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ABSTRACT Underwater images suffer from low visibility and contrast caused by absorption and scattering,
which leads to haze and some further limitations. The existing underwater single image dehazing methods
cannot achieve a balance between the performance and computational complexity, and are difficult to
produce satisfactory results in the regions with large distance. To overcome these problems, we propose
a new underwater single image dehazing method, which includes an improved background light estimation
based on the quad-tree subdivision iteration algorithm, and a novel transmission estimation method. For the
background light estimation, we introduce a robust score for each region of the image, which can evaluate
the region from both smoothness and color. For the transmission estimation, we propose the color space
dimensionality reduction prior (CSDRP), which allows conversing an image from the three-dimensional
RGB color space to a 2D color space, namely the UV color space. In the UV color space, by clustering the
pixels into mounts of haze-lines and carefully setting the haze-free boundary, the transmission map can be
figured out and used to produce an excellent dehazed image. Experimental results show that our method has
competitive effects compared with mainstream underwater single image dehazing methods.

INDEX TERMS Underwater image dehazing, contrast enhancement, image enhancement, scattering
removal.

I. INTRODUCTION
Underwater images suffer from lack of contrast and degraded
colors due to the absorption and scattering effects. The par-
ticles of the water absorb the vast majority of light energy,
resulting in dim and blurry images [1]. Usually, degraded
underwater images cannot meet the needs of underwater
optical vision systems, which leads to the decline in the
accuracy of underwater optical target recognition and object
detection [2]. It has been proved in [3] that the enhance-
ment of underwater image will contribute to a substantial
improvement in the performance of underwater optical vision
system. Therefore, researchers keep striving to develop dif-
ferent approaches to enhance the original images for a variety
of underwater applications, including object recognition [4],
rescue missions, human-made structures inspection, ecolog-
ical monitoring, sea organisms tracking [5], and real-time
navigation [6].
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Several methods have been presented for single image
dehazing, which have achieved excellent enhancing perfor-
mance in outdoor images. The majority of these methods
for outdoor image dehazing are based on the same assump-
tion that the attenuation in the atmosphere is wavelength-
independent. In other words, the RGB channels share the
same attenuation coefficient. However, unlike those hazy
images taken in atmosphere, in underwater images, the atten-
uation in each color channel is considerably affected by the
wavelength of light, which makes the assumption mentioned
above fail in underwater environments [7]. Additionally,
since the degradation is related to the distance of the object
from the camera, this distortion cannot be globally corrected.
Thus, the existing atmospheric single image dehazing tech-
nology cannot be used for underwater images directly.

Besides, the single image dehazing task is an ill-posed
problem with three measurements (the R, G, B values of
the input image) and six unknowns (the R, G, B values and
transmission of each channel of the output image) [20]. Thus,
extra prior or knowledge is required to solve this problem.
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Most of the existing underwater single image dehazing meth-
ods have noticed the wavelength-dependent attenuation,

and constructed different models to fit the attenuation
coefficients in three channels. A variety of priors are pro-
posed to solve the ill-posed problem, such as the underwater
dark channel prior (UDCP), the underwater light attenuation
prior (ULAP), the histogram distribution prior, the maximum
intensity prior (MIP), etc. Although these methods perform
well in some cases, they may fail when the imaging condition
changes strikingly. This is because these models do not take
the correlation between the pixels of an underwater image
into consideration.

To robustly enhance the hazy underwater images, in this
paper we present a novel method for single underwater image
dehazing. Firstly, we improved the background light estima-
tion based on the quad-tree subdivision iteration algorithm
by taking the Jerlov water-type [8] into consideration. The
improved background light estimation method is verified on
images taken under challenging underwater scenes with com-
plex artificial illumination conditions. Afterwards, the color
space dimensionality reduction prior was proposed, which
is based on a universal observation that the pixels of an
underwater image tend to distribute nearby a specific plane
in the RGB color space. This prior indicates that the color
space can be compressed from the RGB color space to the UV
color space by projecting all the pixels onto the plane men-
tioned above. Via clustering the pixels into several hundred
haze-lines in UV color space and carefully setting a haze-free
boundary, the transmission map can be calculated accurately
and then be used to dehaze the image. Then the Gray-World
assumption was used to correct the red channel. Fig. 1 gives
a brief flow chart of our method. Besides, for assessing the
performance of the proposed method, qualitative and quanti-
tative experiments are conducted, respectively. Experimental
results show that the proposed method is characterized by
excellent contrast enhancement and dehazing effects.

The contributions of this paper are summarized as follows:
• A novel method for single underwater image dehazing
was presented, including the improved background light
estimation based on quad-tree subdivision iteration and
the transmission map estimation based on the color
space dimensionality reduction prior.

• We provided a new approach for the single under-
water image dehazing issue by proposing the color
space dimensionality reduction prior. This prior allows
compressing the color space of an image from 3D to
2D, which reduces the computational complexity while
maintaining the accuracy of the transmission estimation.

