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ABSTRACT Integrating renewable energy into power grids is seen in increase in recent years since these
energy sources are sustainable and clean. However, the integration brings about considerable technical
challenges associated with fluctuations and uncertainties of the energy availability whilst maintaining the
stability of smart grids. The prediction of renewable energy generation is key to achieve optimal power
dispatch in renewable-intensive smart grids. However, uncertain interruption and prediction errors will make
an optimal decision more challenging. Model predictive control (MPC) is an effective way to overcome
the discrepancies between the prediction and the real-world system through a closed-loop correction
over iteration process. This study develops an improved MPC scheme used with a hybrid energy storage
system for optimal power dispatch in a smart grid. This hybrid renewable energy system consists of a
wind farm, a hydrogen/oxygen storage system and several fuel cells (FCs). In this study, particle swarm
optimization (PSO) with a back propagation (BP) artificial neural network is developed to predict the wind
energy availability by using measured data. Then, a genetic algorithm (GA) is combined with a state space
model (SSM) to achieve the MPC control. A dataset of 24-hour ahead predictive generation is calibrated
from the measured data and is defined for optimal power flow between the grid, the wind farm and the
storage subsystem so as to balance the supply and load. The optimization target is to achieve a minimal
energy exchange between the power grid and the hybrid renewable energy storage system. Based on actual
measured data, the test results have shown that the proposed methodology can maximize the local usage
of wind power whilst minimizing the power exchange with the grid. An optimal power dispatch strategy is
proved to be effective to meet the demand and efficiency with dynamic control of the FCs. The usage of
the intermittent wind power is increased from 45% to 90% in the four test studies. Therefore, this work can
minimize the impact of fluctuating renewable energy on the power grid and enhance uptakes of FC-based
energy systems. This is particularly economic and relevant to the remote and under-developed regions where
their power networks are weak and vulnerable.

INDEX TERMS Fuel cells, genetic algorithm, hydrogen, model predictive control, smart grid, wind energy.

NOMENCLATURE
A equivalent area of the blade in turbine
AC alternating current
AI artificial intelligence
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BP back propagation
CO2 carbon dioxide
DC direct current
Ecell actual output voltage of a PEMFC
E0 open-circuit potential of a PEMFC unit
ESOCH equivalent state of charge of hydrogen storage
ESOCO equivalent state of charge of oxygen storage
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ESOCS (k) equivalent state of charge of the storage
system

eMAPE error function
f (x) objective function
fwf conversion efficiency of wind power from

mechanical power
GA genetic algorithm
i current density of a fuel cell
k time point
me electrical power of the wind system
mw mechanical power of a wind turbine
MPC model predictive control
MMC modularized micro converter
pfc power of the fuel cells
pfc power density of a fuel cell
pgrid power of the grid
pH2O power for the water electrolysis
pload power demand of the electrical load
pwind power from the wind turbine
p′wind measured wind power

proton exchange membrane fuel cell
PID proportion integral differential
PSO particle swarm optimization
Ph pressure of a hydrogen tank
P0h full pressure of a hydrogen tank
Po pressure of an oxygen tank
P0o full pressure of an oxygen tank
SSM state space model
v average wind speed
vH2 hydrogen flow rate (litre/hour)
vo2 oxygen flow rate (litre/hour)
VH volumes of a hydrogen tank
VO volumes of an oxygen tank
TOk measured value
T1k predicted value at the first k time point
TOP average value of the measured data
Un voltage of a electrolytic bath
x1(k) the first state variable at time point k
x2(k) the first state variable at time point k
y(k) the output variable at time point k
Z root mean square error
ε maximum permissible error
ρ air density
ηact over-potential of activation loss
ηcon over-potential of concentration loss
ηohim over-potential of ohmic loss
ηwe transformation efficiency over electrolysis
ξ1 Coefficient of the first state variable
φ1 measurement error.

