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ABSTRACT This paper presents a new tracking controller for a crowd dynamics system. The crowd
dynamics are described by a continuum model in the macro-scale. An appropriate control variable is chosen
to solve the problem of the multi-directionality of crowd movement. In order to stabilize the state density of
the disturbed crowd dynamics system at a given reference density, a unit sliding mode controller based on
the integral barrier Lyapunov function is designed, and the reaching law approach is used to avoid chattering.
By ensuring the boundedness of the integral barrier Lyapunov function in the closed-loop, the global
constraints of the system state variables are obtained. The design of the controller and the stability analysis
of the closed-loop system are all done in the distributed parameter system. A numerical example illustrates
the utility of the proposed controller.

INDEX TERMS Integral barrier Lyapunov function, unit sliding mode control, tracking control, disturbed
crowd dynamics system, distributed parameter system.

I. INTRODUCTION
Pedestrian traffic is an important part of the urban traffic. It is
of great significance to formulate measures to ensure people’s
safety, but the research on pedestrian traffic is far less than
other modes of transportation [1]. Due to the complexity of
pedestrian dynamics, pedestrian traffic management is also a
challenging task.

Since the Crowd Safety Conference in 1993, the study of
pedestrian traffic has gradually attracted people’s attention.
Various mathematical models represented by ordinary differ-
ential equations (ODEs) are used to describe the pedestrian
dynamics in the micro-scale, such as social-force models
[2], [3], cellular automata model [4], agent-based models
[5], [6], where pedestrians are treated as physical particles.
When the crowd density is low, these micro-models can
accurately describe the crowd dynamics. However, when
the crowd density is high, running the micro-scale mod-
els requires high computational costs and is even difficult
to achieve. Therefore, the study of crowd dynamics in the
macro-scale has become attractive, where the crowds are
represented as a fluid because of the high similarity of

The associate editor coordinating the review of this manuscript and

approving it for publication was Ning Sun .

their movements [7]. Mathematically, the crowd dynam-
ics are represented by partial differential equation (PDE)
and the average density is considered as the state variable.
On the other hand, high-density crowds are more likely
to cause dangerous accidents such as stampede, so the
study of crowd dynamics in the macro-scale is of great
significance.

In 2002, Hughes constructed a pedestrian dynamic model
in the macro-scale [8], where pedestrians were considered
as ‘‘thinking fluid’’, choosing the shortest path to their des-
tination. Francesco et al. [9] solved the Hughes’ model
with a deterministic particle approach and got a global
existence result. Hänseler et al. [10] developed a macro-
scopic model to describe the dynamic of congested, multi-
directional and time-varying pedestrian flows, where the
anisotropy was accurately considered in the macroscopic
framework. A consistent continuum macroscopic funda-
mental diagram model was formulated and solved with
a semi-Lagrangian scheme in [11], where Eulerian and
Lagrangian representations were both used. The dynamic of
two intersecting pedestrian flows was modelled in [12] by
using nonlinear partial differential equation, and then was
illustrated with macroscopic and microscopic simulations.
Wadoo [13], [14] used a vehicle traffic model to describe
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the pedestrian dynamics, and chose the free flow speed
as the control variable to solve the problem of the multi-
directionality of the pedestrian movement. Qin et al.
integrated the Lighthill-Whitham-Richards(LWR) model
[15], [16] and the diffusion model to describe crowd dynam-
ics, and designed boundary controller [17] and finite time
controller [18], respectively. Qin et al. [19] used the unit
sliding mode control method [20]–[22] to design tracking
controllers for a disturbed crowd dynamics system, so that
the crowd density can follow the given reference density
to achieve different control purposes, such as maximum
evacuation flow, maximum pedestrian movement speed, etc.
However, due to the influence of external disturbances,
the local densitymay be very high, which is very dangerous in
actual evacuation and is prone to accidents such as stampede.
Therefore, this article will design a controller to restrict the
crowd density within a safe range while achieving tracking
control goals.

