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ABSTRACT With the application of quaternion in technology, quaternion-valued neural networks (QVNNs)
have attracted many scholars’ attention in recent years. For the existing results, dynamical behavior is an
important studying side. In this paper, we mainly research the existence, uniqueness and exponential stability
criteria of solutions for the QVNNs with discrete time-varying delays and distributed delays by means
of generalized 2-norm. In order to avoid the noncommutativity of quaternion multiplication, the QVDNN
system is firstly decomposed into four real-number systems by Hamilton rules. Then, we obtain the sufficient
criteria for the existence, uniqueness and exponential stability of solutions by special Lyapunov-type
functional, Cauchy convergence principle and monotone function. Furthermore, several corollaries are
derived from the main results. Finally, we give one numerical example and its simulated figures to illustrate
the effectiveness of the obtained conclusion.

INDEX TERMS Quaternion-valued neural networks, discrete and distributed delays, exponential stability,
generalized 2-norm.

I. INTRODUCTION
After the models of various neural networks (NNs) (Hopfield
NNs, Cohen-Grossberg NNs, memristive NNs, etc.) were
built [1]–[3], they have been widely used to research pattern
recognition, optimization problems, intelligent control, and
so on. When NNs are utilized in the reality applications,
dynamical characteristics of these systems are very impor-
tant. Therefore, the study of dynamical behaviors has been
one evergreen hot topic because of its significant influence
on NNs [4]–[6], [12]. For instance, in [4], [9], the authors
discussed the stability criteria of different NNs by means
of diverse ways. Synchronization problems of NNs were
investigated in [5], [7], [8], [11]. Passivity and Dissipativity
of NNs were studied in [5], [6]. From these results, it can
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be seen that most of this references have studied the delayed
NNs systems.

As we all know, time-delays are often the main cause of
oscillation and instability, which are need to be considered
when NNs models and neural circuits are constructed. There-
fore, the dynamical characteristics of NNs with various time
delays are necessary for the NNs researches [6], [10], [11],
[13]–[21]. In particular, stability of delayed NNs (DNNs) is
one of the most desirable dynamical properties when NNs
models are used, which have drawn much attention of many
scholars. There have been a large amount of related results
in recent years [13]–[21]. For example, in [13], [15], [16],
some important stability conclusions were obtained for those
NNs with discrete and distributed delays. And discrete delays
were considered in NNs to obtain the stability criteria in [14],
[17]–[21]. Although there have been some significant stabil-
ity results for the discrete delayed QVNNs (QVDNNs) sys-
tems [20]–[26], distributed delays have been rarely discussed.
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Although the signal propagation sometimes can be modeled
by QVNNs with discrete delays, it can also be distributed in
some certain periods. Hence, the distributed delays should
also be considered simultaneously with discrete delays in a
QVNNs system.

In the past several decades, NNs have been mainly studied
in the real number field [6], [10], [15] and in the complex
number field [9], [17]–[19], and then, in the quaternion num-
ber field [20], [22], [26]. Quaternion was firstly given by
W. R. Hamilton in 1843. Recently, it has been used in many
areas, such as computer graphics, 3 or 4-D data modeling,
array processing and so on. As one of the most important
research contents of quaternion, QVNNs have drawn many
researchers’ attention [20]–[33], which is a natural continua-
tion of complex-valued NNs (QVNNs) and real-valued NNs
(RVNNs). Due to the noncommutativity of quaternion mul-
tiplication, decomposition and direct approaches are usually
used to research the QVDNNs. In [21], [22], [29], [32], the
authors used direct approach to investigate QVDNNs, while
the authors in [20], [24], [26], [31], [33] studied QVDNNs by
decomposition method.

Stability is one of the most fundamental important dynam-
ical properties for QVDNNs [20]–[26], [31]–[33]. For
example, in [21], [32], homeomorphic mapping was uti-
lized for QVDNNs to study the existence, uniqueness and
stability criteria of solutions by constructing a complex
Lyapunov-Krasovskii functional. LMI-form sufficient condi-
tions were derived in these papers. The existence and stabil-
ity criteria of multiple equilibrium points were obtained for
QVNNs bymeans of different ways in [22], [31]. And in [20],
[25], {ξ,∞}-norm, a generalized∞-norm, was firstly used to
study the existence and uniqueness criteria of solutions, and
the µ-stable criteria for QVDNNs. It is worthy noting that
generalized norm is an useful definition for QVDNNs to get
their existence and stability criteria of solutions. Apart from
generalized ∞-norm, there have been generalized 1-norm
and 2-norm, which are named as {ξ, 1}-norm and {ξ, 2}-norm
[4], [18], respectively. Although the method of∞-norm can
not be used to study some dynamical behaviors by 1-norm
or 2-norm, the similar results can be derived by generalized
1-norm if some results of QVDNNs can be obtained by gen-
eralized 2-norm. Therefore, it is worthy studying the stability
of QVNNs with discrete time-varying delays and distributed
delays by {ξ, 2}-norm, which remains an open problem.
Based on the above analyses, this paper focuses on the exis-