• The UV color space was proposed, in which the process
of color space conversion offsets the phenomenon that
attenuation coefficients vary in blue and green channels
to a certain degree.

• We introduced the Jerlov water-type [8] and the
CIEDE2000 color difference [9] into the quad-tree sub-
division iteration algorithm, producing a robust back-
ground light estimation method.

The remaining of this paper is organized as follows.
In section II, the mainstream image enhancement dehazing
methods for underwater images are summarized. Afterwards,
a few details about the image formation model (IFM) are
presented in section III. The image enhancement method,
including the improved background light estimation method
and dehazing method based on the color space dimension-
ality reduction prior, is proposed in section IV, V, and VI.
The experimental results are reported in section VII. Finally,
conclusion and future work are discussed in section VIII.

II. RELATED WORK
In order to enhance underwater images, numerous methods
have been presented, based on hardware and software.

On the one hand, in terms of hardware-based approaches,
Schechner and Karpel [10] took two orthogonally polar-
ized photos by adding polarizer to the camera and uti-
lized the partial polarization of light to restore the visibility.
Zhang et al. [11] obtained the depth information of the image
through a multi-camera system and restored the image from
the depth map. In [12], multiple images of the same object
taken from different known viewpoints were used to estimate
attenuation coefficients and recover the scene. Thesemethods
have high requirements for the imaging hardware system of
the device, so their applicability is limited.

On the other hand, the software-based underwater image
enhancement methods have developed rapidly in recent
years. Software-based approaches use efficient algorithms to
recover underwater images. Typically, these techniques are
based on assumptions on different coefficients. Compared to
the hardware-based approaches, software-based approaches
perform better and cost fewer investment.

Since He et al. [13] introduced the Dark Channel
Prior (DCP), it has become the most common method for sin-
gle image dehazing. This method is based on an observation
that in a hazy-free image, the value of at least one channel
tends to have low intensity. However, due to the excessive
attenuation of the red channel, the original DCP method
tends to fail in underwater environments. Thus, a variety of
DCP variants have emerged recently. Drews et al. [14] only
considered green and blue channels to produce Underwater
Dar Channel Prior (UDCP). Galdran et al. [15] employed
the inverted red channel to compensate for the loss of
information in UDCP due to the abandonment of the red
channel. Li et al. [16] restored the blue-green channel using
the DCP principle and the red channel through the Gray-
World assumption theory. However, due to the drawback
of DCP, these methods tend to fail when bright objects are
involved in images.

In addition to DCP,many other methods also have achieved
certain effects. Peng and Cosman [17] developed a depth
estimation method for underwater scenes based on image
blurriness and light absorption. Carlevaris-Bianco et al. [18]
presented an image dehazing method based on random
Markov fields. Li et al. [19] proposed a method to dehaze
by minimizing the information loss during transformation.
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FIGURE 1. The flow chart of proposed method.

These methods showed better performance but tended to fail
when artificial illumination is contained. Berman et al. [20]
exploited the underwater haze-line (UWHL) for underwater
image dehazing with new prior knowledge. In his method,
the ratio of the attenuation coefficient of each two channel
is defined by Jerlov water-types. UWHL showed great per-
formance on dehazing but consumed too much computing
resources.

Dehazing method based on machine learning has also
been developed recently as the computation power raised
rapidly. Ren et al. [38] proposed a CNN-based transmis-
sion estimation method in 2016, which is named MDCNN,
and used synthetic data to train the network. In 2019,
they published the improved version of MDCNN [43],
which introduced a holistic edge guided network to refine
edges of the estimated transmission map. Ren’s method
inspired other researchers to solve the dehazing task with
learning-based approach. Song et al. [21] employed the
underwater light attenuation prior (ULAP) for underwater
image transmission estimation and trained a model with
learning-based supervised linear regression. Based on ULAP,
they proposed a statistical-based background light estima-
tion models (MABLs) and a new underwater dark channel
prior (NUDCP) for estimating a more detailed transmis-
sion map [22]. Pan et al. [23] developed a CNN, namely
Dehaze-Net, to estimate the transmission map and trans-
formed the image into the Hybrid Wavelets and Directional
Filter Banks (HWD) domain for de-noising and edge enhanc-
ing. Wang et al. [24] presented a CNN based network and
named it as UIE-Net, which is trained to perform color cor-
rection and haze removal. However, due to the lack of ground
truth for training the networks, these methods showed greater
limitations.

