
x (t)TQ (t) x (t)

)
< 0 (21)

The expression shows that V̇ (t) < 0 if Q (t) > 0 and thus,
guarantees stability.

V. NONLINEAR WEIGHT-SCALING MECHANISM
As discussed earlier, a nonlinear-type self-tuning mechanism
is employed in this research to adaptively modulate the coef-
ficients of Q (t). The proposed adaptation enhances the con-
troller’s immunity against modeling uncertainties, transient
load changes, lumped disturbances, process noise, and actu-
ator limitations, etc. Two different nonlinear-type adaptive
weight-scaling mechanisms are synthesized in the follow-
ing sub-sections by employing Secant-Hyperbolic-Functions
(SHFs). The SHFs are utilized owing to their symmetry,
bounded nature, and smoothness [18], [30]. The proposed
adaptation mechanism is simply based on a set of algebraic
equations that does not entail recursive computational burden
on the embedded processor.

A. BASELINE PHASE-BASED FUNCTIONS
This scheme employs SHFs as the baseline adapter functions.
The shapes of SHF waveforms are altered in accordance
with the ‘‘phase’’ of response. These phase-driven functions
contain the complete information of the magnitude and polar-
ity of state-error variables, which makes them highly effec-
tive for damping control applications. The proposed scheme
is constituted in accordance with the following qualitative
rules [32], [33].

1. The proportional weights, qα and qθ , are maintained
at a constant value as long as the angular-response
stays within a narrow (predefined) bandwidth of the
reference value. This hysteresis-type controller prevents
limit-cycles caused by system’s static friction at very low
error conditions [38]. Beyond this dead zone, the pro-
portional weights are inflated as the error-magnitude
increases in order to strengthen the damping effort.

2. The differential weights, qα̇ and qθ̇ , are inflated
when error and error-derivative have same polarities.
This phenomenon implies that the response is diverg-
ing from the reference, which incites the applica-
tion of a relatively stiffer control effort to damp the
overshoots (or undershoots) and reverse the direction
of response. Conversely, the differential weights are
depressed when error and error-derivative have opposite
polarities, which implies that the response is moving
towards the reference and thus, requires a softer control
effort so the response can quickly settle with minimum
fluctuations.

These qualitative rules are synthesized with the objec-
tive to further improve the system’s error convergence-rate
and damping strength. The formulation of the baseline

phase-based SHFs is presented as follows.

qα (t) = aα − bα. [sech (γα.eα (t)+ βα)

+sech (γα.eα (t)− βα)] (22)

qθ (t) = aθ − bθ . [sech (γθ .eθ (t)+ βθ )

+sech (γθ .eθ (t)− βθ )] (23)

qα̇ (t) = mα. (aα̇ − bα̇sech (γα.eα (t)))

+
aα̇ − bα̇

1+ |σα.eα (t)|2
(24)

qθ̇ (t) = mθ .
(
aθ̇ − bθ̇ sech (γθ .eθ (t))

)
+

aθ̇ − bθ̇
1+ |σθ .eθ (t)|2

such that, mα = step (eα (t)× ėα (t)) ,

mθ = step (eθ (t)× ėθ (t)) (25)

where, ax and bx are the positive upper and lower bounds of
each function such that ax ≥ bx to ensure qx (t) ≥ 0 always,
‘x’ denotes the state-variable being considered, γx represents
the variation-rate of each function, sech (.) represents the
SHF, and mx is a step (.) function that yields a ‘‘zero’’ if its
internal argument has a negative value and a ‘‘one’’ if its inter-
nal argument has a positive value. The parameters σα and σθ
are the scaling-factors of the associated state-error variables.
These hyper-parameters are tuned offline by minimizing Je
to yield strong damping control. The tuned parameters are
shown in Table 2. The dead-zones of α and θ are experi-
mentally identified as βα = 0.20 rad. and βθ = 0.015 rad.,
respectively.

TABLE 2. Tuned parameters of baseline hyperbolic functions.

The mx setting in qα̇ (t) and qθ̇ (t) activates the damping
controller which enlarges the differential weights when the
error and error-derivative have same polarities (divergence).
The damping controller is de-activated when the error and
error-derivative have opposite polarities (convergence).

The second nonlinear function used in qα̇ (t) and qθ̇ (t) is
insignificant under large error conditions. However, as the
response converges, it immediately switches the differential
weights to a lower value and then gradually inflates them
to speed up the transient recovery speed. The dynamically-
adjusted values of qx (t) remain positive and bounded which
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ensure the system’s stability. The adaptive control system
equipped with the aforementioned phase-based SHFs is
denoted as the ‘‘Baseline-STR’’.