tence and exponential stability of solutions for the QVNNs
with discrete time-varying delays and distributed delays by
generalized 2-norm ({ξ, 2}-norm). Because of the noncom-
mutativity of quaternion multiplication, the QVDNN sys-
tem is firstly decomposed into four real-number systems
by Hamilton rules. Then, the novel stability definition
of QVDNNs is introduced according to the definition
of {ξ, 2}-norm. Meanwhile, some assumptions of dis-
crete time-varying delays and distributed delays are given.
In addition, by constructing {ξ, 2}-norm-type Lyapunov func-
tional, the existence, uniqueness and exponential stability

sufficient criteria of the discrete-distributed-delayed QVNNs
are obtained by Cauchy convergence principle and mono-
tone function. Several corollaries are derived from the main
results. Finally, one numerical example about QVNNs with
discrete time-varying delays and distributed delays is given
to illustrate the effectiveness of the obtained conclusions.

The rest of this paper is organized as follows. In Section II,
models and preliminaries are given. Then, the existence and
stability sufficient criteria for discrete and distributed delayed
QVNNs is obtained in Section III. In Section IV, a numeri-
cal simulation example is shown to illustrate the validity of
obtained results. Finally, conclusions are given in Section V.

II. PRELIMINARIES
Notation: R and Q show the sets of real numbers and
quaternion numbers, respectively. Rn and Qn denote the
n-dimensional Euclidean and quaternion spaces, respectively.
Rn×m and Qn×m are the sets of n × m real matrixes and
n × m quaternion matrixes, respectively. ‖ · ‖ denotes
Euclidean vector norm and O(·) denotes infinitesimal of the
same order. If z = (z1, z2, · · · , zn)T ∈ Qn, then |z| =
(|z1|, |z2|, · · · , |zn|)T .

In this paper, we will consider the following QVNNs with
discrete and distributed delays:

ẋp(t) = −dpxp(t)+
∑n

q=1
apqfq(xq(t))

+

∑n

q=1
bpqgq(xq(t − τpq(t)))

+

∑n

q=1
cpq

∫
∞

0
kpq(s)gq(xq(t − s))ds

+up, t ≥ 0,
xp(s) = ϕp(s), s ∈ (−∞, 0],

(1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Qn with xp(t) =
xRp (t) + ıxIp(t) + xJp (t) + κxKp (t)(p = 1, 2, · · · , n) is
the state vector, D = diag{d1, d2, · · · , dn} ∈ Rn×n

with dp > 0 is the self-inhibition matrix, f (x(t)) =
(f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))T ∈ Qn and g(x(t)) =
(g1(x1(t)), g2(x2(t)), · · · , gn(xn(t)))T ∈ Qn represent the
quaternion-valued neuron vector-valued activation functions,
which satisfy fq(0) = 0 and gq(0) = 0. A = [apq]n×n,B =
[bpq]n×n ∈ Qn×n and C = [cpq]n×n ∈ Qn×n are the
non-delayed, discrete-delayed and distributed-delayed con-
nective weights matrixes, respectively. τpq(t) > 0 is discrete
time-varying delay.K (s) = [kpq(s)]n×n ∈ Rn×n is the delayed
kernel function matrix. u = (u1, u2, · · · , un)T ∈ Qn is an
external input or bias vector. The initial condition is ϕ(s) =
(ϕ1(s), ϕ2(s), . . . , ϕn(s))T ∈ C((−∞, 0],Qn).
Next, some basic definitions and properties of quaternion

are introduced. A quaternion h ∈ Q is defined as h =
hR + ıhI + hJ + κhK ∈ Q with hR, hI , hJ , hK ∈ R,
which shows that the real quaternion field Q can be viewed
as a 4-D vector space over R. According to Hamilton rules,
its imaginary units ı ,  , and κ obey the following rules:
ı = − ı = κ , κ = −κ = ı , κı = −ıκ =  ,
ı2 = 2 = κ2 = ıκ = −1, which means they are
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noncommutative. Its conjugate h∗ or h̄ is defined by h∗ =
h̄ = hR − ıhI − hJ − κhK , and its modulus |h| is defined

by |h| =
√
h∗h =

√
(hR)2 + (hI )2 + (hJ )2 + (hK )2. Let

s = sR + ısI + sJ + κsK ∈ Q, the addition h + s and
product hs of h and s can be defined as h + s = (hR +
sR) + ı(hI + sI ) +  (hJ + sJ ) + κ(hK + sK ) and hs =
(hRsR−hI sI−hJ sJ−hK sK )+ı(hRsI+hI sR+hJ sK−hK sJ )+
 (hRsJ+hJ sR−hI sK+hK sI )+κ(hRsK+hK sR+hI sJ−hJ sI ),
respectively.