III. THE IMAGE FORMATION MODEL
An underwater image captured by camera can be modeled
as a linear superposition of three components [25], [26]:
the direct component ID, which denotes the light reflected
by the object; the forward scattering IFS , which causes the
light to deviate from its original direction of propagation;
the backward scattering IBS , which is formed by the light

FIGURE 2. The imaging model in underwater environments.

reflected by particles between the object and camera. Fig. 2.
shows the imaging model in the underwater environment.
This model can be expressed as

I = ID + IFS + IBS . (1)

According to [10], most degradation is caused by the
backward scattering, meaning the forward scattering can be
neglected. The direct and backward scattering components
are defined as

ID = Jt, (2)

IBS = A (1− t) , (3)

where J represents the object radiance, A denotes the global
background light, and t denotes the transmission, which is
expressed as

tλ = exp (−βλd) , (4)

where tλ denotes the medium transmission of light of wave-
length λ, d is the scene depth, meaning the distance that light
travels in water, and βλ represents the attenuation coefficient
of wavelength λ. In addition to wavelength λ, the attenuation
coefficient βλ is also related to the water quality, hydrological
environment, and seasonal climate.

In the ocean, the attenuation of red colors can be an order
of magnitude larger than the attenuation of blue and green [7].
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Therefore, unlike images taken in atmosphere, the transmis-
sion tλ is greatly affected by wavelength λ in underwater
environments. Thus, the image formation model shown in (1)
can be rewritten as

Ic (x) = Jc (x) tc (x)+ Ac (1− tc (x)) , c ∈ {R,G,B} , (5)

where bold denotes vectors, x is the pixel coordinate, Ic is
the acquired image value of color channel c, tc ∈ [0, 1] is
the transmission of that color channel, Jc denotes the object
radiance that we wish to restore, and Ac represents the global
background light of channel c. In (5), the first term on the
right side represents the direct component, and the second
term represents the backward scattering. This widely used
model is called the Image Formation Model (IFM).

It should be noted that in (5), except for the coordinate
x, all variables are scalars. In other words, the imaging law
described in (5) holds in each color channel independently.

Our ultimate goal is to recover J (x), a haze-free image,
from I (x), t (x), and A. Equation (5) can be rewritten as a
medium transmission function:

Jc (x) =
Ic (x)− Ac
tc (x)

+ Ac, c ∈ {R,G,B} , (6)

In (6), both global background light A and transmission
t (x) are unknown. In order to solve this ill-posed problem,
we proposed novel methods for background light estimation
and transmission map estimation, which will be described in
detail in sections IV and V.

IV. ROBUST BACKGROUND LIGHT ESTIMATION
The background light A in (6) is usually thought to be the
color of the pixels with the furthest distance from the camera
in the image. In atmospheric environments, the background
light is often estimated as the color of the brightest zone
in the image [13]. Such an assumption is usually feasible
in the atmosphere, but in underwater conditions, there are
two possible problems. First, some large white objects in
image are often incorrectly estimated as the background light.
Second, the color of water body is usually bluish or greenish,
meaning the brightest region in image is definitely not the
background light region.

Kim et al. [27] proposed a quad-tree iteration subdivi-
sion algorithm in hierarchical search of the background light
region. Although bright objects may still lead to an incorrect
estimation, the quad-tree iteration subdivision with setting a
score for each subdivided region has inspired us.

To robustly estimate the background light, we assume that
a region with pixels that lie at the infinitive depth with respect
to the camera is existed and visible in the image. Such a region
should be smooth; meanwhile, its color should be as possible
as close to the water body. Mathematically, such a region
should have a small variance, and the average color difference
between itself and the water body should also be small. Thus,
we set a score S� for each subdivided region, shown as

S� = Sσ + S1, (7)

where S� denotes the final score of region�, Sσ refers to the
smoothness of the region. S1 represents the color difference
between itself and the water body. Sσ in (7) is calculated by

Sσ =
1
3

∑
cε{R,G,B}

(Ic (x)− σc), x ∈ �, (8)

where Ic (x) denotes the value of channel c at pixel coordinate
x, σc is the standard deviation of channel c of region�. In (8),
with introducing Ic (x), which is the average value of the pixel
intensity in the region�, as a part of Sσ , our method will give
slightly higher scores to brighter regions to avoid getting too
dark estimation.

As mentioned above, S1 is related to the average color
difference between the region and the water body. However,
the color of water bodies varies in different water areas and
hydrological conditions. In determining the standard water
body color, we introduced the Jerlov water-type [8]. Jerlov
developed a frequently used classification scheme for oceanic
waters based on water clarity. The Jerlov water-types are
I, IA, IB, II, and III for open ocean waters, and 1 through
9 for coastal waters. The appearances of a perfect white board
at different distances in each kind of water-type are shown
in Fig. 3 (a). Considering that the standard colors of different
water-types should have significant differences, a group of
colors with a distance of 5 meters in Fig. 3 (a) was selected
as the standard colors of the water body.

In order to measure the difference between two colors,
Sharma et al. [9] proposed a color difference calculation
method based on perception, namely CIEDE2000. It mod-
ifies the non-uniform characteristics of color perception in
the CIELAB color space, and is one of the most accurate
color difference calculation methods so far. Denoting the
CIEDE2000 color difference as E , S1 can be expressed as

S1 = − min
w∈W

(E�−w), x ∈ �, (9)

whereW is a set of standard colors of Jerlov water-type, w is
the color of a particular water body, and E�−w represents the
color difference between the region � and water color w.