I. INTRODUCTION
Wind and hydrogen are considered to be clean energy
resources, which attract tremendous interest across the world.
It is predicted that hydrogen will account for 24% of the
overall energy supplies in 2050 according to an EU report [1].

The development of hydrogen-economy has also been high
on the Chinese government agenda [2]–[4]. Hydrogen pro-
duction associated with fuel cell utilization is one of the most
promising approaches for renewable applications. Similarly,
wind energy has been a prime renewable source in the EU
and China. However, there are also some technical issues
associated with the utilization of these renewables. In gen-
eral, wind is a primary source of renewable energy whilst
hydrogen is generally produced from electrolyzing water.
In this study, hydrogen is a means of energy storage, not a
primary source. How to maximize local usage of wind power
and stabilize power exchange between wind and the grid
becomes important in smart grids. Water is electrolyzed to
produce hydrogen and oxygen when wind power is abundant.
Therefore, wind power is converted into electricity and then
into an electrochemical form in hydrogen. When electricity is
needed for peak loads, fuel cells (FCs) can produce electricity
from a chemical reaction of hydrogen and oxygen.

It is commonly accepted that hydrogen-based storage sys-
tems are very effective owing to their high energy density and
safety [5]. The investigations in references [6], [7] explored
the benefits of wind-hydrogen energy systems to stabilize
the power supply. These systems are characterized with low
generation cost and zero CO2 emissions. Reference [8] sim-
ulated a 5GW wind farm incorporating a 30 MW electrolysis
plant which can reduce 7.6% curtailment of wind power
under optimization strategies. In reference [9], the authors
investigated a wind-hydrogen energy system connected to the
power grid. The test results have shown the grid-connected
wind-hydrogen energy system is the optimum configuration
with the benefits of maximizing wind utilization as well
as hydrogen production. In these systems, control strategies
play an important role in the system performance. Tradition-
ally, proportion, integration and differentiation (PID) con-
trol has advantages of high robustness and stability. It is
useful in linear systems in the most applications [10]–[13],
but it is less effective for non-linear system due to high
uncertainty, unknown parameters and complex disturbances.
In these cases, empirical methods are also used in the control
strategies in these applications [14], [15]. In terms of energy
consumption of electrical equipment, consumers generally
use predefined energy tariffs to predict their energy bills.
This often involves historical data and previous experience.
In the control loop design, proportional-integral (PI), PID
and binary control are commonly used in the field [16], [17].
Quadratic approximation is an alternative control strategy to
overcome nonlinearity in power systems [18], [19]. However,
these application are limited because of the lack of the empiri-
cal knowledge. Artificial intelligence incorporating with con-
trol theorem has receiving increasing attraction in the field.
Among them, expert system, fuzzy logic, particle swarm,
artificial neural network (ANN), and genetic algorithm (GA)
are utilized in different applications. The ANN has many
usage areas in modeling, simulation and control of renewable
energy systems [20]. The ANN has been used to forecast
24-hour ahead of power generation [21] and to estimate solar
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energy from the PV panels [22]. In reference [23], the ANN
is proved to improve the system operation stability. As PSO
can find the optimum solution more quickly [24], it has been
used to optimize the renewable energy-combined heat and
power systems [25], neuro-fuzzy photovoltaic systems [26]
and optimal power flow problems [27]. In recent years,
the PSO is found to solveMPC problems in different research
areas [28]–[31]. However, PSO easily falls into the local
optimum so that a global optimum is difficult to be achieved.
Therefore, it is commonly replaced by GA when global opti-
mization is needed. GA is a very effective algorithm owing to
its high convergence rate in applications [32], [33], especially
incorporated with model predictive control (MPC). In refer-
ence [34], the GA is utilized as an optimization solver for
the MPC formulation. Also, the GA can be used to solve the
multi-objective problems with MPC [35]. The combination
of MPC and GA can achieve an optimization among different
factors [36]. Thus, in this paper, theGA is utilized for defining
optimal power dispatch.