Denote M = {R, I , J ,K }, then the QVNN model with
discrete and distributed delays (1) can be decomposed into
real-valued systems with L ∈ M as follows:

ẋLp (t) = −dpx
L
p (t)+

n∑
q=1

(apqfq(xq(t)))L

+

n∑
q=1

(bpqgq(xq(t − τpq(t))))L

+

n∑
q=1

(cpq

∫
∞

0
kpq(s)gq(xq(t − s))ds)L + uLp . (2)

Definition 1 [4]:
(1) Class L1(λRq , λ

I
q, λ

J
q, λ

K
q ). If there exists λlq > 0, such

that 0 <
f lq (x

l
q)−f

l
q (y

l
q)

xlq−ylq
≤ λlq holds for any q =

1, 2, · · · , n, l ∈ M and x lq, y
l
q ∈ R, then f lq (x

l
q) is said

to belong to L1(λRq , λ
I
q, λ

J
q, λ

K
q ).

(2) Class L2(γ Rq , γ
I
q , γ

J
q , γ

K
q ). If there exists γ lq > 0, such

that
|glq(x

l
q)−g

l
q(y

l
q)|

|xlq−ylq|
≤ γ lq holds for any q = 1, 2, · · · , n,

l ∈ M and x lq, y
l
q ∈ R, then g

l
q(x

l
q) is said to belong to

L2(γ Rq , γ
I
q , γ

J
q , γ

K
q ).

In order to study the existence and stability of the above
delayed QVNN model (2), the following assumptions should
be introduced:
(H1) The activation functions fq(xq(t)) and gq(xq(t)) can be

separated into one real and three imaginary parts as
follows:

fq(xq(t)) = f Rq (x
R
q (t))+ ı f Iq (x

I
q(t))

+ f Jq (x
J
q (t))+ κf

K
q (xKq (t)),

gq(xq(t)) = gRq (x
R
q (t))+ ıgIq(x

I
q(t))

+gJq(x
J
q (t))+ κg

K
q (x

K
q (t)),

where f lq (x
l
q(t)) , f lq (t) : R → R belongs to class L2

and glq(x
l
q(t)) , glq(t) : R→ R belongs to class L2 for

every l ∈ M .
(H2) The discrete time-varying delays τpq(t) : R→ R+ are

continuously differential functions and satisfy τpq(t) ≤
τpq ≤ τ and |τ ′pq(t)| ≤ ηpq < 1 for any p, q =
1, 2, · · · , n and t > 0, where τpq, τ and ηpq are real
positive constants.

(H3) For any p, q = 1, 2, · · · , n, the kernel kpq :

[0,+∞) → [0,+∞) are real-valued nonnegative

continuous functions and satisfy the following condi-
tions:

∫
∞

0 kpq(s)ds = 1 and
∫
∞

0 eσ skpq(s)ds < ∞,
where σ is positive numbers.

Remark 1: Different from assumption (H1), activation
function fq(xq(t)) can be decomposed into in some ref-
erences as fq(xq(t)) = f Rq (x

R
q (t), x

I
q(t), x

J
q (t), x

K
q (t)) +

ı f Iq (x
R
q (t), x

I
q(t), x

J
q (t), x

K
q (t)) +  f Jq (x

R
q (t), x

I
q(t), x

J
q (t),

xKq (t))+κf
K
q (xRq (t), x

I
q(t), x

J
q (t), x

K
q (t)) [20], [24], [25]. Actu-

ally, the decomposed form of assumption (H1) can sim-
plifies research process and results of QVDNNs, which is
used in this paper. Furthermore, when the exponential stable
criteria of QVDNNs are studied, some special restrictions
should be given, as in assumption (H2), to deal with discrete
time-varying delays.

Based on (H1), the system (2) can be rewritten as

ẋLp (t) = −dpx
L
p (t)+

n∑
q=1

∑
(l,w)∈ML

ψlwalpqf
w
q (xwq (t))

+

n∑
q=1

∑
(l,w)∈ML

ψlwblpqg
w
q (x

w
q (t − τpq(t)))

+

n∑
q=1

∑
(l,w)∈ML

ψlwclpq

∫
∞

0
kpq(s)gwq (xq(t

−s))ds)L + uLp , (3)

where ML
∈ {MR,M I ,M J ,MK

}, MR
= {(R,R), (I , I ),

(J , J ), (K ,K )}, M I
= {(R, I ), (I ,R), (J ,K ), (K , J )}, M J

=

{(R, J ), (I ,K ), (J ,R), (K , I )}, MK
= {(R,K ), (I , J ), (J , I ),

(K ,R)} and ψlw = 1 or −1 is the sign of alpqf
w
q (·), blpqg

w
q (·)

and clpqg
w
q (·). Then the concrete forms of ẋRp (t) ẋ

I
p(t) ẋ

J
p (t) and

ẋKp (t) can be written as follows:

ẋRp (t) = −dpx
R
p (t)+

n∑
q=1

(
aRpqf

R
q (t)− a

I
pqf

I
q (t)

−aJpqf
J
q (t)− a

K
pqf

K
q (t)

)
+

n∑
q=1

(
bRpqg

R
q (t − τpq(t))− b

I
pqg

I
q(t − τpq(t))