In the implementation, the two parts of scores, Sσ and
S1, should have different weights in different stages of the
quad- tree iteration. More specifically, in the earlier iteration
rounds, S1 is supposed to have a larger weight than Sσ so that
the regions which obviously do not contain the water body
can be discarded quickly. Conversely, in the later iteration
rounds, Sσ should have a larger weight to help us find a
smoother region as the final background light estimation
region. Therefore, we finally fix the score S� defined in (7)
as

S� = Sσ log10 (ηr)+ S1, (10)

where r represents the round of iterations, η is a controlling
factor used to control the dropping speed of weight of S1,
usually set as 2 or 3.

After the score of each region is calculated according
to (10), the region with the best score will be selected to
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FIGURE 3. (a) RGB simulation of the appearance of a perfect white surface viewed in 1-20m depth in different water-types [8], the appearances at a
distance of 5 meters are selected as standard colors of background light. Image (b-g) are examples of our background light estimation method, which
illustrate that our method has a natural immunity to large bright zones and works well even under complex artificial illumination conditions.

continue the quad-tree subdivision iteration until the size of
the region is smaller than a preset threshold. The average
pixel intensity of the latest region can be utilized as the esti-
mated background light. As shown in Fig. 3, even in images
with bright objects or complex illumination conditions,
our background light estimation method shows excellent
adaptability.

V. THE COLOR SPACE DIMENSIONALITY
REDUCTION PRIOR
In this section, we will introduce the color space dimension-
ality reduction prior in detail and explain it mathematically.

A. THE PRIOR AND VALIDATION
Since the attenuation coefficient βλ of the red channel is
several orders of magnitude greater than that of the blue and
green channels under water [39], according to (4), the trans-
mission of the red channel tR will attenuate faster than that
of the blue and green channels (tB and tG) as the scene
depth d increases. This will cause the direct component of
the red channel of the image to decrease, the backscattering
component to increase, and the value of the red channel to
drift rapidly to AR, referring to (2), (3), and (5).
Based on this inference, we observed the pixels distribution

of a large number of underwater images in the RGB color
space and obtained an interesting fact. Observation showed
that in most underwater images, all the pixels tend to dis-
tribute nearby a specific plane in RGB color space. This
phenomenon is named color space dimensionality reduction.

To validate this observation, we tried to find the plane
where the pixels in each image tend to distributed nearby
by simple linear regression, and then projected all the pixels

of an image onto this regressed plane. It turned out that
the process of projecting did not lead to any unacceptable
excessive color shift.

Based on the analysis above, we proposed the color space
dimensionality reduction prior (abbreviated as CSDRP):
Pixels of most underwater images tend to be distributed
nearby a specific plane in RGB color space. Projecting these
pixels on this plane does not cause excessive color drift.

The CSDRP was validated on the UIEBD Dataset [28],
which includes 890 original raw underwater images. The root
mean square error (RMSE) and R-squared [29] were selected
to measure how well the model fits the data. Additionally,
the Peak Signal to Noise Ratio (PSNR) between the original
and projected image was chosen to measure the impact of the
projection process on the image.

The average RMSE and adjusted R-squared on this dataset
were 0.0552 and 0.7390, respectively. The PSNR of the
projected images, compared to the original ones, were high,
ranged from 28.61dB to 100.34dB, and shared an average
of 48.02dB. Validation results show that the differences
between the projected images and the original ones are rel-
atively small, so it is feasible to use the projected image
to estimate the transmission. Fig. 4 shows the validation
experimental results.

B. MATHMATICAL EXPLANATION
The CSDRP points out that the pixels of most underwater
images tend to be distributed nearby a specific plane in RGB
space. This can be explainedmathematically as following part
in this section.

Note (4), the medium transmission is determined by two
factors, i.e., the attenuation coefficient βλ and the depth d .
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FIGURE 4. Prior validation. (a) and (b) show the example with the worst
PSNR, before and after projecting. (c) shows the absolute difference
between (a) and (b). (d) is a PSNR histogram of the quantization errors on
the UIEBD dataset.

The transmission of R, G, B channel can be expressed as

tc = exp (−βcd) , c ∈ {R,G,B} . (11)

According to [40] and [41], λR, λG, and λB are 620nm,
540nm, and 450nm, respectively, in general water. Taking
Jerlov water-type I as an example, the attenuation coefficients
of such wavelengths are βR = 0.3123, βG = 0.0577,
and βB = 0.0176 [42]. Now the transmission t becomes a
univariate function with respect to the depth d :

tR = exp (−0.3123d) ,
tG = exp (−0.0577d) ,
tB = exp (−0.0176d) .

(12)

In accordance to (5), as the depth increases, the pixel
intensity Ic will gradually converge to the background light
point Ac. However, due to the different transmission func-
tions of the RGB color channels described in (12), they
would converge at different rates. Fig. 5 demonstrates the
convergency-depth relationship, where the transmission is
calculated using (12).