MPC is regarded as one of the promising methods to deal
with the system with high uncertainty, multi disruption and
unknown parameters. It corrects the operational errors by
continuedly checking the difference between the reference
and measured data in a closed loop. Therefore, the stabil-
ity of the controlled systems are ensured. MPC has been
widely applied in various fields, such as food processing,
irrigation system, robotics, building ventilation, automation
vehicle, public transport. In particular, they are gaining pop-
ularity in power and energy systems as prediction of energy
supply or loads are becoming important in today’s smart
grids.

In reference [37], an MPC strategy regulates an inverter to
maintain the voltage of the power line where the multi renew-
able resources are integrated. In the investigation, the criteria
in relation to the cost and emission are employed by setting
optimization objectives. The outcomes evaluate the effective-
ness of the developed method. Reference [38] develops an
MPC strategy to govern a conventional boiler-turbine sys-
tem where the problems with the non-linear and time-delay
features are solved. Reference [39] develops a droop current
regulator incorporated with an MPC scheme to operate a
photovoltaic power system. The scheme is capable of fault-
tolerant operation. An MPC scheme in [40] has reduced the
torque ripples in a permanent magnet machine. The study
emphases the importance to establish an objective model
while exploring an MPC scheme.

The motivation of this work is to develop an MPC strat-
egy for an optimized energy dispatch in a multiple-source
smart grid involving wind energy, hydrogen, and electric-
ity. There are three optimization targets: the security of
the storage, minimizing power curtailment of the wind
power, and minimizing the energy exchange with the power
grid.

The contributions of this study are three. Firstly, a grid
connected wind-hydrogen-fuel cell system is developed for
optimal power flow management. Secondly, by employing

the particle swarm optimization with a back propagation (BP)
artificial neural network (PSO-BP), the historical data of the
regional wind power is explored so as to forecast the wind
power with accuracy. Thirdly, an MPC scheme consisting of
GA and a state space model (SSM) are developed to regulate
the power dispatch among the components in the smart grid.

The rest of the paper is arranged as follows: Section 2 intro-
duces the system configuration where the relationship of
each part is clarified. Section 3 states the development of
the proposed MPC. Three key elements, namely, forecasting,
optimization and systematic model are elaborated. The tests,
outcomes and analysis are explored in section 4 following by
the conclusions in section 5.

II. SYSTEM CONFIGURATION
In this study, a smart grid is built in the campus of Guizhou
University, China. As shown in Fig. 1, the system is composed
of three units: a utility power grid, a renewable-based DC
microgrid and a wind-hydrogen-fuel cell AC microgrid. It
is capable of supplying energy to the three buildings in the
campus. The power flow between the three different units
is managed via the modularized micro converters (MMCs)
and other controllers. This study is focused on optimal power
flow management for the wind-hydrogen-fuel cell system
and the AC power grid. This system consists of a wind-
turbine, the power converters, a water electrolyzer, two hydro-
gen/oxygen tanks and fuel cells. The multi-vector energy
system is connected to an existing smart grid via a three-line
AC power grid.

In order to simplify the analysis, this work is based on the
following assumptions.

1) The power network is strong and the grid voltage is
constant all the time.

2) Energy conversion efficiency is fixed. For instance,
the conversion efficiency from wind to hydrogen fwf keeps
constant.

A. CHALLENGES IN A SMART GRID WITH RENEWABLE
PENETRATION
There are two challenges in this work. The first one lies
in the uncertainty associated with wind power generation.
The second one is in line with the optimal power flow
management that limits wind power curtailment to the least.
In order to balance the AC grid power and the fluctuated wind
power, a combined renewable power system with an equiv-
alent energy storage system consisting a water electrolysis
unit, the hydrogen/oxygen storage tanks and the hydrogen
fuel cells are formed. By using an energy storage system,
the distinction between the supply and the local load are
balanced while limited power is required by the three-line
AC grid. By using the predictive model to estimate the next
24-hour wind power and to define the optimal power flow,
an optimal management strategy is developed under a genetic
algorithm so as to maximize the usage of the wind power and
minimize the grid power exchange.
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FIGURE 1. A smart grid incorporated a wind turbine and a hydrogen fuel cell energy storage system.