−bJpqg
J
q(t − τpq(t))− b

K
pqg

K
q (t − τpq(t))

)
+

n∑
q=1

(
cRpq

∫
∞

0
kpq(s)gRq (xq(t − s))ds

−cIpq

∫
∞

0
kpq(s)gIq(xq(t − s))ds

−cJpq

∫
∞

0
kpq(s)gJq(xq(t − s))ds

−cKpq

∫
∞

0
kpq(s)gKq (xq(t − s))ds

)
+ uRp ,

ẋIp(t) = −dpx
I
p(t)+

n∑
q=1

(
aRpqf

I
q (t)+ a

I
pqf

R
q (t)

+aJpqf
K
q (t)− aKpqf

J
q (t)

)
+

n∑
q=1

(
bRpqg

I
q(t − τpq(t))+ b

I
pqg

R
q (t − τpq(t))
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+bJpqg
K
q (t − τpq(t))− b

K
pqg

J
q(t − τpq(t))

)
+

n∑
q=1

(
cRpq

∫
∞

0
kpq(s)gIq(xq(t − s))ds

+cIpq

∫
∞

0
kpq(s)gRq (xq(t − s))ds

+cJpq

∫
∞

0
kpq(s)gKq (xq(t − s))ds

−cKpq

∫
∞

0
kpq(s)gJq(xq(t − s))ds

)
,

ẋJp (t) = −dpx
J
p (t)+

n∑
q=1

(
aRpqf

J
q (t)− a

I
pqf

K
q (t)

+aJpqf
R
q (t)+ a

K
pqf

I
q (t)

)
+

n∑
q=1

(
bRpqg

J
q(t − τpq(t))− b

I
pqg

K
q (t − τpq(t))

+bJpqg
R
q (t − τpq(t))+ b

K
pqg

I
q(t − τpq(t))

)
+

n∑
q=1

(
cRpq

∫
∞

0
kpq(s)gJq(xq(t − s))ds

−cIpq

∫
∞

0
kpq(s)gKq (xq(t − s))ds

+cJpq

∫
∞

0
kpq(s)gRq (xq(t − s))ds

+cKpq

∫
∞

0
kpq(s)gIq(xq(t − s))ds

)
,

ẋKp (t) = −dpx
K
p (t)+

n∑
q=1

(
aRpqf

K
q (t)+ aIpqf

J
q (t)

−aJpqf
I
q (t)+ a

K
pqf

R
q (t)

)
+

n∑
q=1

(
bRpqg

K
q (t − τpq(t))+ b

I
pqg

J
q(t − τpq(t))

−bJpqg
I
q(t − τpq(t))+ b

K
pqg

R
q (t − τpq(t))

)
+

n∑
q=1

(
cRpq

∫
∞

0
kpq(s)gKq (xq(t − s))ds

+cIpq

∫
∞

0
kpq(s)gJq(xq(t − s))ds

−cJpq

∫
∞

0
kpq(s)gIq(xq(t − s))ds

+cKpq

∫
∞

0
kpq(s)gRq (xq(t − s))ds

)
. (4)

Definition 2 [24]: A constant vector x∗ = (x∗1 , x
∗

2 , · · · ,

x∗n )
T
∈ Q is called an equilibrium point of delayed QVNNs

(1), if

−dpx∗p +
n∑

q=1

apqfq(x∗q )+
n∑

q=1

bpqgq(x∗q )

+

n∑
q=1

cpqgq(x∗q )+ up = 0

holds for any p, q = 1, 2, · · · , n.

Definition 3 [18]: For any vector u(t) ∈ Rn×1,
if ‖u(t)‖{ξ,2} = (

∑
p |ξpup(t)|

2)1/2, where ξp > 0 and
p = 1, 2, · · · , n, it can be called generalized 2-norm or
{ξ, 2}-norm.
Remark 2: If ξp = 1 holds for every p = 1, 2, · · · , n,
{ξ, 2}-norm becomes the normal 2-norm ‖u(t)‖2 =

(
∑

p |up(t)|
2)1/2. Based on the definition of generalized

2-norm, a novel exponential stable definition can be given as
follows.
Definition 4: Let x∗ be an equilibrium point of QVDNN

(1), if there exists a real constant α > 0, such that ‖x(t) −
x∗‖{ξ,2} = O(e−αt ) holds for any solution x(t), then QVDNN
(1) is said to be globally exponentially stable.

III. MAIN RESULTS
In this section, the existence and exponential stability criteria
of the QVNNs (1) with time-varying discrete delays and
distributed delays are studied by utilizing its decomposed
form and the definition of {ξ, 2}-norm.
Theorem 1: Under assumptions (H1), (H2) and (H3), if

there exist real constants ς > 0, and ξ lp > 0(p =
1, 2, · · · , n, l ∈ M ), such that

2ξLq (−dq + ς )+
n∑

p=1

∑
(l,w)∈ML

ξLq

(
|alqp|λ

w
p +

(1+ ηqp)eςτqp |blqp|γ
w
p + |c

l
qp|γ

w
p

∫
∞

0
kqp(s)eςsds

)
+

n∑
p=1

∑
(l,w)∈ML

ξLp

(
|alpq|λ

w
q +

(1+ ηpq)
1− ηpq

eςτpq |blpq|γ
w
q

+|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
≤ 0 (5)

holds for every L ∈ M and q = 1, 2, · · · , n. Then, the
delayed QVNNs system (1) has an unique equilibrium point
x∗, which is globally exponentially stable.