As shown in Fig. 5, with the depth increasing, the pixel
intensity of red channel converges much faster than those
of green and blue channels. According to (5) and (12),
In the Jerlov water-type I, when the depth reaches 5 meters,
the red channel only retains 20.98% of the scene radiance
(Jc) information. When the depth reaches 10m, this num-
ber drops to 4%. When the depth reaches 20m, more than
99.8% of the information in the red channel is replaced
by the background light AR, meanwhile 31.54% for green
channel and 70.33% for blue channel object radiance is
retained. Remind, these numbers are calculated by simulation
under Jerlov water-type I, and in other water-types with even
poorer visibility, the attenuation of the red channel is more
serious.

When the scene radiance component of the red channel JR
decreases with increasing depth, the pixel intensity of the red

FIGURE 5. The pixel intensity range in R, G, B, channels against depth.
The areas which are surrounded by curves with the same color represent
the distributable ranges of pixel intensity in the correspond channel.
Here, taking Jerlov water-type as an example, the attenuation coefficients
of three channels are βR = 0.3123, βG = 0.0577, and βB = 0.0176 [42],
and the transmission is calculated using (12).

channel will be limited to a small range near AR. At the same
time, the blue and green channels still retain a large amount
of scene radiance information JB and JG, which results the
red channel is compressed into a flat plane in the RGB
space.

Therefore, in underwater images, only those pixels with
a small depth still retain the red channel information of the
source pixels. Conversely, the pixels with bigger depth tend
to be distributed near the plane R = AR in RGB color
space. That is, the phenomenon of color space dimensionality
reduction of the underwater images.

VI. HAZE REMOVAL
A. COLOR SPACE CONVERSION
According to theCSDRP, the fitted plane can be obtained by
simple linear regression in RGB color space. This regressed
plane can be expressed as

aR+ bG+ cB+ d = 0, (13)

where a, b, c, and d are the regression coefficients obtained
in linear regression.

All pixels, together with the estimated background light A,
can be projected onto this plane by

Rp =

(
b2 + c2

)
R0 + a (bG0 + cB0 + d)

a2 + b2 + c2
,

Gp =

(
a2 + c2

)
G0 + b (aR0 + cB0 + d)

a2 + b2 + c2
,

Bp =

(
a2 + b2

)
B0 + c (aR0 + bG0 + d)

a2 + b2 + c2
.

(14)

Since all pixels have been projected onto this plane,
the color space is conversed from the 3D RGB color space
to a 2D one, which is called the UV color space in this paper.
Specify that the projection of the positive directions of the G
and B axes on the UV color space as the positive directions
of the U and V axes, respectively. Then the UV coordinate of
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each pixel can be calculated by
Up = Gp

√
1+

(
b
a

)2

,

Vp = Bp

√
1+

( c
a

)2
.

(15)

In order to facilitate subsequent calculations, we set the
estimated background light point as the origin and translate
the coordinates by {

U = Up − AU ,
V = Vp − AV .

(16)

where AU and AV denote the UV coordinate of the projected
background light point.

After mapping the pixels to the UV color space, the next
step is to estimate the transmission map.

B. TRANSMISSION ESTIMATION
Since the process of converting RGB coordinates to UV
coordinates is a linear transformation process, the imaging
law described in (5) still holds in UV space.

As described in [30], the number of distinct colors is
several orders of magnitude smaller than the number of pix-
els in the image, and a haze-free image can be clustered
into about 500 different colors. Therefore, the pixels of a
haze-free image can be clustered into groups nearby their
cluster centers in RGB color space. However, referring to (5),
these groups will be stretched in hazy images, meaning the
color of the pixels with farther depth and more haze will be
closer to the background light point. Specially, the pixels at
infinite depth (at which the transmission is 0) will completely
lose their original color and be replaced by the color of
the background light point. On the contrary, pixels at which
the transmission is 1 are regarded as the haze-free point.
In summary, the pixels with haze will be ‘‘pushed’’ from its
original color to the background light geometrically in hazy
images [31].

Therefore, the pixels that are clustered into the same color
group will be distributed on a straight line formed by the
background light point and the haze-free point of this color
group. This line is called haze-line [32].

As we have set the background light point as the origin,
the haze-lines of all color cluster will become a set of lines
radiating from the origin to the surroundings in UV color
space. Here, we rewrite the UV coordinates (U ,V ) of the
pixels as polar coordinates form (ρ, θ).
According to (5), the transmission is distributed linearly

on haze-lines [32]. If we can find a haze-free point on each
haze-line, the transmission of each point on the line can be
calculated by

t̂I =
ρI

ρlHF
, I ∈ l, (17)

where tI denotes the transmission of point I , ρI and ρlHF refer
to the Euclidean distance from the background light point to
point I and to the haze-free point, respectively.