B. SELF-MUTATING PHASE-BASED FUNCTIONS
In this sub-section, the proposed phase-driven self-mutating
SHF based modulation scheme is systematically formulated
by utilizing the information of magnitude and phase of the
state-error dynamics to adaptively tune the state weighting
coefficients during real-time applications. The utilization of
phase information in conjunctionwith the self-mutation capa-
bility, harnesses the ability of proposed adapters to efficiently
compensate the abrupt parametric variations while regulating
the position. The general expression of a self-mutating SHF
is given in (26).

qx (t) = mx .ax − (bx − (1− mx) .ax) .sech (γx .ex (t)) (26)

These SHFs are formulated by using similar qualitative
rules as discussed in the previous sub-section.

1) SELF-MUTATION SCHEME
The weight-adjusting functions, qx (t), are augmented with
the Boolean operators, mα and mθ , that automatically trans-
form the decaying behaviour of the waveform into a growing
behaviour as the response diverges from or converges towards
the reference, and vice-versa. Consider the error profile of an
arbitrary under-damped system shown in Figure 3. The error
profile is divided in four phases; A, B, C, and D. Each phase
represents a distinct operating condition that is addressed
individually to attain best control effort. The logical rules
governing the self-mutation of qx (t), shown in (26), with
respect to the changes in the state of Boolean operator, mx ,
are defined in Table 3. The self-mutation scheme is illustrated
in Figure 4.

FIGURE 3. Error profile of a disturbed under-damped system.

TABLE 3. Logical rules for self-mutation of weight-adjusting functions.

FIGURE 4. Self-mutation scheme for weight-adjusting functions.

The weight adjustment strategy governed by the proposed
paradigm is as follows. When a disturbance is applied,
the responsemoves away from reference as shown in phase-A
of Figure 3. The corresponding Boolean-setting of mx = 1
renders a growing function of the form, q̄x (t), as shown
in Table 3. Due to the increasing error magnitude in this
phase, the weighting-coefficients initiate from ax − bx and
gradually rise to ax , as the response reaches its peak (See
Figure 4). This arrangement damps the overshoots and
quickly changes the direction of response. As the response
reverses its direction and starts moving towards the reference,
as shown in phase-B of Figure 3, the Boolean-setting of
mx = 0 renders a decaying function of the form, q́x (t),
as shown in Table 3. The coefficients immediately switch to
a much smaller value, as shown in Figure 4, to soften the
control effort. From this point onwards, the coefficients are
gradually inflated towards ax−bx , which allows the response
to settle quickly and smoothly. Upon reaching the reference,
the response continues to propagate in the same direction
due to the system’s moment-of-inertia. This phenomenon
leads to a negative error as shown in phase-C of Figure 3.
Hence, the setting of mx = 1 is automatically re-engaged
which mutates the weighting-function back to q̄x (t). When
the response reverts back, as shown in phase-D, the weights
are modulated according to q́x (t) once again. The variation
pattern of qx (t), in every phase, is illustrated in Figure 5.

2) DAMPING MODULATOR
Each SHF is also augmented with a Damping-Modulator
(DM) that is only activated under abrupt parametric variations
when the state-error derivative of the response becomes con-
siderably large [39]. Under such conditions, theDMmeasures
the error-derivative magnitude and accordingly relocates the
inflation-point, ax − bx , of qx (t). The DM functions are
implemented as follows.

zα (t) = ρmin +
ρmax − ρmin

1+ |µα.ėα (t)|4
(27)

zθ (t) = ρmin +
ρmax − ρmin

1+ |µθ .ėθ (t)|4
(28)
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FIGURE 5. Variation rules for weighting coefficients in every phase.

TABLE 4. Tuned parameters of damping-modulator functions.

FIGURE 6. Waveform of the Damping-Modulator (DM) function.

where, ρmin and ρmax are the upper and lower bounds of the
DM functions. Same set of bounds are used for zα (t) and
zθ (t). The µα and µθ are positive real-numbered scaling
constants that are empirically tuned byminimizing Je to attain
minimal oscillations in the response. Their selected values
are shown in Table 4. The exponent of ėx (t) variable in DM
functions is selected as four, so that zx (t) maintains its value
at ρmax for a broad bandwidth of error-derivatives and only
varies when the magnitude of error-derivative is considerably
large, as shown in Figure 6. The synthesized DM functions
are implanted in qx (t), expressed in (26), as an adaptive
scaling factor for the bx constants.