Proof: Since the system (1) has time-varying delays
τpq(t), we can obtain that

dẋp(t)
dt
= −dpẋp(t)+

n∑
q=1

apqf ′q(xq(t))ẋq(t)

+

n∑
q=1

bpqg′q(xq(t−τpq(t)))ẋq(t−τpq(t))(1−τ
′
pq(t))

+

n∑
q=1

cpq

∫
∞

0
kpq(s)g′q(xq(t − s))ẋq(t − s)ds.

Define u(t) = eς t ẋ(t), then we have

dup(t)
dt
= (−dp + ς )up(t)+

n∑
q=1

apqf ′q(xq(t))uq(t)

+

n∑
q=1

bpqf ′q(xq(t − τpq(t)))e
ςτpq(t)uq(t
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−τpq(t))(1− τ ′pq(t))+
n∑

q=1

cpq

∫
∞

0

kpq(s)eςsg′q(xq(t − s))uq(t − s)ds.

By (2), we have

d(uLp (t))
2

dt

= 2uLp (t)
(
(−dp + ς )uLp (t)+

n∑
q=1

(apqf ′q(xq(t))uq(t))
L

+

n∑
q=1

(bpqf ′q(xq(t − τpq(t)))e
ςτpq(t)uq(t − τpq(t))

(1− τ ′pq(t)))
L
+

n∑
q=1

(cpq

∫
∞

0
kpq(s)eςsg′q

(xq(t − s))uq(t − s)ds)L
)

≤ 2(−dp + ς )(uLp (t))
2
+ 2

n∑
q=1

∑
(l,w)∈ML

|alpq|λ
w
q

|uLp (t)||u
w
q (t)| + 2

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q

|uLp (t)||u
w
q (t − τpq(t))| + 2

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0

kpq(s)eςs|uLp (t)||u
w
q (t − s)|ds

≤

(
2(−dp + ς )+

n∑
q=1

∑
(l,w)∈ML

|alpq|λ
w
q +

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q +

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq

(s)eςsds
)
(uLp (t))

2
+

n∑
q=1

∑
(l,w)∈ML

|alpq|λ
w
q (u

w
q (t))

2

+

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q (u

w
q (t − τpq(t)))

2

+

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq(s)eςs(uwq (t − s))

2ds,

which means

du2p(t)

dt
≤

(
2(−dp + ς )+

n∑
q=1

∑
l∈M

∑
w∈M

|alpq|λ
w
q

+

n∑
q=1

∑
l∈M

∑
w∈M

(1+ ηpq)eςτpq |blpq|γ
w
q

+

n∑
q=1

∑
l∈M

∑
w∈M

|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
u2p(t)

+

n∑
q=1

∑
l∈M

∑
w∈M

|alpq|λ
w
q (u

w
q (t))

2

+

n∑
q=1

∑
l∈M

∑
w∈M

(1+ ηpq)eςτpq |blpq|γ
w
q

(uwq (t − τpq(t)))
2
+

n∑
q=1

∑
l∈M

∑
w∈M

|clpq|γ
w
q

∫
∞

0
kpq(s)eςs(uwq (t − s))

2ds,

where u2p(t) =
∑

L∈M (uLp (t))
2.

Let

V L(t) =
n∑

p=1

(
ξLp (u

L
p (t))

2
+ ξLp

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q

∫ t

t−τpq(t)

(uwq (s))
2

1− ηpq
ds

+ξLp

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q∫

∞

0
kpq(s)eςs(

∫ t

t−s
(uwq (r))

2dr)ds
)
,

then, differentiating it, we have

dV L(t)
dt

=

n∑
p=1

(
ξLp
d(uLp (t))

2

dt
+ ξLp

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q
( (uwq (t))2
1− ηpq

−
(1− τ ′pq(t))(u

w
q (t − τpq(t)))

2

1− ηpq

)
+ξLp

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq(s)eςs

((uwq (t))
2
− (uwq (t − s))

2)ds
)

≤

n∑
p=1

(
ξLp

(
2(−dp + ς )+

n∑
q=1

∑
(l,w)∈ML

|alpq|λ
w
q

+

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q

+

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
(uLp (t))

2

+ξLp

n∑
q=1

∑
(l,w)∈ML

|alpq|λ
w
q (u

w
q (t))

2
+ ξLp

n∑
q=1∑

(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q (u

w
q (t − τpq(t)))

2
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+ξLp

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq(s)eςs(uwq (t − s))

2ds

+ξLp

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q
( (uwq (t))2
1− ηpq

−(uwq (t − τpq(t)))
2)

+ξLp

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq(s)eςs((uwq (t))