B. WIND ENERGY CONVERSION
Equation 1 presents the relationship of the wind speed and
mechanical power. Assuming conversion efficiency with fwf ,
Equation 2 presents the relationship between the mechanical
power and electrical power.

mw =
1
2
∗ ρ ∗ A ∗ v3 (1)

me = mw · fwf (2)

where mw, me, ρ, A, ν denote the mechanical power of the
wind turbine, the electrical power of the wind system, the air
density, the equivalent area and the average wind speed.

The volume ratio of the hydrogen and the oxygen in
electrolysis is 2:1 approximately. Thus, the flow rate of the
production can be given by:

VH2 = 2VO2 = 418 · me · ηwe/Un (3)
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where VH2 ,VO2 , ηwe,Un refer to the hydrogen flow rate
(liter/hour), oxygen flow rate (liter/hour), transformation effi-
ciency, and the voltage of the electrolytic bath, respectively.

C. FUEL CELLS
The actual output voltage of a proton exchange membrane
fuel cell (PEMFC) Ecell , is lower than its equilibrium poten-
tial due to irreversible losses for several reasons. The losses,
which are generally called polarization or overpotential,
originate primarily from activation loss, ohmic loss and con-
centration loss. Ecell is a function of output current den-
sity, temperature, partial pressure of reactant, which can be
expressed as follows:

Ecell = E0 − ηact − ηohim − ηcon (4)

where E0 is the open-circuit potential or thermodynamic
equilibrium potential, ηact , ηohim and ηcon are over-potential
with respect to activation, ohmic and concentration losses,
respectively.

The power density of a PEM fuel cell is written by:

pfc = i · Ecell (5)

where i is the current density.

D. EQUIVALENT STATE OF CHARGE
The water electrolyzer, hydrogen/oxygen tanks and fuel cells
constitute the energy storage system in this study. Hydrogen
and oxygen are generated by consuming electricity in the sim-
ilar way of charging batteries. In discharging, the fuel cells
generate electricity by consuming hydrogen/oxygen while
hydrogen/oxygen decreases gradually. In order to evaluate
the remaining amount in the storage, an equivalent state of
charge (ESOC) is introduced shown in Eqs. 6-8.

ESOCH =
Ph
P0h

(6)

ESOCO =
Po
P0o

(7)

ESOCS =
ESOCH · VH + ESOCO · VO

VH + VO
(8)

where ESOCH and ESOCO are the ESOC of the hydrogen
and oxygen storage; Ph is the pressure of the hydrogen tank;
P0h is the full pressure of the hydrogen tank; PO is the pressure
of the oxygen tank and P0O is the full pressure of the oxygen
tank; VH and VO are the volumes of the hydrogen and oxygen
tanks, respectively.

III. OPTIMAL POWER DISPATCH UNDER MODEL
PREDICTIVE CONTROL
A PSO-BP is used to forecast the wind power prior to the
application of model predictive control associated with a GA
strategy and a state space model. The following sections
discuss them in details.