FIGURE 6. (a) Original image. (b) Projected image. (c) The distribution of
original image pixels in RGB color space and the fitted plane. (d) The
distribution of projected image pixels in RGB color space. (e) The
distribution of projected image pixels in UV color space. (f) The clustered
haze-lines which are connected by the background light point and
haze-free point of a certain haze-line. Here, 360 haze-lines are clustered
in (f).

In [32], the haze-free point is simply estimated as the fur-
thest pixel on each haze-line, in which the noises may lead to
some outlier interference. It can be seen in Fig. 6 (e) that a few
outlier pixels lie below the background light point. Without
correction, the haze-free points of the haze-lines down below
will be wrongly estimated further. Thus, in proposed method,
the haze-free point is estimated by{

ρlHF = k(max (ρI )+ ρI )
θ lHF = θI ,

I ∈ l, (18)

where ρlHF , θ
l
HF , ρI , θI are the polar coordinates of the haze-

free point and the point I in the UV color space, respectively.
k is a multiplier factor used for reducing outlier interference,
usually set as 2/3. According to (17) and (18), we can calcu-
late the transmission of each pixel by

t̂I =
ρI

k
(
max
I∈l

(ρI )+ ρI

) , I ∈ l. (19)

It is essential to note that the estimated haze-free point is
sometimes close to the background light point in UV space.
As shown in Fig. 6 (f), there are dozens of haze-lines which
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are strikingly shorter than the others, especially in the direc-
tion of the top-left of the background light point. The pixels
on such haze-lines distribute nearly to the background light
point, colored close to the color of water body, and are sup-
posed to value relatively small transmission. On these haze-
lines, the haze-free point estimated by (18) is inaccurate, and
the transmission values of the pixels will be overestimated.
Thus, we modify the transmission on these haze-lines by

t̂I =
ρI

max
l

(
ρlHF

) , if ρlHF < β max
l

(
ρlHF

)
, I ∈ l, (20)

where max
l

(
ρlHF

)
denotes the maximum value of radius ρ

among all estimated haze-free points, β is a constant used
to control how far the nearest haze-free point is, which is
usually set less than 0.2. In (20), the denominator is set as
max
l

(
ρlHF

)
, this is considered in two aspects: On the one

hand, as mentioned above, these pixels are supposed to have
a small transmission, so their corresponding haze-free points
should have bigger radius. On the other hand, generally
speaking, the haze-line with the largest radius contains more
pixels, and the estimation of haze-free point based on these
pixels is more accurate.

C. HAZE REMOVAL
The transmission map calculated by the above method first
requires to be refined by a guided filter to remove ‘‘pixel
holes’’ in the transmission map before image restoration.

Since the transformation from RGB space to UV space is
only a linear transformation, the transmission we obtained
in UV space can be used directly for the image restoration
process described in (6) only in green and blue channels
without any spatial transformation:

Jc (x) =
Ic (x)− Âc

t̂(x)
+ Âc, c ∈ {G,B} . (21)

To avoid excessive restoration, we set the minimum trans-
mission as 0.1.

As the transmission characteristics of red channel under-
water are different from those of blue and green channels,
the estimated transmission map is usually difficult to restore
a clear red channel image. Fortunately, the Gray-World
assumption provided us an approach to correct the red chan-
nel. The assumption indicates that the average intensity of
R, G, B channels tend to be the same value Gray. It can be
defined as

(IR + IG + IB)/3 = Gray, (22)

where IR, IG, IB indicate the pixels intensity of original
image. Denoting the pixels intensity of dehazed image as
JR, JG, JB, the same assumption holds as

(JR + JG + JB)/3 = Gray. (23)

According to (22) and (23), the compensation coefficient δ
can be calculated as

δ = JR/IR. (24)

Then the recovered red channel can be obtained by

JR (x) = δIR(x). (25)

VII. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed method
on the dehazing task, qualitative and quantitative comparison
are carried out, respectively.

The methods used for comparisons include MIP
method [18], Underwater Dark Channel Prior (UDCP)
method [14], Blue-Green Channels Dehazing and Red Chan-
nel Correction (BGCD&RCC) method [16], Image Blurri-
ness and Light Absorption method (IBLA) [17], Underwater
Light Attenuation Prior (ULAP) method [21], Statistical
Model of BL and Optimization (SMBLO) method [22],
Dehaze-Net method [23], Multi-scale Dehazing Convolu-
tional Neural Network (MDCNN) method [38], Minimum
Information Loss (MIL) method [19], and Underwater
Haze-line (UWHL) method [20]. These selected methods for
comparison not only include traditional classical underwater
dehazing methods based on the IFM (i.e., UDCP, MIP, and
MIP), but also include methods which are proposed in recent
years, based on deep learning, statistical models or new
optical priors (i.e., IBLA, ULAP, SMBLO, and Dehaze-Net).
Additionally, since our proposed method is inspired by
the Haze-line method [32], it was also added into our
experiments.