2

−(uwq (t − s))
2)ds

)
=

n∑
p=1

ξLp

(
2(−dp + ς )+

n∑
q=1

∑
(l,w)∈ML

|alpq|λ
w
q

+

n∑
q=1

∑
(l,w)∈ML

(1+ ηpq)eςτpq |blpq|γ
w
q

+

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
(uLp (t))

2

+

n∑
p=1

n∑
q=1

∑
(l,w)∈ML

ξLp

(
|alpq|λ

w
q +

1+ ηpq
1− ηpq

eςτpq |blpq|γ
w
q

+|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
(uwq (t))

2

=

n∑
q=1

ξLq

(
2(−dq + ς )+

n∑
p=1

∑
(l,w)∈ML

|alqp|λ
w
p

+

n∑
p=1

∑
(l,w)∈ML

(1+ ηqp)eςτqp |blqp|γ
w
p

+

n∑
p=1

∑
(l,w)∈ML

|clqp|γ
w
p

∫
∞

0
kqp(s)eςsds

)
(uLq (t))

2

+

n∑
q=1

n∑
p=1

∑
(l,w)∈ML

ξLp

(
|alpq|λ

w
q +

1+ ηpq
1− ηpq

eςτpq |blpq|γ
w
q

+|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
(uwq (t))

2

≤

n∑
q=1

{
2ξLq (−dq + ς )+

n∑
p=1

∑
(l,w)∈ML

ξLq

(
|alqp|λ

w
p

+(1+ ηqp)eςτqp |blqp|γ
w
p + |c

l
qp|γ

w
p

∫
∞

0
kqp(s)eςsds

)
+

n∑
p=1

∑
(l,w)∈ML

ξLp

(
|alpq|λ

w
q +

1+ ηpq
1− ηpq

eςτpq |blpq|γ
w
q

+|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)}
(u2q(t))

≤ 0.

Therefore, V L(t) is non-increasing, which implies that∑n
p=1 ξ

L
p (u

L
p (t))

2 is bounded, i.e. ‖uLp (t)‖{ξ,2} = O(1).
Let V (t) =

∑
L∈M V L(t), then we can conclude that

∑n
p=1

∑
L∈M ξ

L
p (u

L
p (t))

2 is bounded, i.e. ‖up(t)‖{ξ,2} = O(1),
which implies that ‖ẋp(t)‖{ξ,2} = O(e−ς t ). On the other hand,
suppose that x1(t) = x(t, ϕ) and x2(t) = x(t, ψ) are any
two solutions of (1), let y(t) = x1(t) − x2(t), Then, it can be
obtained that

ẏp(t) = −dpyp(t)+
∑n

q=1
apqf ′q(αq)yq(t)

+

∑n

q=1
bpqg′q(βq)yq(t − τpq(t))

+

∑n

q=1
cpq

∫
∞

0
kpq(s)g′q(γq)yq(t − s)ds, t ≥ 0,

yp(s) = ϕp(s)− ψp(s), s ∈ (−∞, 0],

where αq is between x1q (t) and x
2
q (t), βq is between x1q (t −

τpq(t)) and x2q (t − τpq(t)), and γq is between x1q (t − s) and
x2q (t− s). By the means of the methods of ẋ(t), we can obtain
that y(t) = O(e−ς t ). As a result, according to Cauchy’s
test for convergence, their exists an equilibrium point x∗ =
(x∗1 , x

∗

2 , · · · , x
∗
n )
T , such that ‖x(t) − x∗‖{ξ,2} = O(e−ς t ) for

the discrete-distribute delayed system (1). In the next, we will
prove that the equilibrium point of system (1) is unique.
Suppose there are two equilibrium points x∗1(t) and x∗2(t),

let ω(t) = x∗1(t) − x∗2(t), then we can easily obtain
‖ω(t)‖{ξ,2} = O(e−ς t ) by means of the same argument of
ẋ(t), which implies that the discrete-distribute delayed sys-
tem (1) has an unique global exponential stable equilibrium
point. �
Remark 3: For this theorem, we discuss the existence and

exponential stability criteria of QVNNs (1) with discrete
time-varying delays and distributed delays by the definition
of {ξ, 2}-norm and Cauchy convergence principle. It is clearly
observed that discrete time-varying delays and distributed
delays have important effects on the convergence conditions
of QVNNs. If the discrete delays are time-invariant, i.e.
τpq(t) = τpq, then the expression 1+ηpq