A. MODEL PREDICTIVE CONTROL
The key points in an MPC scheme includes three parts,
prediction, optimization and system model. Fig. 2 illus-
trates the three elements associated with the key datasets.
A PSO-BP network (see Fig. 2) is developed to provide
a series of data {pwind (k), . . . , pwind (k + 23)} subjected
to the forthcoming wind power. They are used by the
GA optimization incorporating with other inputs, such as
ESOCS (k), p′wind (k), pload (k), p(H2 O)(k). The GA optimiza-
tion mainly constitute the optimization objective and the
constraints. The study aims to maximize the usage of wind
power while maintaining the storage within its safe range.
As far the model, a state space model is employed where
the datasets including the measured wind power, predictive
wind power, the charging or discharging power of the storage
system are fed. The outputs of the SSM also are used as the
inputs of the optimization for the next step over the iteration
process. It is worthy to be mentioned that a closed loop
is formed between the optimization and the SSM. There-
fore, the MPC is capable to correct the errors caused by
the uncertainties or discrepancy between the predicted wind
power and the measured counterparts. In overall, the prin-
ciple of an MPC predicts the forthcoming inputs and then
feed them into the system model. Control parameters in
line with the optimal targets are determined with the assis-
tance from the model outputs as references. These steps are
repeated to reach an optimal state over the whole optimization
horizon.

B. PSO-BP NETWORK FOR WIND POWER PREDICTION
A BP neural network is used in this system for wind power
prediction where the environmental information, such as
ambient temperature, wind speed and humidity are taken as
the inputs. The network is extremely sensitive to the weight-
ing factors, and different initial values will lead to different
results [41]–[44]. Improper selection of the weights will incur
the network oscillation or out of convergence. To overcome
these problems, this study combines BPwith PSO to build the
PSO-BP prediction model for wind power forecast. The basic
procedure is in two steps. Firstly, the PSO algorithm is to
optimize the weight ωi and the threshold bi of the neural net-
work; then, the PSO-BP model is to predict the wind power.
The PSO-BP neural network algorithm is shown in Fig. 3.
It can be divided into two parts: a BP neural network and a
PSO scheme. The right-hand side in Fig. 3 illustrates how
a BP neural network is determined according to the training
outcomes by the historical samples where its threshold and
the connection weights are given by the PSO strategy. On the
other side, a PSO has been implemented by the following
steps:

Step 1: Initialization. It includes the initialization of the
weights and thresholds for the BP neural network.

Step 2: Giving the first location and the speed of the
particles.

Step 3: Calculating the fitness value of the particles.

92422 VOLUME 8, 2020



X. Chen et al.: AI-Aided MPC for a Grid-Tied Wind-Hydrogen-FC System

FIGURE 2. A block diagram of the methodology for data flow.

FIGURE 3. Flow chart of a PSO-BP neural network.

Step 4: Comparing the new fitness value with the previous
one. If it is better, the values are assigned to the particles.
Otherwise, the particles keep the previous one.

Step 5: Updating the speed and the location of the particles.
Step 6: checking the termination conditions. If the condi-

tions are satisfied, the iteration ends. Otherwise, it returns to
Step 3.

By adopting the measured data from a wind farm, the
PSO-BP neural network is used to predict the wind power
with the 24-hour prediction horizon. 2928 sets of data are
taken as the samples where the 360 datasets are used as
the test samples with a one-hour interval and the rest are
used as the training samples. By feeding training sam-
ple into the model, the predicted value is obtained which
will be used as the starting point for the next prediction.
By integrating the predicted value and the past datasets,
the next-step prediction is obtained. Following this pro-
cess, a series of 24-hour wind power data (from time
point k) {pwind (k) , pwind (k + 1) , . . . , pwind (k + 23)} can
be received. The demonstration of prediction outcomes will
be given in the result section. Table 1 lists the PSO-BP
parameters for the study.

C. STATE SPACE MODEL
In an SSM, a state includes one or more state variables in
time sequence. In essence, the target of a GA is to find the
best decision set over an optimal horizon where the objective
is met in favor of its fitness function.

In the system, the energy balance equation can be
expressed as

pwind + pgrid + pfc = pH2O + pload (9)
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FIGURE 4. A flow chart for the GA optimization.

where p′wind , pgrid , pfc, pH2O, pload refer to the measured
power data from the wind turbine, grid, fuel cells, water
electrolysis and the electrical load, respectively.