The code of SMBLO, Dehaze-Net, MIL, and UWHL are
available and released by authors on Github, and the code
of MIP, UDCP, BGCD&RCC, IBLA, and ULAP used for
comparison experiments are provided by Wang et al. in [33].
In total, 1009 images were implemented on each selected

method, most of which are collected from the datasets
in [20], [28], and others are collected from the Internet. All
methods are implemented on a Windows 10 PC with an Intel
i7-8550UCPU and anNvidia GeForceMX150GPU, running
on MATLAB R2019b and Anaconda 3 with Python 3.7.

A. QUALITATIVE EXPERIMENTAL RESULTS
Fig. 7 demonstrates parts of the qualitative comparison
results. SMBLO, MIL, and ULAP show limited dehazing
performance, especially in areas marked by red rectangles.
Dehaze-Net shows considerable dehazing ability, especially
in image (b), but overall reduces the saturation of the images,
and the effectiveness of dehazing in the areas with a large
depth is not strong enough. IBLA shows an unsatisfactory
dehazing result unless the image exposure is reduced to an
unacceptable level, which will result in loss of dark details,
e.g. image (c) and (e). UDCP shows a good dehazing effect,
but it also has similar exposure problems as IBLA. UWHL
shows considerable performance on color restoration, but in
terms of dehazing, the effect is not apparent enough. MIP
has impressive dehazing capabilities, but in the images (b),
some areas are overexposed, which may cause the loss of
image details. Similarly, in image (a) and (d), some areas
are underexposed. MDCNN has a certain performance on
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FIGURE 7. Part of the qualitative experimental results. Best viewed on high-resolution display with zoom-in.

dehazing, but there are underexposure problems in images (b)
and (d), resulting in the loss of image details. Haze-line,
whose method inspired us a lot, does not show the excellent

performance that it shows in atmosphere due to the inaccurate
background light estimation. Noticing the areas surrounded
by the red rectangles in the images, compared with other
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TABLE 1. Quantitative experimental results.

methods, our proposed method has predominant improve-
ment in contrast and visibility in these areas. We also noticed
that although our method improves the visibility and con-
trast of the images and shows impressive performance on
dehazing task, it also introduces unexpected stratification in
water zones, e.g. image (a). In addition, our method does not
seem to suppress forward scatter enough, resulting in blurred
object edges. In summary, for qualitative experiments, our
proposed dehazing method is more robust than other meth-
ods, and the improvement in contrast and visibility is more
prominent.

Terms with ∗ are the smaller, the better. The number in
brackets refers to the ranking 1-9 of a method on the metric.
The values in bold represent the best results.

B. QUANTITATIVE EXPERIMENTAL RESULTS
In quantitative experiments, since it is impossible to obtain
medium-free in situ images in underwater environments,
the comparisons are based on non-reference image quality
metrics and contrast quality assessment indexes.

Recently, an underwater color image quality evaluation
metric (UCIQE) [34] has been proposed by Yang and
Sowmya for quantifying the non-uniform color cast, blurring,
and low contrast of underwater images. The higher UCIQE
values indicate the image has a better balance among the
chroma, saturation, and contrast. Panetta and Gao [35] have
developed three underwater image quality metrics: UICM
on color, UISM on sharpness, and UIConM on contrast.
By assigning carefully calculated weights to the three met-
rics, the underwater image quality metric (UIQM) is finally
obtained to characterize the underwater quality. Moreover,
as the contrast is considered as a better evaluation indicator
in dehazing problem, UIConM is also chosen to measure
the contrast quality of an image. Both UIQM and UIConM
are the higher, the better. The Blind/Referenceless Image

Spatial Quality Evaluator (BRISQUE) [36] is predicted by
a support vector regression (SVR) model trained on an image
database which contains images with known distortion (e.g.,
artifacts, blurring, and noise) and the pristine versions of the
distorted images. A smaller BRISQUE score indicates better
perceptual quality. Additionally, Wang et al. [37] proposed
a metric based on an adaptive representation of local patch
structure for providing accurate predictions on the human
perception of contrast variations, namely PCQI. A higher
PCQI value indicates the image has better contrast quality.

Table 1 summarizes the average UCIQE, UIQM, UIConM,
BRISQUE, and PCQI results on the whole dataset mentioned
above. In Table 1, the values in bold represent the best results.
As shown in Table 1, although our dehazing method does not
rank first in three of five quantitative experimental indicators,
it can still rank in the top three among all the indicators with
a small gap from the first. Moreover, compared to any one
of the selected comparison methods, our dehazing method
can outperform them in at least four of the five quantitative
indicators.