1−ηpq
eςτpq |blpq|γ

w
q of (5)

will be changed into eςτpq |blpq|γ
w
q . If the distributed delays

are nonexistent, then the inequality (5) will be much simpler.
Remark 4: The difficulty of this theorem is how to deal

with the discrete time-varying delays and distributed delays
via {ξ, 2}-norm. By constructing special {ξ, 2}-norm-type
Lyapunov functional, this problem is worked out. In addi-
tion, for the sake of discussion, we suppose that the activate
functions f lq (x

l
q(t)) and g

l
q(x

l
q(t)) belong to class L2 for any

l ∈ M and q = 1, 2, · · · , n. If f lq (x
l
q(t)) belongs to class

L1 and glq(x
l
q(t)) belongs to class L2 for any l ∈ M and

q = 1, 2, · · · , n, then the more complex results can be
obtained, which can’t be discussed in this paper. Furthermore,
according to this theorem, we can give the exponential stabil-
ity criteria of QVNNs (1) with time-invariant asynchronous
delays as follows.
Corollary 1: Under assumptions (H1) and (H3), if there

exist real constants ς > 0, and ξ lp > 0(p = 1, 2, · · · , n, l ∈
M ), such that

2ξLq (−dq + ς )+
n∑

p=1

∑
(l,w)∈ML

ξLq

(
|alqp|λ

w
p
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+eςτqp |blqp|γ
w
p + |c

l
qp|γ

w
p

∫
∞

0
kqp(s)eςsds

)
+

n∑
p=1

∑
(l,w)∈ML

ξLp

(
|alpq|λ

w
q + e

ςτpq |blpq|γ
w
q

+|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
≤ 0

holds for every L ∈ M and q = 1, 2, · · · , n. Then, the dynam-
ical system (1) with time-invariant asynchronous discrete and
distribute delays has an unique equilibrium point x∗, which is
globally exponentially stable.

Proof: Let

V L(t) =
n∑

p=1

(
ξLp (u

L
p (t))

2
+ ξLp

n∑
q=1

∑
(l,w)∈ML

eςτpq |blpq|γ
w
q

∫ t

t−τpq
(uwq (s))

2ds

+ξLp

n∑
q=1

∑
(l,w)∈ML

|clpq|γ
w
q

∫
∞

0
kpq(s)

eςs(
∫ t

t−s
(uwq (r))

2dr)ds
)
,

then we can prove this corollary by the above similar process,
the details are omitted. �
From the above theorem and corollary, we can easily obtain

the following two corollaries, respectively.
Corollary 2: Under assumptions (H1), (H2) and (H3), if

there exist real constants ξ lp > 0(p = 1, 2, · · · , n, l ∈ M ),
such that

−2dqξLq +
n∑

p=1

∑
(l,w)∈ML

ξLq
(
|alqp|λ

w
p + (1+ ηqp)

|blqp|γ
w
p + |c

l
qp|γ

w
p
)
+

n∑
p=1

∑
(l,w)∈ML

ξLp
(
|alpq|λ

w
q

+
1+ ηpq
1− ηpq

|blpq|γ
w
q + |c

l
pq|γ

w
q
)
< 0

holds for every L ∈ M and q = 1, 2, · · · , n. Then, the
dynamical system (1) with time-varying discrete and dis-
tribute delays has an unique equilibrium point x∗, which is
globally exponentially stable.
Corollary 3: Under assumptions (H1) and (H3), if there

exist real constants ξ lp > 0(p = 1, 2, · · · , n, l ∈ M ), such
that

−2dqξLq +
n∑

p=1

∑
(l,w)∈ML

ξLq
(
|alqp|λ

w
p + |b

l
qp|γ

w
p + |c

l
qp|γ

w
p
)

+

n∑
p=1

∑
(l,w)∈ML

ξLp
(
|alpq|λ

w
q + |b

l
pq|γ

w
q + |c

l
pq|γ

w
q
)
< 0

holds for every L ∈ M and q = 1, 2, · · · , n. Then, the dynam-
ical system (1) with time-invariant asynchronous discrete and

distribute delays has an unique equilibrium point x∗, which is
globally exponentially stable.
Remark 5: In this section, the existence and exponential

stability sufficient criteria are derived by the definition of
{ξ, 2}-norm and Cauchy convergence principle. If the known
conditions are changed, more corollaries can be obtained,
which are omitted. In the process of discussing, in order
to deal with discrete and distributed delays, the construc-
tion of special Lyapunov-type functional is very important.
It is worthy noting that the discrete time-varying τpq(t)
can be changed with p, q and t , which is asynchronous
time-delay [25].

IV. NUMERICAL EXAMPLE
Example 4.1: Consider the following two-dimensional
QVNNs with discrete time-varying delays and distributed
delays:

ẋp(t) = −dpxp(t)+
2∑

q=1

apqfq(xq(t))

+

2∑
q=1

bpqgq(xq(t − τpq(t)))

+

2∑
q=1

cpq

∫
∞

0
kpq(s)gq(xq(t − s))ds+ up, (6)

where xp(t) = xRp (t) + ıxIp(t) + xJp (t) + κxKp (t) ∈ Q,
fq(xq(t)) = tanh(xRq (t)) + ı tanh(xIq(t)) +  tanh(xJq (t)) +
κ tanh(xKq (t)), gq(xq(t)) =

