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ABSTRACT The convolutional neural network (CNN) is commonly used in visual recognitions and
classifications. However, CNN can also be applied as a forecaster that can extract features from spa-
tiotemporal data. This paper proposes a 24h ahead electricity price forecasting method, which integrates
CNN with an evolutionary algorithm and utilizes spatiotemporal data. The optimal structure of the CNN
network for the locational marginal price (LMP) forecasting was obtained using a genetic algorithm (GA).
A gene mapping scheme was initially encoded to represent the search space and the process of selection,
mutation, and crossover eliminated structures that did not satisfy the validation fitness function and then
competitive individuals were generated. The evolution process uses the root mean square error (RMSE)
as the validation fitness function, which is optimzed by training the created CNN network. The proposed
gene mapping scheme can be used to design an optimal CNN structure once the mapping between gene
binary bits and parameters/hyperparameters of CNN is given. Day-ahead LMP and demand datasets
from Pennsylvania-New Jersey-Maryland (PJM) power market were used to demonstrate the evolutionary
capability of the proposed method and the finding of optimal CNN structures. Each studied dataset was
grouped into 4 subsets corresponding to various seasonal characteristics (different types of situations in real
life). Experimental results revealed that the proposed GA-CNN always yielded a higher forecasting accuracy
and lower error rates than other forecasting methods.

INDEX TERMS Convolutional neural network, deep learning, electricity price forecasting, genetic

algorithm, locational marginal price.

I. INTRODUCTION

Electricity pricing has been a crucial indicator of all trans-
actions in the power market since the reformation of the
power industry [1], [2]. When prices are high, sellers should
produce electricity to the pool market or buyers should use
their own generating facilities. Sellers/buyers can change
their bidding schemes to maximize their benefit and pro-
tect themselves from financial risk. These sellers (producers)
and buyers (consumers) depend greatly on electricity price
forecasting for planning and managing price risks. Many

The associate editor coordinating the review of this manuscript and

approving it for publication was Pierluigi Siano

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

factors must be considered in forecasting the price of elec-
tricity in the power markets. These factors include demand,
supply, weather, and other variables that are related to the
fuel markets [3], [4]. The volatility of electricity prices and
large errors in the use of forecasting techniques in other
markets should also be considered [5]. In the PIM power
market, the locational marginal price (LMP) is used to charge
the price bought and sold energy. LMP involves pricing
congestion costs into energy transmission within a regional
transmission organization (RTO) and considering bulk power
system losses. Authorized by the federal government, PJM
is responsible for electricity transmission systems and the
operations of the wholesale electricity market in a particular
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area. Commonly, LMP aggregates system energy prices,
transmission congestion costs, and the cost of marginal
losses.

Over the last two decades, recommended price forecasting
methods have had varying rates of success; they include
statistical methods and artificial intelligence methods. Sta-
tistical methods include autoregressive integrated moving
averages (ARIMA) [6]-[8] the similar days’ method [3],
generalized autoregressive conditional heteroskedasticity
(GARCH) [8],[9] and other autoregression (AR) methods.
These methods are linear predictors, which are only accurate
when data vary slowly. The effectiveness of these methods
is uncertain because of their limited ability to capture the
nonlinear variation of electricity prices and rapid variations
in price signals [10]. Artificial intelligence (AI) methods
include artificial neural networks (ANN) [11], deep learn-
ing networks [12]-[15] evolutionary computing methods,
and hybrid models or combinations of at least two meth-
ods [14], [16]-[19]. Als can approximate any multivariate
function to an expected degree of accuracy by adjusting
weightings during updates and they can be used to extract
the complex features of electricity prices. Hence, these Al
methods have higher forecasting accuracy than statistical
methods. Different evolutionary computing methods such as
genetic algorithm (GA) [20]-[22] and particle swarm opti-
mization (PSO) [4], [19], [22], [23], were used in conjunction
with other algorithms to forecast electricity prices. These
combinations represent excellent means of price forecasting
because they combine a linear autocorrelation structure with
a nonlinear component.

CNN and GA have already been combined in recent stud-
ies [24], [25], but these studies have focused on using CNN
for classifying images and used evolutionary algorithms to
optimize its parameters or to generate the optimal CNN net-
work. Other combinations, such as a combinatorial neural
network trained by a stochastic search method [26], were pre-
sented to study the datasets from PJM and Spain. The results
were compared with those obtained using other methods and
proved to be more extensive.

Many researchers have attempted to determine the optimal
solution to a particular problem by translating mathematically
using a fitness function of specific parameters. Such mathe-
matical methods have become foundational for the various
optimizations that are of interest today. Today, deep learning
has been used to solve difficult problems, yielding results that
are similar to or superior to those obtained by human experts.
However, setting the parameters of a deep learning network
can be difficult because their values control the learning
process and determine the performance of a deep learning
network.

Grid search [27]-[29] and random search [28], [30], [31]
are traditional techniques of hyperparameter optimization.
Both techniques are directed by performance metrics that are
evaluated by cross-validation on the training and validation
sets. Bayesian optimization [15],[17], [32]-[34] is used to
optimize parameters by creating a probabilistic model of the
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functional mapping from the values of the parameters to the
objective that is evaluated on a validation set.

Classical optimization techniques have difficulty in attain-
ing the global optimum owing to their inability to handle
nonlinearities and non-convexity. On the other hand, evo-
lutionary algorithms (EA) are members of the family of
population-based algorithms, which were developed to find
quasi-optimal solutions in any complex search field. Particle
Swarm Optimizations (PSO) [4], [19], [22], [23] and Evolu-
tionary Strategy[24], [35] are developed to solve optimization
problems of continuous variables without any constraints.
Although variants of PSO (such as Discrete PSO) can deal
with binary or discrete variables, it is still difficult to deal with
inequality constraints (e.g., maximum and minimum limits of
avariable). Consequently, an enhanced GA based on mapping
encoding is proposed herein because GA can deal with binary
variables and inequality constraints efficiently.