The barrier Lyapunov function (BLF) was first defined
in [23], which would grow to infinity as the variable
approaches a certain value. Therefore, by ensuring the bound-
edness of the barrier Lyapunov function, the state variable
can be constrained within a certain range. The BLF method
was widely used in the finite-dimensional systems to achieve
constraints on output variables. Reference [24] designed a
adaptive fuzzy control scheme for a class of stochastic non-
strict feedback nonlinear systems, and used BLF method to
achieve the output constraint. A high-order BLF was applied
to achieve output constraint for a category of highorder non-
linear systems in [25]. More valuable achievements could
refer to [26]–[30]. Shuang [31] introduced the BLF method
into the infinite-dimensional system, and designed a con-
troller to ensure the tracking error bounded stable, that is,
the tracking error is limited to a certain range, but it cannot
asymptotically converge to 0.

In this paper, inspired by [19] and [31], a unit sliding
mode controller will be designed for the disturbed crowd
dynamics system based on the integral barrier Lyapunov
function (IBLF). The design of the controller and the stabil-
ity analysis of the closed-loop system are achieved directly
within the distributed framework [32]–[37], which avoids the
error caused by the spatial discretization. Compared with
the existing works, the main contributions of this paper are
summarized as follows.

1) A novel controller is designed with the help of IBLF,
which can not only achieve the tracking control goals, but also
can restrict the state density in a safe range, and effectively
prevents the dangerous accidents caused by too high local
density.

2) The designed controller in this paper can achieve the
asymptotic stability of the tracking error, while the IBLF-
based controller designed in article [31] can only achieve
the bounded stability of the tracking error, that is, the track-
ing error is limited to a certain range. Therefore, this paper
promotes the application of the IBLF method in the infinite-
dimensional systems.

Notation: H2(0,L) is the Sobolev space with square inte-
grable derivatives ρ′′ ∈ L2(0,L) on the interval (0,L),
L2(0,L) is the Hilbert space with L2 norm

‖ρ(x, t)‖2 =
[∫ L

0
ρ2(x, t) dx

] 1
2

.

The following notation is used throughout this paper.

ρt (x, t) =
∂ρ(x, t)
∂t

, ρx(x, t) =
∂ρ(x, t)
∂x

,

ρxx(x, t) =
∂2ρ(x, t)
∂x2

.

II. PROBLEM FORMULATION
In this section, the crowd dynamics on a bounded interval
[0,L] ∈ R are modeled by a parabolic PDE. The average
crowd density represented by ρ(x, t) is the system state vari-
able, where x ∈ [0,L] and t ∈ [0,+∞) are the space and
time variables. The PDE is given as

ρt (x, t) = Dρxx(x, t)−
∂

∂x

[
ρ(x, t)

(
1−

ρ(x, t)
ρm

)
u(x, t)

]
+β(x, t), (x, t) ∈ �, (1)

where� = [0,L]× (0,+∞). D and ρm are constants, which
represent the diffusion coefficient and the maximum crowd
density, respectively. β(x, t) represents the disturbance and
u(x, t) ∈ [−vm, vm] represents the controller, where vm is
the maximum velocity. The Dirichlet boundary conditions are
given as

ρ(0, t) = φ0(t),

ρ(L, t) = φL(t), ∀t ∈ (0,∞), (2)

where φ0(t) and φL(t) are the measured densities at bound-
aries x = 0 and x = L, respectively. The initial den-
sity ρ(x, 0) = ρ0(x) is assumed to meet the boundary
conditions.
Remark 1: The system model is constructed based on the

conservation law of mass, and the diffusion model is chosen
to represent the relationship between the pedestrian speed and
the crowd density, which shows the self-regulating nature of
pedestrians, that is, pedestrians can adjust their moving speed
in real-time according to the density ahead. The controller
can not only control the pedestrians’ moving speed but also
its moving direction, which solves the problem of the multi-
directionality of the pedestrian movement. The detailed mod-
eling process can refer to [19].

In this paper, we are committed to designing a controller
u(x, t) to achieve the following goals,
(1) the crowd density ρ(x, t) can track any given density

R(x, t);
(2) the crowd density ρ(x, t) is globally constrained, i.e.
|ρ(x, t)| < C, ∀t ∈ (0,∞), where C is a setting positive
constant.

Clearly, the boundary value of the reference density R(x, t)
should be consistent with the boundary value of the state
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density ρ(x, t), i.e.