1
2 (|x

R
q (t) + 1| − |xRq (t) − 1|) +

ı 12 (|x
I
q(t)+ 1|− |xIq(t)− 1|)+  1

2 (|x
J
q (t)+ 1|− |xJq (t)− 1|)+

κ 1
2 (|x

K
q (t)+ 1| − |xKq (t)− 1|), and τpq(t) = 1

p +
1

50qπ sin(π2 t)
holds for p, q = 1, 2. d1 = 8, d2 = 8, a11 = 0.3 − 0.1ı −
0.3 + 0.1κ , a12 = −0.1 + 0.3ı + 0.2 − 0.2κ , a21 =
−0.2+ 0.2ı + 0.1 − 0.3κ , a22 = 0.1− 0.1ı − 0.2 + 0.1κ ,
b11 = 0.1 − 0.2ı + 0.2 − 0.2κ , b12 = −0.2 + 0.2ı −
0.2 + 0.1κ , b21 = −0.3 + 0.2ı − 0.2 + 0.2κ , b22 =
0.1−0.3ı+0.2−0.2κ , c11 = 0.1−0.1ı−0.2+0.2κ , c12 =
−0.2− 0.2ı + 0.1 + 0.1κ , c21 = 0.1+ 0.2ı − 0.2 − 0.1κ ,
c22 = −0.2 − 0.1ı + 0.1 + 0.2κ , k11(s) = k22(s) = e−s,
k12(s) = k21(s) = e−2s u1 = −1 + ı +  + 2κ , u2 =
1− 2ı + 3 − 2κ .
Obviously, for any p, q = 1, 2, fq(xq(t)) and gq(xq(t))

satisfy the assumption (H1), kpq(s) satisfies the assumption
(H3), τpq(t) ≤ 1 + 1

50π ≤ 1.01 is bounded, and |τ̇pq(t)| =
|

1
100q cos(

π
2 t)| ≤

1
100 < 1. Therefore, assumptions (H1),

(H2) and (H3) are all satisfied. Let ξLp = 0.1 and ς = 0.53,
it can be calculated that

2ξLq (−dq + ς )+
2∑

p=1

∑
(l,w)∈ML

ξLq

(
|alqp|λ

w
p

+(1+ ηqp)eςτqp |blqp|γ
w
p + |c

l
qp|γ

w
p

∫
∞

0
kqp(s)eςsds

)
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FIGURE 1. State trajectories of xR
1 (t) and xR

2 (t) for Example 1.

FIGURE 2. State trajectories of x I
1(t) and x I

2(t) for Example 1.

FIGURE 3. State trajectories of xJ
1(t) and xJ

2(t) for Example 1.

+

2∑
p=1

∑
(l,w)∈ML

ξLp

(
|alpq|λ

w
q +

1+ ηpq
1− ηpq

eςτpq |blpq|γ
w
q

+|clpq|γ
w
q

∫
∞

0
kpq(s)eςsds

)
≤ 0

holds for any L ∈ M and p = 1, 2. Thus, the conditions of
Theorem 1 have been satisfied, and the dynamical system (6)
with discrete time-varying delays and distributed delays has
an unique global exponential stable equilibrium point, which
can be shown by Figures 1-5.
Remark 6: In this example, discrete time-varying delays

and distributed delays are considered for QVNNs with exter-
nal input u = 0. By calculation, the conditions of The-
orem 1 are satisfied and the conclusions can be obtained.
Figures 1-4 show the state trajectories of every real part and
image parts,respectively. Figure 5 shows the state trajectories
of all real part and image parts. From these figures, it is
observed that discrete time-varying asynchronous delays and
distributed delays have crucial effects on the convergence
process of QVNNs.

FIGURE 4. State trajectories of xK
1 (t) and xK

2 (t) for Example 1.

FIGURE 5. State trajectories of x1(t) and x2(t) for Example 1.

V. CONCLUSIONS
In the past several decades, the existence and stability of solu-
tions have been the evergreen important topics since various
NN models were constructed. Recently, with the develop-
ment of quaternion application in technology, QVNNs, as an
important side of quaternion, have been presented and studied
bymany scholars. Similar to other NNs, the existence and sta-
bility of solutions is one of the most important research con-
tents of QVNNs. Based on the facts, this paper has focused
on the existence and exponential stability of solutions of the
QVNNs with discrete time-varying delays and distributed
delays bymeans of {ξ, 2}-norm.Due to the noncommutativity
of quaternion multiplication, the delayed QVNNs system
has been firstly decomposed into four real-number systems
by Hamilton rules. Then the novel stability definition about
delayed QVNNs has been introduced by the definition of
{ξ, 2}-norm, and some assumptions of discrete time-varying
delays and distributed delays have been given. By construct-
ing special {ξ, 2}-norm-type Lyapunov functional and taking
advantage of Cauchy convergence principle and monotone
function, the existence, uniqueness and exponential stability
sufficient criteria of solutions have been obtained. Several
corollaries have been derived from the main theory. Although
the stability of QVNNs with discrete time-varying delays and
distributed delays has been studied by {ξ, 2}-norm, it can also
be used to investigate the synchronization of NNs, which is
our future research content. Finally, one numerical example
and its simulated figures have been given to illustrate the
effectiveness of the obtained conclusions in this paper.
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