A novel hybrid electricity price forecasting method [20]
was applied to historical data from the New England area.
A set of relevance vector machines (RVM) was used for
individual ahead-of-time price forecasting. Individual predic-
tions are combined to form as a linear regression ensemble,
whose coefficients are obtained as the solution to a single
optimization problem. The solution was found using a micro-
genetic algorithm, which yielded the optimized ensemble
which provided the final price forecast. Another study used
GA [21] to optimize the parameters of the support vector
machine (SVM) model, which was used to forecast prices in
large power systems using data from the National Electricity
Market (NEM) of Australia. Another study [36] used a novel
model-based demand response control method to control the
use of residential air conditioners and optimally in response
to changing day-ahead electricity prices. GA is used to find
the optimal solution to indoor air temperature, which was
formulated as a nonlinear programming problem. Simulation
results showed a reduction in the electricity costs and peak
power demands during demand response hours.

This paper concerns multivariate time series forecasting,
specifically using LMP spatiotemporal data series. The aim
is to forecast the 24h-ahead LMPs at a target location using
other related time-series by designing a CNN architecture that
is optimized by an evolutionary algorithm. Initially, a gene
mapping scheme is designed to represent the CNN structure
and connectivity. The advantage of this scheme is its flexi-
bility in creating network structures of various lengths. The
main contributions of this paper are as follows.

o Implementation of LMP and demand time-series as “2D
images” applied to CNN

o Development of mapping-encoding chromosomes in
GA to reduce the length of a bit string

« Optimization of hyperparameters and structural parame-
ters of the CNN using the proposed mapping-encoding-
based GA without trial-and-error

The rest of the paper is organized as follows. Section II
reviews CNNs and various optimization techniques.
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Section III outlines the proposed price forecasting method.
Section IV presents the results of the experiments conducted
on two datasets, and Section V concludes.

Il. BACKGROUND

A. PIM MARKET

Like other products, electricity is bought, sold and traded in
wholesale and retail markets. The wholesale market involves
the purchasing and selling of power between generators
and resellers. Resellers include electricity utility enterprises,
power providers, and electricity vendors. The Federal Energy
Regulatory Commission (FERC) controls the operations and
trades of the wholesale market in most regions of the United
States. The wholesale market begins with the generators,
which connect to the grid and generate electricity after they
have obtained the necessary permits. The electricity that is
produced by generators is purchased by entities that will
resell it to satisfy end-user demand. The resale entities pur-
chase electricity through markets or contracts with individual
sellers. In many cases, utility companies own generation
facilities and sell directly to customers. The price of whole-
sale electricity is known by a buyer and seller from the
wholesale market. PIM power market is one of successful
power markets, as shown in Fig. 1, in the world.
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FIGURE 1. PJM map of 21 zones and target location (Athenia) [37].

As a regional transmission organization (RTO), PJM
manages a wholesale electricity market that spans all or
part of Delaware, Illinois, Kentucky, Maryland, Michigan,
New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee,
Virginia, West Virginia and the District of Columbia. Figure 1
shows the map of the 21 zones that comprise the PJIM
interconnections[37], which are American Transmission Sys-
tems, Inc. (ATSI), Atlantic City Electric Company, Bal-
timore Gas and Electric Company, ComEd (CE), Dayton
Power and Light Company (DAY), Duke Energy Ohio and

VOLUME 8, 2020

ATHENIA - -100

-0.96

-0.92

0.88

0.84

BGEC -
COMED -
DPLC -

ACEC -

ATS -

ATHENIA i

FIGURE 2. Correlation heatmap of Athenia and the 21 zones of the PIM
market.

Kentucky (DEOK), Dominion (DOM), American Electric
Power (AEP) Co., Inc., Allegheny Power Systems (APS),
Delmarva Power and Light Company, Duquesne Light, East
Kentucky Power Cooperative (EKPC), PECO Energy, Jer-
sey Central Power and Light Company, Metropolitan Edison
Company, Ohio Valley Electric Corporation, PPL Electric
Utilities, Pennsylvania Electric Company, Potomac Electric
Power Company, Public Service Electric and Gas Company
(PSEG), and Rockland Electric Company. Athenia, which is
the target location can be located in PSEG.

B. DATASET

The proposed method uses two datasets, which were obtained
from the PJM website [38]. The dimension of the first dataset
is 22 x 2184, corresponding to the 21 zonal prices of the
zones that make up the PJM interconnection and the LMP
of the target location, “Athenia”. The value of 2184 is the
number of hours in a season; the total number of hours from
December 1, 2017 to November 30, 2018, is 8736. This
dataset was used to construct 2-dimensional spatiotemporal
forms as inputs to the 2D CNN, creating a multivariate time-
series, which yields multiple variables in zones and at a loca-
tion at a single time; multiple channels per time-series input
are thus obtained. Figure 2 displays the correlation heatmap
of the target location (Athenia) and the 21 zones of the PIM
power market. The LMPs of the 21 zones were considered in
Dataset 1 because the target location has strong correlation
scores within [0.84, 1) for all PIM zones. In addition to
the aforementioned 22 LMPs, Dataset 2 also includes the
demands. These demands in only eight zones (AEP, ATSI,
APS, CE, DAY, DEOK, DOM, and EKPC) are available on
the PJM website.

Feature scaling was applied to both datasets to yield values
between zero and one. Let x, Xjqx, Xmin and Xy, be the
datum, maximum, minimum and scaled datum, respectively.
The formula for the feature scaling is shown in (1) [39] using
the min-max normalization as follows.