R(0, t) = φ0(t),

R(L, t) = φL(t), ∀ t ∈ (0,+∞). (3)

Furthermore, there exists a positive constant B < C such that
the reference density |R(x, t)| ≤ B.

The disturbance β(x, t) and its time derivative βt (x, t) are
assumed to meet the following restrictions.
Assumption 1: There exists priori known constants

η1 and η2, such that ‖β(x, t)‖2 ≤ η1, ‖βt (x, t)‖2 ≤
η2, ∀(x, t) ∈ �.

III. CONTROLLER DESIGN
In this section, an IBLF-based unit sliding mode controller is
designed to achieve the control goals mentioned above.

Defining the tracking error as e(x, t) = ρ(x, t)−R(x, t) and
according to equation (1), the error dynamics are given by

et (x, t) = Dexx(x, t)+ DRxx(x, t)− Rt (x, t)

−
∂

∂x

[
ρ(x, t)

(
1−

ρ(x, t)
ρm

)
u(x, t)

]
+β(x, t), (x, t) ∈ �, (4)

and subject to the boundary conditions

e(0, t) = 0,

e(L, t) = 0, ∀t ∈ (0,+∞). (5)

The distributed sliding surface s(x, t) ∈ H2(0,L) is
chosen as

s(x, t) = et (x, t)+ γ e(x, t), (6)

where γ is a positive constant. It is easy to get that s(x, t)
satisfies the following boundary conditions,

s(0, t) = 0,

s(L, t) = 0, ∀t ∈ (0,+∞). (7)

Firstly, Eliminate the nonlinear term of the error dynamic
system (4) using the idea of feedback linearization [38].
To this end, we design the following distributed controller

u(x, t) =
ρm

ρ(x, t)(ρm − ρ(x, t))

∫ x

0

[
g(ξ, t)+ DRxx(ξ, t)

−Rt (ξ, t)
]
dξ, (x, t) ∈ �, (8)

where g(x, t) is a stabilizing function to be designed.
Substituting (8) into (4) and invoking Leibniz integral rule,
it is found that,

et (x, t) = Dexx(x, t)− g(x, t)+ β(x, t), (x, t) ∈ �. (9)

Denote A = C − B > 0 and consider the following IBLF

W (t) =
1
2

∫ L

0
ln

A2

A2−e2(x, t)
dx+

1
2

∫ L

0
s2(x, t)dx. t≥0,

For A2

A2−e2(x,t)
> 1 in the set of |e(x, t)| < A, the nature of

the logarithmic function shows that 1
2

∫ L
0 ln A2

A2−e2(x,t)
dx > 0.

Invoking 1
2

∫ L
0 s2(x, t) dx ≥ 0, it is found thatW (t) is positive

definite in the set of |e(x, t)| < A.
Remark 2: According to the definition of W (t), when
|e(x, t)| approaches A, the IBLF W (t) → ∞. If we can
prove that there is a constant M such that W (t) ≤ M , then
|e(x, t)| cannot approach A. Furthermore, by using a weak
assumption e(0, t) < A, we can conclude that |e(x, t)| < A.
Next, we prove the existence of the constant M .
The time derivative of W (t) is given by

Ẇ (t)=
∫ L

0

e(x, t)et (x, t)
A2 − e2(x, t)

dx+
∫ L

0
s(x, t)st (x, t)dx, t≥0.

(10)

Calculating the time derivative of s(x, t) according to
equation (6) and (9), we get

st (x, t) = ett (x, t)+ γ et (x, t)

= Detxx(x, t)− gt (x, t)+ βt (x, t)+ Dγ exx(x, t)

− γ g(x, t)+ γβ(x, t)

= Dsxx(x, t)−P(x, t)+Q(x, t), (x, t) ∈ �, (11)

where

P(x, t) = gt (x, t)+ γ g(x, t), (x, t) ∈ �, (12)

is a new control variable and

Q(x, t) = βt (x, t)+ γβ(x, t), (x, t) ∈ �,

is a new disturbance. Applying the Assumption 1 gives,

‖Q(x, t)‖2 ≤ γ η1 + η2 := η, (x, t) ∈ �. (13)

In order to counteract disturbance and stabilize the error
dynamic (4), the following unit sliding mode controller is
designed,