In order to form a state space equation, two state variables
and one output variable are defined as follows.

x1 (k) = ESOCS (k) (10)

x2 (k) = y (k) = (p′wind (k)− pgrid (k)− pload (k)) (11)

The state space model can be presented as

x1 (k) = x1 (k − 1)+ ξ1 · x2 (k)+ φ1 (12)

y (k) = x2(k). (13)

D. OPTIMIZATION WITH GENETIC ALGORITHM (GA)
GA is inspired by natural selection and genetic mechanism in
biological evolution. It is a stochastic optimization method
that was introduced and developed by Professor Holland
in 1975 [45]. Essentially, GA is a global search algorithm
that aims to find the best solution for optimized problems.
In the process, the three important operators are involved,
namely ‘‘selection’’, ‘‘crossover’’ and ‘‘mutation’’. As shown

TABLE 1. Initial parameters in the PSO-BP network.

TABLE 2. Key parameters in the GA algorithm.

Fig. 4, a GA employs selection to allow the elite individu-
als to reproduce. In this study, the approach of tournament
selection is used to find the individuals with the best fitness.
After selection, ‘‘crossover scattered’’ operator carries out the
information exchange between the different individuals and
produce the new generation. To prevent irrecoverable loss of
useful genes, this study uses uniform mutation to allow genes
being uniformly distributed over the range of the gene. The
key indicators in theGA algorithm are summarized in Table 2.
Some parameters are selected based on the empirical and
trial-and-error methods.

In this study, the GA algorithm is to find a set of oper-
ational variables which allow the maximum wind power be
consumed locally over the whole process. In order to derive
the relationship between each energy component, an SSM
expression is used which is a conventional method to describe
a complex multi-vector energy system.

Furthermore, the SSM is also taken as a constituent in a
GA fitness function to present the relationship between the
variables.

0.2 ≤ ESOCS (k) ≤ 0.9 (14)

The aim of the optimization is to minimize the power
sending to or coming from the grid while maximizing the
local consumption of wind power. Therefore, the objective
function can be described as:

f (x) = min
24∑
i=0

pgrid (k + i)

s.t. pload (k)+ pstorage(k)+ pgrid (k) = p′wind (k)

0.2 ≤ ESOCS (k) ≤ 0.9 (15)

92424 VOLUME 8, 2020



X. Chen et al.: AI-Aided MPC for a Grid-Tied Wind-Hydrogen-FC System

FIGURE 5. The variation of the demand and the wind power in different
days. (a) daily load profiles in one month; (b) daily wind power profiles in
one month.

IV. TEST RESULTS AND ANALYSIS
The test data in this simulation including both the
wind power and the load are obtained from the actual
measurements.

Starting from the analysis on the features of both the
demand and the wind power, the demand in Fig. 5(a) has
shown similarity while the wind power supplies in Fig. 5(b)
being illustrated. Fig. 5(a) shows the load waveforms over
one month. Even the different values in the same time point
of the different days are observed, the variation of the daily
demands shows a similar pattern. The values range between
1.8 and 2.3 MW in the month. By contrast, the wind power
demonstrates no a fixed pattern in the month. There are day-
to-day difference in relation to the peaks and the variation as
shown in Fig. 5(b).

Obviously, the uncertainty of the wind power supply as
well as the dissimilarity between the demand and the supplies
will increase the difficulty if an optimal strategy is defined by
using conventional ways.

A. PREDICTION RESULTS
In order to evaluate the effectiveness of the proposed PSO-BP
model, a traditional BP neural network model is constructed
for comparison where themaximum permissible error is set at
ε = 10(−7). The forecasting curve of the wind power is shown
in Fig. 6. The prediction error is shown in Fig. 7. The key
values in the results are shown in Table 3. The performance
indicators of the both prediction methods are summarized
in Table 4.