Xnew = T Xmin (D

Xmax — Xmin

91977



IEEE Access

Y.-Y. Hong et al.: LMP Forecasting Using Deep Learning Network Optimized by Mapping-Based GA

The PJM power market is very well-developed. Thus, there
are neither missing data nor outliers in the studied datasets.
In case that missing data or abnormal values occur in the
datasets, a general ““data cleansing” process can be conducted
as follows: (i) interpolation, (ii) prior experience (persistence;
duplication of prior data), or (iii) usage of the average value
from neighboring locations (zones).

C. CONVOLUTIONAL NEURAL NETWORK

Recurrent neural networks (RNNs) [13], particularly those
with a long-short term memory unit (LSTM) [40], [41] are
the preferred single time-series forecasters. The effectiveness
of these networks can be evaluated in terms of the recurrent
connections, which permit the network to access all historical
time series values. However, CNN can have multiple convolu-
tion layers, in which filters are applied by skipping elements
in the input, allowing the network to grow exponentially.
This process allows the network to access a wide range of
historical data, like RNN. The convolutional structure of
CNN and its number of trainable weights is small, making
it more efficient in training and forecasting than RNN.

CNN is a biologically inspired means of deep learning,
which has shown promise in solving classification problems,
such as image recognition, segmentation, object detection,
and time-series classification and prediction. CNN comprises
a sequence of convolutional layers whose outputs are con-
nected to a local region in the input by sliding a filter
along with the input and computing the dot product of the
input and the filter at each point. The convolutions replace
the weighted sums from the neural network. The structure
enables the model to identify specific patterns in the input
data. Accordingly, CNN discovers filters that define repeating
patterns in the series and use them to forecast future values.
The layered structure of the CNN works efficiently on noisy
series by removing the noise in each succeeding layer and
extracting only the meaningful patterns. A feature map is
generated when the input is convolved with the filter in each
layer. Unlike typical neural networks, the values in the output
feature map share similar weights, so all of the nodes in the
output detect exactly similar patterns. This process reduces
the number of learnable parameters and increases the effi-
ciency of training and learning in every layer.

Although the literature presents many versions of CNN, all
use similar algorithms. The building blocks of CNN are the
convolutional layer, the pooling layer, and the fully connected
layer. Figure 3 presents an example of CNN architecture.
Convolutional layers comprise a rectangular grid of neurons
so the input layer or the previous layer is a rectangular grid
of neurons, in which all of the weights of the rectangular
section are the same for all neurons. The convolutional layer
generates an image convolution of the preceding layer in
which weights denote the convolution filter. The pooling
layer receives small rectangular blocks from the convolu-
tional layer and samples them, yielding a single output from
the block. Pooling takes the average or maximum opera-
tion of the neurons in the block. A fully connected layer
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FIGURE 3. Example of CNN architecture.

(forecasting layer herein) receives all neurons in the pre-
ceding layer (which could be a pooling, convolutional or
a fully connected layer) and connects them to each of
its neurons. Fully connected layers are one-dimensional
whereas convolutional layers and pooling layers are generally
two-dimensional.

The convolutional layer performs kernel convolution in
which a small matrix of numbers, known as kernel or filter,
is passed over the image or the rectangular grid, to convert
it based on the values of the filter. This filter outputs new
matrices called feature maps. The values of feature maps are
calculated using (2) [42] as follows.

Glm.nl=(f«h)[m.n] =Y Y h[j.klflm—j.n—k]
ik

(@)

where f is the input and /% is the kernel, and m and n are the
indices of the rows and columns of the result matrix.

In this work, these hyperparameters (kernel size, number
of kernels, pooling size and dropout) and structural param-
eters (number of layers) of CNN are encoded to the GA to
characterize CNN.

ill. PROPOSED METHOD

A. IMPLEMENTATION OF GA

Tuning the parameters and hyper-parameters of CNN is labo-
rious if a trial-and-error approach is used. This was performed
in our early experiments and in other existing papers, too.
However, this brute-force search is time-consuming and can-
not guarantee the optimum. This motivates the authors to
apply GA to find the optimal structure of CNN.

GA is an optimization technique for solving complex prob-
lems by iteratively considering various probable solutions.
In this work, GA is used to find the optimal parameters of
CNN, which is used as a standalone forecaster for 24h-ahead
spatiotemporal data. This goal is to demonstrate the efficiency
with which GA searches the solution space using the fol-
lowing phases; (a) gene mapping - population initialization,
(b) genetic operation, and (c) chromosome evaluation.
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Beginning with the initialization of the population size
and the number of generations, GA applies a series of evo-
lutionary operators until it obtains the best architecture of
CNN for LMP forecasts. First, a population is initialized
to have a predefined random size using gene encoding or
gene mapping, as will be discussed in Sec. III.C. Throughout
evolution, the fitness of each individual, which generates a
specific CNN architecture is evaluated from the given dataset.

In the subsequent process, the parent individuals are
selected according to fitness, and generate new offspring by
the application of genetic operators. The selection operator
selects from the current population the individuals who sur-
vive in the next generation. Therefore, the current population
includes the generated offspring population and the parent
population. The evolution continues until the predefined max-
imum number of generations is reached.

B. MAPPING-BASED ENCODING

At the beginning of the GA process, an initial population of
chromosomes (binary strings; individuals) is encoded in the
solution search space. Gene mapping enables the algorithm
to locate a binary string in a genome pool. The gene map-
ping corresponds to the considered parameters of CNN and
assessed in terms of fitness. Initially, a chromosome is set to
a fixed length of 22 bits (the genotype), as shown in Table 1;
its corresponding values are the phenotypes and are measur-
able. The hyperparameters/parameters to be optimized are the
number of convolutions (bits 1 to 3 from the left), the filter
size for layer 1 (bits 4 to 7), the kernel size (bits 8 and 9),
the pool size (bits 10 and 11), the filter size for layer 2
(bits 12 to 15), the filter size for layer 3 (bits 16 to 19) and
the dropout size (bits 20 to 22).