P(x, t) = η
s(x, t)
‖s(x, t)‖2

+ ks(x, t)+
e(x, t)

A2 − e2(x, t)
, (14)

where k is a positive constant.
Remark 3: In the infinite-dimensional space, the slid-

ing mode control term sign(s(t)) used in the finite-
dimensional space cannot be simply translated to the form
sign(s(x, t)) [39], so the component η s(x,t)

‖s(x,t)‖2
is designed

according to the unit control [40], which is a continuous
function beyond the sliding surface s(x, t) = 0 and does not
subject to the spatial dimension. Furthermore, the unit sliding
mode controller η s(x,t)

‖s(x,t)‖2
+ ks(x, t) is constructed by using

the reaching law approach [41] to suppress chattering.
Substituting (11) and (14) into (10), yields

Ẇ (t) =
∫ L

0

e(x, t)et (x, t)
A2 − e2(x, t)

dx + D
∫ L

0
s(x, t)sxx(x, t) dx

− η

∫ L

0

s2(x, t)
‖s(x, t)‖2

dx − k
∫ L

0
s2(x, t) dx

−

∫ L

0

e(x, t)et (x, t)
A2 − e2(x, t)

dx − γ
∫ L

0

e2(x, t)
A2 − e2(x, t)

dx

+

∫ L

0
s(x, t)Q(x, t) dx
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= D
∫ L

0
s(x, t)sxx(x, t) dx − η‖s(x, t)‖2

− k
∫ L

0
s2(x, t) dx − γ

∫ L

0

e2(x, t)
A2 − e2(x, t)

dx

+

∫ L

0
s(x, t)Q(x, t) dx (15)

Integrating D
∫ L
0 s(x, t)sxx(x, t) dx by parts, yields

D
∫ L

0
s(x, t)sxx(x, t) dx

= s(x, t)sx(x, t)

∣∣∣∣L
0
− D

∫ L

0
s2x(x, t) dx, t ≥ 0. (16)

Considering the boundary condition (7), one has

D
∫ L

0
s(x, t)sxx(x, t)dx=−D

∫ L

0
s2x(x, t)dx, t≥0. (17)

By the Poincaré Inequality [42]∫ L

0
s2(x, t) dx ≤ 2Ls2(L, t)+ 4L2

∫ L

0
s2x(x, t) dx, t ≥ 0,

one can derive

D
∫ L

0
s(x, t)sxx(x, t)dx≤−

D
4L2

∫ L

0
s2(x, t)dx, t≥0. (18)

For the item
∫ L
0 s(x, t)Q(x, t) dx, employing Cauchy-

Schwarz Inequality [43], it can be written as∫ L

0
s(x, t)Q(x, t) dx

≤

(∫ L

0
s2(x, t) dx

) 1
2
(∫ L

0
Q2(x, t) dx

) 1
2

= ‖s(x, t)‖2‖Q(x, t)‖2, t ≥ 0. (19)

Combination of (18), (19) and (15) gives

Ẇ (t) ≤ −(
D
4L2
+ k)

∫ L

0
s2(x, t) dx − η‖s(x, t)‖2

+‖s(x, t)‖2‖Q(x, t)‖2, t ≥ 0.

It follows from (13) that

Ẇ (t) ≤ −(
D
4L2
+ k)

∫ L

0
e2(x, t) dx ≤ 0, t ≥ 0.

Therefore, it can reach the sliding surface s(t) in a finite time.
Moreover, as soon as the sliding surface is reached, the track-
ing error e(x, t) will converge exponentially to 0 according to
the the definition (6).

Combining equation (8), (12) and (14), yields the
distributed controller

u(x, t) =
ρm

ρ(x, t)(ρm − ρ(x, t))

∫ x

0

[
e−γ t

∫ t

0

(
η

s(ξ, ζ )
‖s(ξ, ζ )‖2

+ ks(ξ, ζ )+
e(ξ, ζ )

A2 − e2(ξ, ζ )

)
eγ ζ dζ + DRxx(ξ, t)

−Rt (ξ, t)
]
dξ, (x, t) ∈ �. (20)