More specifically, our dehazing method stands out among
the compared methods in terms of UIConM, indicating
that our dehazing method shows excellent performance on
improving the contrast of the image. Since PCQI is a local
patch-based objective quality assessment metric, it is more
sensitive to the contrast change of the main object that
occupying a larger area in image. Quantitative experimental
results tell us that SMBLO is better than the proposed method
at improving the contrast of the main objects in the image.
The qualitative experiment results shown in Fig. 7 also con-
firm this. For example, the main object in image (a) and (b)
share a bright appearance in the results of SMBLO. However,
the second-ranked PCQI value still means that our method
significantly improves the perceptional contrast of the origi-
nal image. The reason our method ranks only third in terms
of BRISQUE is because BRISQUE is a perceptual-based
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FIGURE 8. Quantitative experimental results for images in Fig. 7. Figure (a)-(d) demonstrate the UCIQE, UIQM, PCQI, and UIConM of examples showed
in Fig. 7, respectively. Polylines and values indicate the average of these examples. The values in bold represent the best results.

metric, and in our method, the dehazing process will greatly
improve the contrast of the image, which will make the image
look dazzling, perceptually. Additionally, in terms of UCIQE
and UIQM, the metrics which are specifically designed for
underwear images, our dehazing method also performs well,
ranking second in UCIQE and first in UIQM, which means
the underwater images restored by our method are of better
quality. It is essential to note that the UCIQE metric, which
is a linear combination of chroma, saturation, and contrast,
has the greatest weight in chroma. However, the proposed
method does not perform well enough in color restoration,
so it only ranks second inUCIQE. In summation, compared to
other selected comparisonmethods, our proposedmethod has
better robustness and achieve specific high scores in various
quality metrics, which means that our method can indeed
restore high quality underwater images from the hazy ones.

Besides, the quantitative experimental results for exam-
ples in Fig. 7 are displayed in Fig. 8. It turned out that the
perceptual qualitative experimental results are not consistent
with the quantitative ones. The UDCPmethod, which showed
underexposure problems in qualitative experiments, ranked
first on the UCIQE metric but performed unevenly in the
five test images. The proposed method has the second-ranked
mean in this indicator, and is relatively stable overall. On the
UIQM index, the proposed method scored above 3.5 on
all five examples, ranking second of nine. In addition,
the first-ranked UIConM and BRISQUE also proved that the
proposed method improves the contrast quality of the image
while maintaining a fairly high image perception quality.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we introduced an underwater image dehazing
method, which includes a modified Quad-tree-subdivision-
based under-water background light estimation algorithm and
a CSDRP-based underwater image dehazing algorithm. The
background light can be accurately estimated by introducing
a region score, which take the smoothness and the color
difference into account simultaneously. Then we proposed
the color space dimensionality reduction prior, the CSDRP,
which is based on a universal observation that all the pix-
els tend to distribute nearby a specific plane in RGB color
space in most underwater images. With the CSDRP, we can
converse the color space of the image from RGB color
space to UV color space, figure out the transmission map,
and then dehaze the image easily. Extensive experiments
demonstrate that our dehazing results are characterized by
relatively high contrast, improved visibility, and more details.
Meanwhile, quantitative experimental results indicate that
underwater images with high quality can be restored with our
method.

Despite the excellent performance, our method neverthe-
less has some limitations and shortcomings. First, we noticed
that in some of the images recovered by our algorithm,
some artifacts appeared at the water-land junction, which is
because our algorithm did not suppress the forward scattering
well. Second, our proposedmethodmay sometimes introduce
unexpected stratification in water zones, which is yet to be
improved. For future work, we intend to address the issues
mentioned above.
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APPENDIX
The pseudo-code of background light estimation and haze
removal are shown as following.

Algorithm 1 Background Light Estimation
Input: I (x), threshold
Output: A
1: Subdivide I into 4 regions �1, �2, �3, �4
2: for each region �i do:
3: Sσ := 1

3

∑
cε{R,G,B}

(Ic (x)− σc), x ∈ �i

4: S1 := − min
w∈W

(E�−w), x ∈ �i

5: S�i := Sσ log10 (ηr)+ S1
6: end for
7: Select the region with the best score S�i , denote the region
as �out
8: while size of �out > threshold do:
9: repeat step 1 to step 7
10: A :=�out (x)

Algorithm 2 Haze Removal
Input: I (x), A
Output: J (x)
1: Find the plane in RGB space by linear regression
2: Converse I ,A from the RGB space to the UV space, remind
as Ip, Ap
3: Take point Ap as the origin and rewrite all coordinates to
polar coordinates (ρ, θ)
4: Cluster the pixels with close θ values into a Haze-line l
5: for each Haze-line l do:
6: for each pixel I on Haze-line l do:
7: if max

I∈l
(ρI) > 0.2max

l
(max
I∈l

ρI):

8: t̂I :=
ρI

k(max
I∈l

(ρ
I
)+ρI )

9: else:
10: t̂I :=

ρI
(max

l
(max
I∈l

ρ
I
))

11: end for
12: end for
13: for each pixel x do:
14: Jc (x) :=

Ic(x)−Ac
t̂(x)

+ Âc, c ∈ {G,B}
15: end for
16: Use the Gray-World assumption to recover JR (x)
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