TABLE 1. Gene mapping in proposed method.

No. of Filter no. 1,
Convolutions 2 and 3

Bit  Value Bit Value Bit

Kernel size Pooling size Dropout
Value Bit Value Bit Value

000 0 0000 32 00 1 00 O 000 0.0
001 1 0001 64 01 3 01 1 001 0.1
010 2 0010 96 10 4 10 2 010 0.2
011 3 0011 128 11 5 11 3 011 0.3
100 4 0100 160 100 0.4
101 5 0101 192 101 0.5
110 6 0110 224 110 0.6
111 7 0111 256 111 0.7

1000 288

1001 320

1010 352

1011 384

1100 416

1101 448

1110 480

1111 512
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Each combination of binary bits represents a feasible solu-
tion to the problem. The number of convolutions was set from
zero to seven, but in the manual experiments without GA,
the maximum number of convolutions that yielded satisfying
results was only three. The experiments revealed that if GA
used more than three convolutions, then a resource exhausted
error occurred, and the updated parameters cannot converge
at the maximum number of iterations. Accordingly, a return
function was set whenever the GA selected (zero, four, five,
six or seven) convolutions to prevent errors in the program.
However, for filter numbers (with an interval range of 32),
kernel size, pool size, and dropout size, the function returns
the equivalent values in the gene mapping.

C. GENETIC OPERATIONS

The genetic operators that are used in this work are similar to
those presented in many other works. They include selection,
mutation, and crossover, which are used iteratively until the
convergence criteria are satisfied.

The deap.tools module, for which is available online
[43], [44] is used to execute the selection operation, which
performs tournament selection and returns a list that contains
references to selected individuals. This operator allows the
best individual to be randomly selected from the individuals
that participate in each tournament. The parameters include
the number of individuals to be chosen, which is denoted
by k and is set to 1 in this study, a list of individuals to
select from, the number of individuals that participate in the
tournament, and the attribute of the individuals that are used
in the selection criterion.

The crossover operation performs a two-point crossover
on individuals in the input sequence. The places of the two
individuals are switched and their unique lengths are retained.
The parameters specify the two participating individuals in
the crossover and a tuple for both individuals is returned. The
mutation operator executes a function that applies a Gaussian
mutation of the mean (mu) and standard deviation (sigma)
to the input individual. The parameters mu =0, sigma =1,
and indpb =0.2 (probability rate) are used herein[43], [44].
These parameters include the individual subject for mutation,
the mean or sequence of means in the Gaussian mutation, the
standard deviation or sequence of standard deviations in the
Gaussian mutation, and the independent probability that an
individual is mutated. This operation returns a tuple for one
individual.

D. OBJECTIVE FUNCTION AND ACCURACY METRICS

The purpose of GA is to find the optimal hyperpa-
rameters/parameters of CNN for the LMP forecasting.
Accordingly, GA sets a fitness function for the selected
individuals in its selection process. The objective function is
RMSE [4], [45], [46], which is obtained from the evaluation
of the created CNN, where it returns the minimal values of
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RMSE in (3).

1
rase = [ LS )

where J is the forecasted value; y is the actual value; and y
denotes the mean of the forecasted values. The accuracy and
error rates are evaluated after the optimal CNN architecture
is obtained using the following performance metrics:RMSE,
R-squared (coefficient of determination) [2], [47], [48] and
mean absolute percentage error (MAPE) [1], [4], [26]; the
latter two are defined in (4) and (5). R-squared quantifies the
linear correlation between the measured and correlated values
and trendline reliability. Perfect correlation yields a value
of unity; thus, an R-squared value closer to one indicates
more accurate forecasting. The objective function is evaluated
for each solution that is obtained by the GA algorithm via
CNN training. All such solutions are subsequently ranked
as the population evolves through several operations, such
as selection, crossover, and mutation, to optimize the fitness
function and yield the final optimal solution.

MAPE = — Zl 1 i 2 X 100% 4)
R2 —1— Z(Yt Yz (5)
Z(Yl y)2

E. IMPLEMENTATION OF THE PROPOSED METHOD

In this paper, Tensorflow was used to generate the code
for CNN and importing the modules from Keras, including
Conv2D, AveragePooling2D, Dropout, Activation, Flatten,
Dense, and ZeroPadding2D. The DEAP library or Distributed
Evolutionary Algorithm for Python was used to create the
algorithm and to integrate GA and CNN. The DEAP library
facilitates the mutation, selection, and evaluation operations.
The algorithmic steps are detailed as follows.