For the evaluation of prediction methods, a common indi-
cator eMAPE is employed as an error function. Furthermore,
the root mean square error Z and r are used to quantify
the accuracy and quality. Equations (16)-(19) provides the

FIGURE 6. Real data & model prediction.

FIGURE 7. Prediction error curve.

TABLE 3. Comparison of the forecast and real-world data.

TABLE 4. Evaluation indexes of the prediction methods.

calculation as follows:

eMAPE =
1
N

∣∣∣∣O (k)− T (k)O(k)

∣∣∣∣× 100% (16)

Z =

√∑240
k=1 (T1k − TOk )

2

360
(17)

r =

1−
√√√√ 1
N

N∑
k=1

(
T1k − TOk

TOP

)2
× 100 (18)

W/ =
1
N

N∑
k=1

Fk × 100%

Fk =


1, 1−

√
(
T1k − TOk

TOP
)
2
≥ 0.7

0, 1−

√
(
T1k − TOk

TOP
)
2
< 0.7

(19)
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FIGURE 8. Case one. (a) the daily demand (b) the daily wind power; (c) ESOC profile under optimal operation; (b) grid power
comparison between with and without optimization.

FIGURE 9. Case two. (a) The daily demand; (b) the daily wind power; (c) ESOC profile under optimal operation; (b) grid power
comparison between with and without optimization.

where k represents the time point, a total of 360 time points;
T1k is the predicted value at the first k time point; TOk is the
measured value at the first k time point; and TOP is the average
value of the measured data.

Fig. 6 provides a comparison of the test datasets and the
model prediction where a solid line is for the test data and
the prediction is drawn by a dot line. Both two curves fit
well. In order to demonstrate the difference, Fig. 7 illustrates
the error margins. As shown in Fig. 7, the most values are
limited within 5% where the first 8 hours contribute the main
difference by comparison. Furthermore, Table 4 provides the
key values in line with the curves in Figs. 6 and 7. To demon-
strate the advantages of PSO-BP, the key indicators for both

PSO-BP and the general BP are summarized in Table 4 where
the mean error, the root mean square error, the accuracy,
and the percentage of qualified data are included. By using
the PSO to improve the BP neural network, the error is
better, with only 4.5% in average. On the other side, the root
mean square error is only 1.4%; The accuracy rate reaches
at 92.3%, with an improvement of 11.0% by comparing
to the general BP. The W rate is 96.5% with an increase
of 9%.

All indicators fully show that the PSO-BP neural network
model is superior to the traditional BP. As a result, a PSO-BP
is used to estimate the wind power before the GA optimiza-
tion for better power dispatch.
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FIGURE 10. Case three. (a) The daily demand; (b) the daily wind power; (c) ESOC profile under optimal operation; (b) grid
power comparison between the system with and without optimization.

FIGURE 11. Case four. (a) the daily demand (b) the daily wind power; (c) ESOC profile under optimal operation; (b) grid
power comparison between with and without optimization.

B. WIND POWER PROFILES
A set of four-day demand waveforms are randomly selected
and demonstrates in each diagram (a) in Figs. 8 to 11. The
wind power profiles of the corresponsive four days are shown
in each diagram (b). The demand profiles fluctuate over
24 hours in each profile while similarity being found in these
waveforms.

In essence, the wind power profiles are different in the four
days. Day one starts with very low wind power and gradually
raises to its peak in the end as Fig. 8(b) shows. Day four

in Fig. 11(b) demonstrates an opposite way to day one where
the power peaks at the beginning and gradually decreases in
the day time. Day two in Fig. 9(b) shows very low supply over
the whole day where day three in Fig. 10(b) shows variation
over the whole day. Average wind speed is measured and
recorded on the test site which ranges from 0 to 21 m/s.
There is no fix pattern available among them and the four
waveforms of the wind power vary differently. The wind
power in day one and day three ranges from 0 to 1.5 MW.
7:30 has the peaks in these two days while strong wind
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appears in day time. Day two plays a different scenario to
day one and three. The wind power gradually increases until
the peak 3.5 MW at 24:00. Day four has the peak at 1:00.
Afterward, thewind power gradually decreases and keeps low
over the whole day time. From 19:00 onward, the wind power
keeps growing over the night.