From the above statement, the following theorem is
obtained.
Theorem 1: Consider the disturbed crowd dynamics sys-

tem (1) - (2) with the disturbance β(x, t) satisfies Assumption
1, if the reference density R(x, t) < B subjects to restrictions
(3), the distributed controller (20) guarantees that

(1) The tracking error e(x, t) is asymptotically stable.
(2) If the initial error e(x, 0) satisfies |e(x, 0)| < A, e(x, t)

is globally constrained by A, i.e., |e(x, t)| < A, (x, t) ∈ �.
(3) If the initial density ρ(x, 0) satisfies |ρ(x, 0)| < C ,

ρ(x, t) is globally constrained by C , i.e., |ρ(x, t)| < C,
(x, t) ∈ �.

Proof: (1) From the above analysis, the asymptotic
stability of the tracking error e(x, t) is obvious.

(2) From Ẇ (t) ≤ 0, t ≥ 0, it follows that W (t) ≤ W (0).
For

∫ L
0 ln A2

A2−e2(x,t)
dx and

∫ L
0 s2(x, t) dx are non-negative

function, one can derive that

ln
A2

A2 − e2(x, t)
≤ W (0), ∀x ∈ [0,L].

From the fact that

ln
A2

A2 − e2(x, t)
→∞, as |e(x, t)| → A,

we have |e(x, t)| 6= A, (x, t) ∈ �. Because of the initial
error e(x, 0) satisfies |e(x, 0)| < A and e(x, t) is a continuous
function, one can derive

|e(x, t)| < A, (x, t) ∈ �.

(3) From |R(x, t)| ≤ B,

|ρ(x, t)| = |e(x, t)+ R(x, t)| ≤ |e(x, t)| + |R(x, t)|

< A+ B = C, (x, t) ∈ �,

i.e., ρ(x, t) is globally constrained by C .
Remark 4: In the article [19], Qin et al. used the unit

sliding mode control method to solve the tracking control
problem, but did not consider the constraints on the state
density. External disturbances may cause the local density to
be too high, leading to dangerous accidents such as stampede.
In this paper, the BLF method is used to design the controller,
which can track the target and constrain the state density in a
safe range.
Remark 5: A diffusion system which is frequently used in

industrial processes is studied in [31], which is shown as

ρt (x, t) = Dρxx(x, t)+ u(x, t)+ β(x, t), (21)

subjects to the initial and Dirichlet boundary conditions

ρ(x, t0) = ρ0(x), ∀x ∈ (0,L),

ρ(0, t) = φ0(t),

ρ(L, t) = φL(t), ∀t ∈ (0,∞). (22)

The bounded stable of the tracking error is got, that is,
the tracking error is limited to a certain range, but it cannot
asymptotically converge to 0. In this paper, a more effective
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controller can be derived from Theorem 1 to make the track-
ing error of the diffusion system (21)-(22) asymptotically
stable, as shown in the following corollary.
Corollary 1: Consider the diffusion system (21) - (22)

with the disturbance β(x, t) satisfies Assumption 1, if the
reference density R(x, t) < B subjects to restrictions (3),
the distributed controller

u(x, t) = e−γ t
∫ t

0

(
η

s(x, ζ )
‖s(x, ζ )‖2

+ ks(x, ζ )

+
e(x, ζ )

A2 − e2(x, ζ )

)
eγ ζ dζ + DRxx(x, t)

−Rt (x, t), (x, t) ∈ �. (23)

guarantees that
(1) The tracking error e(x, t) is asymptotically stable.
(2) If the initial error e(x, 0) satisfies |e(x, 0)| < A, e(x, t)

is globally constrained by A, i.e., |e(x, t)| < A, (x, t) ∈ �.
(3) If the initial density ρ(x, 0) satisfies |ρ(x, 0)| < C ,

ρ(x, t) is globally constrained by C , i.e., |ρ(x, t)| < C,
(x, t) ∈ �.

IV. NUMERICAL SIMULATION
To illustrate the effectiveness of the controller (20), a numer-
ical example is given based on the finite difference method.
Consider the system (1) - (2) with parameters L = 6,
D = 0.1, η = 14, k = 6, ρm = 5, γ = 1, and initial density

ρ(x, 0) = 2.5+ cos(
πx
2
+
π

2
).