The algorithm starts with initializing values such as the
number of generations (n), population size (p), hall of fame
(hof), crossover rate (cxpb), and mutation rate (mutpb). The
initialized population will be saved into a variable (pop). The
population will be trained using the dataset and its architec-
ture and will be saved on another variable (pop_cnn). Using
the validation set, pop_cnn will be validated and will select
the lowest RMSE. The lowest RMSE will be saved to a
variable (best_cnn). This process will continue until the max-
imum iteration is reached. The inner loop of the algorithm
comprises the mutation and selection process of the genetic
algorithm, where 2 CNN architectures with the lowest RMSE
will be selected from pop_cnn. The 2 selected architectures
will generate an offspring using crossover and saves the
offspring to a variable (pop_offspring). An architecture will
be selected from pop_cnn and will be mutated to produce a
mutated architecture, which will be saved in pop_offspring.
The mutation and crossover processes continue and update
the population. When the maximum iteration is reached,
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Proposed GA- CNN Algorithm

Input: Number of Generations (1)
Population size (p)
Hall of Fame (hof)
Crossover rate (cxpb)
Mutation rate (mutpb)
Output:  24-hour ahead LMP forecasting accuracy
Initialize population (p)
Save the initialize population to pop
fori=0tondo
train pop using the training dataset
save CNN architecture in pop_cnn
validate pop_cnn using the validation dataset
select lowest RMSE and save it to best_cnn
fora=1toxdo
from pop_cnn, select 2 CNN architecture (Cj and
Ck) which has the lowest RMSE
Generate offspring for Cj and Ck using the assigned
cxpb rate
save offspring to pop_offspring
select a CNN structure from pop_cnn
mutate the CNN structure using mutpb rate and
generate a mutated CNN architecture
save the CNN architecture to pop_offspring
end for
update pop <K pop_cnn + pop_offspring
end for
Select best CNN architecture
Validate accuracy using R-Squared and error rates using
RMSE and MAPE

PROBLEM
IDENTIFICATION

e |

LITERATURE
REVIEW

=l

CODING/TESTING

e |

DATASET
GATHERING

ALGORITHM
PLANNING

TRAINING/ TRAINING/ COMPARISON TO
EVALUATION EVALUATION OTHER METHODS
DATASET 1 DATASET 2

—

LMP DAY-AHEAD
FORECASTING

~——o

FIGURE 4. Flowchart of methodology in conducted study.

the best CNN architecture will be selected and validate its
accuracy and error rates.

Figure 4 shows the flowchart of the methodology in
the conducted study. The conducted research started with
identifying the crucial problem in the power market.
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Next, a thorough review of existing papers was performed
concerning the problem and possible solutions. After the
possible solution was identified, datasets were collected, and
an algorithm was developed to avoid the demerits of existing
methods and enhance the merits of the proposed method. The
next phase was to develop the codes following the presented
algorithm. These codes were tested for initial runs of the
model. To verify the accuracy of the proposed method, train-
ing and evaluation were carried out using 2 datasets. The same
datasets were also studied by other methods to compare the
performance obtained by all methods. Finally, the proposed
method was used to forecast the 24-hour day-ahead LMP for
the target location.

The proposed 4 CNNs will be used for forecasting LMPs in
different seasons. Because CNN has the capability of learn-
ing, the trained CNN using the old data can be retrained using
the new data periodically (daily, weekly or monthly) in the
corresponding season next year. Updating the parameters and
hyperparameters of the CNN still utilizes the RMSE in (3) as
an objective function, despite the positive or negative error.
Every 24 LMPs and demands in the specified zones and target
location will be stored for the subsequent updates of the CNN.
The current parameters and hyperparameters of the CNN will
serve as initial conditions for the next updates of the CNN.

F. COST-BENEFIT ANALYSIS

There are fixed and variable costs involved in developing the
forecasting system in a real working environment. The fixed
cost consists of the expenses for hardware: (1) a computer
(e.g., an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with
256 GB of installed RAM and an NVIDIA GV100GL (Tesla
V100 DGXS 32GB) graphics card herein) and (2) the com-
puter network infrastructure for data transmission. The fixed
cost also includes the expenses for software: (1) computer
code based on the proposed method and (2) the computer
network system. The variable cost comprises the cost of
maintenance and operation of the above hardware/software as
well as personnel salaries. The studied data are free of charge
for open access real-time data in the PJM power market.
The developed software may be set up using Python with
the Keras library and Tensorflow as the backend. TensorFlow
is an end-to-end open-source platform for machine learning.
It has a comprehensive, flexible ecosystem of tools, libraries
and community resources. Keras is a high-level neural net-
work interface. Both have no licensing costs.

The forecasted LMP can be served as a crucial reference
for buyers/sellers in the power market to develop their bidding
strategies. Accordingly, the benefit in the implementation of
a forecasting system is the increasing profit due to selling
the electricity or decreasing payment owing to purchasing the
electricity.

After the above future expected costs and benefits are
estimated, they can be converted into a present value amount
with a discount rate and the net present value to achieve the
cost-benefit study [49], [50].
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IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm,
a series of experiments on LMP forecasts was performed.
Specifically, two datasets are used to demonstrate the effec-
tiveness of the proposed CNN optimized by GA. These two
datasets are similar. As described in Sec. I1.B, the first dataset
consists of 21 zonal prices and target (Athenia) LMP time
series. The second dataset comprises the aforementioned
22 price time-series and eight demand time-series.

In all experiments, the following parameters were used;
cxpb = 0.9 and mutpb = 0.05, where cxpb is the crossover
rate and mutpb is the mutation rate [43], [44]. The number
of binary bits is 22, as indicated in Table 1. The number of
populations is set to 110, which is five times the number of
binary bits, and the number of generations is 50. For CNN,
the parameters in the optimizations provided in Table 1 are as
follows; (1) number of convolutions, (2) number of filters for
layer 1, (3) kernel size, (4) pool size, (5) number of filters for
layer 2, (6) the number of filters for layer 3, and (7) dropout
ratio. Table 2 presents the initial parameters of CNN that are
used in finding the optimal parameters.

TABLE 2. Initial Setting for Training, Validation and Evaluation.