C. COMPARISON OF THE TEST RESULT WITH AND
WITHOUT MPC
Figs. 8(c), 9(c), 10(c) and 11(c) demonstrate ESOCS profiles
under the GA optimization in the different scenarios.

In case one, the demand fluctuates within the range from
2.2 MW to 2.7 MW shown in Fig. 8(a) while wind power
starts from very low and gradually increases over the next
few hours. The ESOC curve in Fig. 8(c) displays very limited
change at the first 10 hours since the wind power is less than
the demand over this period. Afterwards, ESOC gradually
increases along with the wind power growing. Until 23:00,
both of the wind power and the ESOC reach the peaks.
By comparing the two curves in Fig. 8(d), it can been noticed
that the less grid power is needed with the assistance of the
storage system under optimization.

The wind power in Fig. 9(b) rises slightly in the first two
hours and decreases gradually until 10:00. It goes up to 3MW
at 16:00withminor variation until 20:00. Afterwards, it peaks
at 23:00. With the first two-hour surplus power, the storage
system is charged as seen in Fig. 9(c). Therefore, almost no
power is needed from the grid as shown in the line with the
rhombic marks in Fig. 9(d). With the decrease of the wind
power in the next few hours, the ESOC decreases until hitting
its low limit at 5:00. The grid power as supplement supports
the balance between the demand and the wind power. As the
wind power gets stronger, the storage is charged again while
limited grid power is needed. By comparing the lines in
Fig. 9(d), the grid power with an optimization strategy is less
than that without optimization.

Fig. 10(c) shows that ESOC varies within a limited range
from 0.2 to 0.4 over the whole day since the wind power
is always lower than the demand. By comparing the curves
with and without optimization in Fig. 8(d), it can be observed
that the lower grid power is required under optimization
than that under non-optimization without the storages system.
Fig. 11 (a) shows a similar scenario to Figs. 8(a), 9(a) and
10(a). However, the curve in Fig. 11(b) is different from
those in Figs. 8(b), 9(b), 10(b). The variation in Fig. 11(c)
follows the variation of the wind power in Fig. 11(b). The
less grid power under optimization is needed than that without
optimization as shown in Fig. 11(d).

Overall, in all cases, the wind power is utilized to fullest
with the assistance of the energy storage system under GA
optimization. As a result, less grid power is needed in the
system with optimization than that without optimization.

V. CONCLUSION
This paper has presented an AI-enhanced MPC strategy for
a wind-hydrogen-fuel cell power system which is integrated

in a smart grid. A PSO-BP neural network is used to forecast
the 24-hour wind power for the MPC to achieve the optimal
power dispatch. A GA optimization is adopted to iteratively
define the best solutions over the 24-hour optimal horizon
while the SSM compares the forecasting with measured data
to adjust the operational strategy.

The findings of this work can be summarized as follows:
1) The usage of the wind power is increased by 45-90% by

the developed MPC scheme.
2) The energy storage system consists of a water elec-

trolyzer, hydrogen/oxygen storage tanks and fuel cells to
balance the demand and supply while the operation of the
storage system is kept within a safe range.

3) The effectiveness of the proposed methodology is
verified in the simulation environment where the influential
factors is assumed in a limited way. In the future work,
the developed strategy will be implemented in a practical
wind farm with fuel cell energy storage. A full-scale experi-
mental test rig is also under development.

The developed technologies provide a newmethod to oper-
ate grid-tied energy system where intermittent renewable can
be effective used. This will encourage the uptake of wind,
hydrogen and fuel cells in power generation.
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