With this augmentation, the SHFs reconfigure themselves
under disturbances as depicted in Figure 7. The proposed self-
mutating phase-based SHFs are formulated as follows.

qα (t) = mα.aα − (zα (t) .bα
− (1− mα) .aα) .sech (γα.eα (t)) (29)

qθ (t) = mθ .aθ −
(
zθ (t) .bθ

− (1− mθ ) .aθ ) .sech (γθ .eθ (t)) (30)

qα̇ (t) = mα.aα̇ − (zα (t) .bα̇
− (1− mα) .aα̇) .sech (γα̇.eα (t)) (31)

FIGURE 7. Reconfiguration of the SHF under disturbance.

qθ̇ (t) = mθ .aθ̇ −
(
zθ (t) .bθ̇

− (1− mθ ) .aθ̇
)
.sech

(
γθ̇ .eθ (t)

)
(32)

The self-mutating SHFs utilize the same value of ax ,
bx , and γx as shown in Table 2. The adapted values of
qx (t) remain positive throughout the operating regime, which
ensures the system’s stability. The controller equipped with
the Self-Mutating SHFs is denoted as the ‘‘SM-STR’’.

VI. EXPERIMENTAL EVALUATION
This section presents the hardware setup details, the experi-
mentation procedure, and the analysis of results.

A. EXPERIMENTAL SETUP
The QNET 2.0 Rotary Pendulum board, shown in Figure 8, is
used to examine the proposed control schemes via hardware-
in-the-loop experiments [14].

The real-time variations in α and θ are measured via rotary
encoders that are commissioned at the pendulum’s pivot and
motor’s shaft, respectively. The data samples are acquired at
1000 Hz by using the NI-ELVIS II data-acquisition board.
The processed data is serially transported at 9600 bps to
the control software that is running on a digital computer
with 2.0 GHz processor and 6.0 GB RAM. The customized
control application is implemented in a virtual instrument file
of the LabVIEW software by using its Block Diagram tool.
The mathematical objects are acquired from its functions
palette. The SHFs are implemented by coding a C-language
program in theMath-Script module. The flow chart of control
algorithm is shown in Figure 9. The front-end panel of control
application serves as a user-interface for the graphical visual-
ization of state-variations.

The control signals are serially transmitted to a Pulse-
Width-Modulated (PWM) amplifier that translates the incom-
ing signals into PWM commands and drives the motor.
The rod is manually erected and stabilized before every
trial.
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FIGURE 8. QNET 2.0 rotary pendulum board.

FIGURE 9. Flow-chart of control algorithm.

B. EXPERIMENTAL EVALUATION
The position-regulation and disturbance-rejection behavior of
the proposed SM-STR is compared with the Baseline-STR
and the standard fixed-gain LQR via ‘‘five’’ distinct hardware
experiments. The details of these test-cases and the corre-
sponding results yielded by each of the three aforementioned
controllers are presented as follows.

1) POSITION REGULATION
The position-regulation behavior of the Rot-Pend system
is analyzed by allowing its rod and arm to track their
reference positions under normal conditions. The resulting
time-domain profiles of θ , α, Vm, and K (t) are shown
in Figure 10.

FIGURE 10. Pendulum’s response under normal conditions.

2) IMPULSIVE-DISTURBANCE COMPENSATION
The controller’s immunity against bounded disturbances is
examined by injecting a pulse signal, having a magni-
tude of +5.0 V and duration of 100.0 ms, in the control
input signal. The disturbance signal is applied at the time-
instants when the arm-angle’s response approaches its second
and third maxima. The variations in the response of θ ,
α, Vm, and K (t), rendered by each controller, are shown
in Figure 11.

3) STEP-DISTURBANCE COMPENSATION
The controller’s ability to reject the detrimental effect of
abrupt parametric variations and permanent load changes is
assessed by applying a+5.0 V step-signal in the control input
at t ≈ 4.0 s mark. The resulting variations in the time-domain
profiles of θ , α, Vm, and K (t), rendered by each of the three
control schemes, are shown in Figure 12.
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FIGURE 11. Pendulum’s response under impulsive disturbances.

4) NOISE IMMUNITY
The controller’s ability to mitigate the effects of process
noise contributed by the mechanical vibrations or electronic
components is assessed by injecting a low-amplitude and
high-frequency sinusoidal signal, d (t) = 1.5 sin (20π t),
in the reference input at t ≈ 0 s. The corresponding time-
domain responses associated with θ , α, Vm, and K (t) are
shown in Figure 13.

5) MODELING-ERROR ATTENUATION
The controller’s robustness against the modeling and identi-
fication errors is tested by permanently modifying the state-
space model of the system. This is done by attaching a
0.10 kg mass beneath the base of pendulum’s rotating arm
via a hook, as shown in Figure 14. The proposed modifi-
cation is introduced in the system at t ≈ 4.0 s mark. The
resulting time-domain profiles of θ , α, Vm, and K (t) are
shown in Figure 15.

FIGURE 12. Pendulum’s response under step disturbance.

C. ANALYSIS AND DISCUSSIONS
The experimental results of each test case are compara-
tively analyzed in terms of the following Key-Performance-
Indicators (KPIs):

• The time taken (ts) by the ‘‘rod’’ to settle within
±0.1 deg. of reference after recovering from a transient.