Parameter/ Values

Hyperparameter

Training & validation | 80% (64%Training/16% Validation)
data

Test Data 20%

Activation function Rectified Linear Unit (ReLu)
Optimizer Adam(Ir=0.1,beta_1=0.9,beta 2=0.999)
Number of epochs for GA | 50

(training)

Number of epochs for | 500 with an early stopping mechanism
evaluation

Batch size, Strides, Dense | 4, 1, 50

A. DATASET 1: LMP ONLY

To demonstrate the ability of GA to find the optimal param-
eters of CNN for forecasting LMPs at Athenia, experiments
with the first dataset, covering four seasons, were performed.
The first dataset comprises a pure time-series of locational
marginal prices on all seasons, including holidays. The target
location ““‘Athenia’ is in the PSEG zone of the PJM intercon-
nection. Using the class deap.tools.Logbook, the evolution
process generates a list of statistics during the optimization
process; these include the minimum, maximum, mean and
standard deviation.

Figure 5 presents the minimum fitness statistics for all
four seasons, that are obtained from the optimization process
using the first dataset. Notably, the minimum fitness in the
winter converged to 0.043 after 20 generations until the 50th
generation. However, minimum fitness in spring converged
as early as the fourth generation to 0.083 until the final iter-
ation. The minimum fitness in the summer converged by the
fifth generation to 0.029 until the final iteration. Finally, the
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FIGURE 5. Minimum fitness of the proposed model obtained from the
first dataset.
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FIGURE 6. The mean fitness of the proposed model obtained from the
first dataset.
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FIGURE 7. 24h-ahead LMP forecasting for winter (dataset 1).

minimum fitness in the fall converged after the tenth genera-
tion to 0.017 until the last iteration.

The average or mean fitness values in all the seasons
converged in early iterations, as seen in Fig. 6. In winter and
spring, the mean fitness converged to 0.1 and 0.16, respec-
tively, after the third generation; in summer, it converged by
the fourth generation to 0.057, and in fall, it converged after
the 2" generation to 0.04.

Figures 7-10 plot the LMP forecastings in all seasons using
the first dataset; the blue lines represent the actual LMP, and
the red dashed lines represent the predicted LMP. The results
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FIGURE 8. 24h-ahead LMP forecasting for spring (dataset 1).
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FIGURE 9. 24h-ahead LMP forecasting for summer (dataset 1).
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FIGURE 10. 24h-ahead LMP forecasting for fall (dataset 1).

suggest minimal error rates in all seasons, as the predicted
values are very close to the actual values.

B. DATASET 2: LMP AND DEMAND

The second dataset comprises the 21 zonal price time-series
in the first dataset and additional eight historical day-ahead
zonal demand values, yielding a 2D spatiotemporal data.
Figures 11 and 12 present the minimum and mean fitness
statistics of the proposed model for the second dataset.
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FIGURE 11. Minimum fitness of the proposed model obtained using the
second dataset.
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FIGURE 12. The mean fitness of the proposed model obtained using the
second dataset.
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FIGURE 13. 24h-ahead LMP forecasting for winter using the second
dataset.

The fitness values converge smoothly in 50 iterations.
Figures 13-16 plot predictions for all seasons using the sec-
ond dataset; the accuracy is much better than that achieved
with the first dataset. Figure 17 is the scatter plot indicating
the relationship between the actual and predicted values,
which is strong and positive.

C. COMPARISON OF RESULTS OBTAINED

BY DATASETS 1 AND 2

Tables 3 (a) and 3 (b) present the MAPE, RMSE and
R-Squared values obtained by the proposed GA-based CNN
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FIGURE 14. 24h-ahead LMP forecasting for spring using the second
dataset.
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FIGURE 15. 24h-ahead LMP forecasting for summer using the second
dataset.
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FIGURE 16. 24h-ahead LMP forecasting for fall using the second dataset.

for Datasets 1 and 2, respectively. Dataset 2 leads to much
lower MAPE and RMSE, and higher R-Squared values than
Dataset 1. Restated, the predictions based on Dataset 2 are
much better than those based on Dataset 1.

The optimal CNN architectures that were obtained using
datasets 1 and 2 vary with the seasons, which are pre-
sented in Table 4 (a) and Table 4 (b), respectively.
Figures 18 and 19 present the effect of RMSE and R-Squared
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FIGURE 17. Strong positive relationship between actual and predicted
values in all seasons using the second dataset.

TABLE 3. (a) Accuracy and Error Rates using Proposed Method
(Dataset 1). (b) Accuracy and Error Rates using Proposed Method
(Dataset 2).

Seasons MAPE RMSE R-Squared
Winter 4.220 0.0243 0.877
Spring 4.539 0.0069 0.894

Summer 4.666 0.0079 0.897

Fall 4.971 0.0288 0.887
(@

Seasons MAPE RMSE R-Squared
Winter 3.817 0.0236 0.901
Spring 3.633 0.0086 0.904

Summer 3.584 0.0115 0.908

Fall 3.975 0.0069 0.892
(b

values of the optimal CNN architecture obtained by dataset 2
on the prediction time horizons, respectively. The distribution
of error shows that the RMSE values increase while the
R-squared values decrease throughout the 24 hours. There-
fore, the one hour-ahead prediction is more accurate than the
24 hour-ahead predictions.

Figure 20 presents an example of an optimal CNN network
generated from the proposed method for the winter season,
which is described in Table 4 (b). The figure presents the
output shape for each layer of the CNN that has three con-
volutional layers and three pooling layers.

D. COMPARISON OF PROPOSED METHOD WITH

OTHER METHODS

The proposed method was compared to other forecasting
methods in recent literature. The same datasets were used
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TABLE 4. (a) Optimal CNN Architectures Created for Dataset 1.
(b) Optimal CNN Architectures Created for Dataset 2.