The disturbance β(x, t) and reference density R(x, t) are
set as

β(x, t) = sin(2πx)+ sin(2π t),

R(x, t) = 2.5.

The control objectives are:
1. The state density ρ(x, t) asymptotically converges to the

reference density R(x, t);
2. The tracking error e(x, t)| is constrained globally

within 1.1, i.e. |e(x, t)| < 1.1. From R(x, t) = 2.5, the state
density ρ(x, t) is limited within 3.6, i.e. |ρ(x, t)| < 3.6.
The uncontrolled density evolution of system (1) is illus-

trated in Fig. 1. As can be seen from the figure, it is a slow
diffusion process, but the density profile can not stabilized to
the reference density because of the influence of the distur-
bance β(x, t).

Fig. 2 illustrates the density response with the designed
controller (20). The density changes smoothly, reaches the
reference density in about 6 seconds, and is globally con-
strained within 3.6, i.e. |ρ(x, t)| < 3.6. The tracking error
is graphed in Fig. 3, and we can see that e(x, t) is limited
within 1.1. The control input is illustrated in Fig. 4.

For a clearer demonstration, we select some spatial and
temporal points to show the density evolution process.
Fig. 5 – Fig. 6 show the density evolution of crowd dynamics
systems at spatial locations x = 1 and x = 3, respectively.

FIGURE 1. Density evolution without control input.

FIGURE 2. Density response with the designed control.

FIGURE 3. Error e(x, t).

By inspection of Fig. 5 and Fig. 6, we see that the density pro-
file can not reach the reference density without control, and
may break through the constraints due to the influence of dis-
turbance term, such as the density at t = 0.5 in Fig. 6. On the
contrary, under the action of the controller (20), the density
profile asymptotically stabilizes to the R(x, t) = 2.5 without
violating the constraint.
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FIGURE 4. Control input u(x, t).

FIGURE 5. Density variation at x = 1.

FIGURE 6. Density variation at x = 3.

Fig. 7 – Fig. 9 demonstrate the density distribution when
t = 0.5s, t = 3s and t = 6s, respectively. From Fig. 7,
we note that the uncontrolled state density ρ(x, t) reaches
about 3.9 at x= 3.4, while the state density under the control
input (20) is strictly constrained within the target range.
Comparing Fig. 7 – Fig. 9, we see that the density under
the control input approaches the reference density at a faster
speed and reaches the reference density at 6s.

FIGURE 7. Density distribution when t = 0.5s.

FIGURE 8. Density distribution when t = 3s.

FIGURE 9. Density distribution when t = 6s.

To illustrate the superiority of the proposed control,
the sliding mode controller (SMC) designed in article [19]
is used to control system (1) - (2) under the same initial
conditions and reference density. The disturbance β(x, t)
is set as β(x, t) = 1.5[sin(2πx) + sin(2π t)]. Under the
action of the two controllers, the density distributions at time
t = 0.5s and t = 8s are shown in Fig. 10 and Fig. 11,
respectively. When t = 0.5s, the maximum density with
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FIGURE 10. Density comparison when t = 0.5s.

FIGURE 11. Density comparison when t = 8s.

the controller in [19] is 3.6896, which violates the density
constraint |ρ(x, t)| < 3.6, and cannot stabilize to the refer-
ence density when t = 8s, as shown in Fig. 11. However,
the density with the proposed controller in this paper is
globally constrained within 3.6. Despite the increase of the
disturbance, it can still stabilize to the reference density in
about 8 seconds.

In summary, the control input (20) not only stabilizes the
state density to the reference density, but also constrains it
within the target range, i.e. |ρ(x, t)| < 3.6, which effectively
avoids the problem of excessive local density caused by
external disturbances and completes the established control
target.

V. CONCLUSION
Tracking control for a disturbed crowd dynamics system
described by partial differential equations has achieved.
By designing a novel controller, the state density is asymp-
totically stabilized to the reference density and constrained
in a safe range. The design idea of the unit sliding mode
controller based on IBLF can provide a reference for solving
the output constraint problem of other distributed parameter
systems. In addition, the high-order sliding mode controllers
have strong chatter suppression capabilities, so the design

of high-order sliding mode controllers based on IBLF is an
interesting topic.
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