• The magnitude of peak overshoot or undershoot (Mp) in
the rod’s angular response.

• The root-mean-square-error (RMSEx) in the responses
of α and θ .

• The offset-error (OEα) in the arm-angle under step-
disturbance, the peak-to-peak amplitude of oscillations
(xp−p) in the response under disturbances.

• The mean-square-voltage input (Pv) applied to the DC
motor to stabilize the pendulum.

• The magnitude of peak voltage spike (Mv) recorded in
the control-input profile under disturbances.
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FIGURE 13. Pendulum’s response under sinusoidal disturbance.

The numerical values of these KPIs are recorded in Table 5.
A concise assessment of the experimental results is pre-
sented as follows. In Test-A, the SM-STR demonstrates
minimum reference tracking error as compared to other
controllers. The rod remains well within ±1.0 deg. of the
reference with minimal oscillations. It exhibits relatively
smaller peaks in the control input profile as compared to the
Baseline-STR. In Test-B, the SM-STR manifests the most
time-optimal behavior. It effectively rejects the impulsive
disturbances by attenuating the peaks in the response and suc-
cessfully mitigates the succeeding oscillations, while exhibit-
ing minimum-time transient recovery. Moreover, the overall
control energy expenditure and the peak servo requirements
of SM-STR are considerably lesser than the Baseline-STR.
In Test-C, the step-disturbance permanently displaces the arm
from its reference position. However, the SM-STR demon-
strates strong damping against this disturbance by exhibiting

FIGURE 14. Pendulum setup with 0.10 kg mass attached to arm.

TABLE 5. Summary of experimental results.

minimum offset-error in α. It effectively minimizes the peak-
to-peak amplitude of oscillations in the angular responses of
α and θ that are contributed by the disturbance. Moreover,
the SM-STR consumes significantly lesser control energy
than the Baseline-STR. In Test-D, the SM-STR shows the
best position-regulation behavior. It suppresses the oscilla-
tions in the response and also significantly reduces the control
input consumption. Despite the noise, the system manages to
regulate the arm and the rod at the corresponding reference
positions with minimal RMSE.
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FIGURE 15. Pendulum’s response under modeling error.

In Test-E, the LQR exhibits large oscillations in the
response while balancing the rod. The SM-STR quickly com-
pensates the modeling error and offers strong damping to
mitigate the peak-to-peak amplitude of oscillations.

The experimental analysis clearly validates the supe-
rior robustness of the SM-STR in every test-case. The
fixed-gain LQR exhibits the poorest position-regulation
behavior while consuming lesser control-input energy as
compared to the Baseline-STR. The Baseline-STR shows
reasonable improvement in disturbance-rejection capability
as compared to standard LQR, at the cost of high control
energy consumption. The SM-STR manifests minimum tran-
sition times, minimum magnitude of overshoots, minimum
reference-tracking error, and economical control input expen-
diture. It consumes relatively larger control input energy than
the LQR (in Tests A and E, only). However, its consumption
is much lesser than that of Baseline-STR in every scenario.

The proposed adaptive scheme safeguards the controller’s
stability under every operating condition.

VII. CONCLUSION
The novel contribution of this paper is to devise a
stable and indirect self-tuning control framework for
under-actuated multivariable systems in order to enhance
their disturbance-rejection capability against environmental
indeterminacies by rendering rapid transits, superior atten-
uation against fluctuations, and reasonable control input
economy in the response. This objective is achieved by
augmenting the controller’s quadratic cost-function with
state-error driven continuous nonlinear scaling functions
that adaptively modulate the state weighting-coefficients.
This paper contributes to systematically formulate an orig-
inal self-mutating adaptation mechanism that employs pre-
calibrated SHFs to attune the weighting-coefficients. The
self-mutating SHFs autonomously change their structure
under different phases of the response by using well-
postulated pre-defined logical rules. This augmentation
obviates the necessity of empirically tuning the weighting-
coefficients, enhances the adaptability of controller, and
enables it to efficiently mitigate the detrimental effects of
parametric uncertainties. The proposed adaptive tuning sys-
tem is computationally economical as it does not put iterative
computational burden on the embedded processor. Credible
hardware experiments are conducted on the QNET 2.0 Rot-
Pend system to validate the superior disturbance-rejection
capability of SM-STR. Its enhanced robustness is accred-
ited to the increased degrees-of-freedom offered by the
self-mutating SHFs augmented with auxiliary DM modules,
which enables the system to quickly respond to the parametric
variations and modify the controller’s behavior accordingly.
In future, soft-computing techniques can be employed to
efficiently alter the weighting-coefficients online. Moreover,
the proposed adaptive controller can be applied to regu-
late the closed-loop performance of other electro-mechanical
systems in order to further investigate its controlling
capabilities.
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