Seasons Number of Filter size for 1, Kernel Pool Dropout

Convolutional 2 and 3 size size
layers
Winter 3 128, 256, 512 3x3 3x3 0.1
Spring 3 512,512,352 3x3 3x3 0.2
Summer 3 512, 64, 480 3x3 2x2 0.2
Fall 3 256,512, 480 3x3 2x2 0.2
(a)
Seasons Number of Filter size for 1, Kernel Pool Dropout
Convolutional 2 and 3 size size
layers
Winter 3 384,32, 320 3x3 1x3 0.2
Spring 3 512,512,160 3x3 3x3 0.2
Summer 3 512,256,192 3x3 1x3 0.2
Fall 3 512,128,128 3x3 1x3 0.2
(b)
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FIGURE 18. Effect of RMSE values of the optimal CNN architectures on
prediction time horizons (dataset 2).
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FIGURE 19. Effect of R-Squared values of the optimal CNN architectures
on prediction time horizons (dataset 2).

to test their accuracy and percentage errors in terms of
R-squared, RMSE, and MAPE. The compared forecasting
methods were long short-term memory (LSTM) [46], sup-
port vector machine (SVM) [51], [52], k-nearest neigh-
bor (KNN)[53], Bayesian ridge regression (BR) [54],
decision tree method (DT) [55], multilayer perceptron
(MLP) [56], [57] and ARIMA [6], [7]. To ensure fair com-
parisons, the datasets were prepared similar to those used
in the proposed method, in which they were scaled within
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FIGURE 20. Sample CNN architecture optimized by GA.
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FIGURE 21. Comparisons of all methods using winter data.

0 and 1 using the MinMaxScaler in Sklearn kit. Since the
datasets are multivariate time series, they all needed to be
arranged and re-shaped as 3D as the input for the different
methods. The parameter settings as described in each litera-
ture were followed to ensure the best configurations.

Specifically, the parameters of the Adam-optimized LSTM
network have a visible layer with one input, a hidden layer
with 4 LSTM neurons and an output layer that makes a
single value prediction [46]. To make it applicable to our
dataset, the output layer has to be designed to have 24 outputs.
Different optimizers such as SGD and RMSProp were tested
in our experiments but Adam was found to have the best
results. The network was trained for 100 epochs and a batch
size of 1. The result yielded low MAPE and RMSE values
and high R-squared values; however, the proposed method is
still better.

For the SVM method, the “linear” kernel function was
applied to determine the best model. The input of the SVM
is 3D shape. C = 1 and y = 0.0315, where C is the penalty
parameter and the gamma value influences the support vec-
tors to obtain better scores [51], [52]. The values of C and y
can be easily updated using the Python’s Scikit-Learn. The
results of SVM are poorer than LSTM.

For the KNN method, only the values of “k” (the number
of neighbors) need to be varied. The value of k chosen for
testing is from 1 to 25 [53]. The grid search was used to
examine the lowest MAPE in determining the best model. The
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FIGURE 22. Comparisons of all methods using spring data.
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FIGURE 23. Comparisons of all methods using summer data.
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FIGURE 24. Comparisons of all methods using fall data.

results reveal that the KNN method is worse than the SVM
method.

For the BR method, the input needs to be 3D shape and
the output should be a 24-h LMP forecast. The Scikit-Learn
linear model Bayesian Ridge was used to study the dataset.
To obtain the best result, Bayesian Optimization was imple-
mented to tune the hyperparameters of the model and
optimize the loss function by exploring the underlying
distribution [54]. However, only the winter data obtained
good results, while the other seasons obtained 100% MAPE
values and negative R-squared values.

91985



IEEE Access

Y.-Y. Hong et al.: LMP Forecasting Using Deep Learning Network Optimized by Mapping-Based GA

TABLE 5. (a) Forecasting Comparisons for Dataset 1 (Winter).

(b) Forecasting Comparisons for Dataset 1 (Spring). (c) Forecasting
Comparisons for Dataset 1 (Summer). (d) Forecasting Comparisons for
Dataset 1 (Fall).

Method MAPE RMSE R-Squared
LSTM 7.5113  100.5078 0.8349
SVYM 12.6675  156.9419 0.6179
KNN 11.7549  171.1313 0.5427
BR 9.8267  130.4575 0.7208
DTree 9.3104  166.4670 0.6707
MLP 15.5244  160.7134 0.5917
ARIMA 10.0743  135.9632 0.8287
CNN 17.5092 13.2030 0.8296
GA-CNN 4.2204 0.0243 0.8773
(2)

Method MAPE RMSE R-Squared
LSTM 6.9570  108.8507 0.8429
SVM 8.1262  144.9465 0.7507
KNN 92113  140.6167 0.7572

BR 100.0000 1.9969 -4.9865

DTree 9.0449  161.9775 0.6945
MLP 16.2757  161.0475 0.5739

ARIMA 15.8422  162.6423 0.7986
CNN 15.1049 10.3673 0.8573

GA-CNN 4.5393 0.0069 0.8947

(®)

Method MAPE RMSE R-Squared
LSTM 6.7307 97.1587 0.8894
SVYM 9.0145  118.2749 0.8574
KNN 9.0095  136.8610 0.8297

BR 100.0000 1.8567 -2.9657

DTree 9.1323  145.9471 0.7809
MLP 15.5533  159.6482 0.5708

ARIMA 123154 145.2177 0.8286
CNN 12.0017 6.7772 0.8

GA-CNN 4.6664 0.0079 0.8972

©

Method MAPE RMSE R-Squared
LSTM 72975  156.3834 0.8174
SVYM 9.9536  215.2868 0.6567
KNN 12.4402  260.6668 0.5079

BR 100.0000 2.0067 -6.9833
DTree 13.1196  281.7084 0.4075
MLP 16.8825  158.7798 0.5895

ARIMA 14.7609  157.6423 0.8146
CNN 12.1555 7.7835 0.8658

GA-CNN 4.9715 0.0288 0.8876

(d)

For the DT method, the model was trained with maximum
tree depth of the base learners which was set to 10 [55].
The learning rate, minimum loss reduction, L1 regularization
parameter, L2 regularization parameter, and the number of
boosted trees were set to 0.09, 0.1, 1e-07, 7 and 800, respec-
tively. To obtain the best parameters, the random grid search
from Scikit-Learn was used. However, the results were worse
compared to the KNN method.

For the MLP method, the number of hidden layers was
set to 2. The parameters in the literature [56] were followed,
where the number of epochs = 500, learning rate = 0.001,
number of neurons = 10, batch size = 100, and the activation
function used is ReLu. The experimental results of MLP are
worse than LSTM, SVM and KNN.

Finally, the proposed method was compared to ARIMA
method, where the model was set to (5, 1, 0), which sets
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TABLE 6. (a) Forecasting Comparisons for Dataset 2 (Winter).

(b) Forecasting Comparisons for Dataset 2 (Spring). (c) Forecasting
Comparisons for Dataset 2 (Summer). (d) Forecasting Comparisons for
Dataset 2 (Fall).

Method MAPE RMSE R-Squared
LSTM 5.8140 97.9071 0.8525
SVYM 11.1355  155.4099 0.6284
KNN 10.2729  169.6493 0.5572
BR 8.3477  128.9785 0.7441
DTree 8.1127 1652693 0.6868
MLP 13.5492  158.7382 0.6048
ARIMA 8.1863  134.0752 0.8404
CNN 15.6012 11.2950 0.8384
GA-CNN 3.8177 0.0236 0.9017
()
Method MAPE RMSE R-Squared
LSTM 5.6024  107.4961 0.8675
SVYM 6.5942  143.4145 0.7642
KNN 7.7293  139.1347 0.7780
BR 100.0000 0.5179 -4.9246
DTree 7.8472  160.7798 0.7036
MLP 14.3005  159.0723 0.5805
ARIMA 13.9542  160.7543 0.8023
CNN 13.1969 8.4593 0.8625
GA-CNN 3.6330 0.0086 0.9049
(b)
Method MAPE RMSE R-Squared
LSTM 5.3761 95.8041 0.9085
SVYM 7.4825  116.7429 0.8763
KNN 7.5275  135.3790 0.8337
BR 100.0000 0.3777 -2.8342
DTree 7.9346  144.7494 0.8099
MLP 13.5781  157.6730 0.6079
ARIMA 10.4274  143.3297 0.8376
CNN 10.0937 4.8692 0.8873
GA-CNN 3.5843 0.0116 0.9082
(©
Method MAPE RMSE R-Squared
LSTM 5.9429  155.0288 0.8255
SVM 8.4216  213.7548 0.6682
KNN 10.9582  259.1848 0.5121
BR 100.0000 0.5277 -6.3933
DTree 11.9219  280.5107 0.4285
MLP 14.9073  156.8046 0.5985
ARIMA 12.8729  155.7543 0.8223
CNN 10.2475 5.8755 0.8726
GA-CNN 3.9755 0.0070 0.8924
(d)

the lag value = 5 for autoregression, difference order = 1
and moving average model = 0. The experiments in the
paper were done using Matlab and R applying it on uni-
variate timeseries. The LSTM results are better than the
results obtained from ARIMA. Figures 21-24 compare var-
ious methods, including the proposed GA-CNN method for
both datasets 1 and 2. The actual LMP values are plotted
against the values predicted using the different methods.

Tables 5 (a) to 5 (d) present the percentage of errors
and coefficients of determination (R2) obtained by different
methods for Dataset 1, while Tables 4 (a) to 4 (d) are for
Dataset 2.

According to the results shown in Tables 5 and 6, the pro-
posed method outperformed the other methods, with the
lowest RMSE and MAPE values and the highest R-squared
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values in all seasons. Besides, the results using Dataset 2 are
better than those using Dataset 1.

V. CONCLUSION

This work proposes an efficient method for 24h ahead
LMP forecasts using CNN that is optimized using a novel
mapping-based GA. The contributions and findings of this
paper can be summarized as follows.

e The LMP and demand time-series are preprocessed as
2D (spatiotemporal) data used as inputs to the CNN,
thereby, allowing the CNN to successfully capture the
spatial and temporal dependencies of the datasets. Thus,
additional complex digital signal processing techniques
can be avoided but the 2D CNN still can be used.

o The traditional method for tuning hyperparameters and
structural parameters of a deep learning network is con-
ducted through brute-force trial and error. The proposed
method can find the optimal hyperparameters and struc-
tural parameters of CNN by novel mapping-encoding
chromosomes in GA to reduce the length of bit-strings
without trial and error.

o The proposed method was extensively tested on two
datasets from the real-world electricity market of PIM in
the United States. From the simulation results, it can be
found that hourly demands, in addition to historical LMP
data, are also crucial factors as inputs to the 2D CNN to
improve the accuracy of 24h ahead LMP forecasting.

o The studied data were grouped into 4 subsets corre-
sponding to various seasonal characteristics (different
types of situations in real life). Experiments revealed that
the proposed method outperforms the other forecasting
methods. These results validate the proposed method.

For future studies and improvement of the proposed method,
additional information such as temperature and other factors
that affect electricity price forecasting will be considered
further to test and validate the method.

At present, the PIM market only provides hourly demands
in eight zones (21 zones in total). It can be found Dataset 2
consisting of these eight hourly demands can improve the
accuracy of LMP forecasting. Thus, the administrators in
the power market shall provide more information for buyers
and sellers (participants) to develop their tools (such as LMP
forecasters or bidding strategies).
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