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ABSTRACT The optimal combination of assets can be selected by the traditional portfolio theory which
uses historical quantitative data to represent the future return of assets. However, quantitative information
is inaccessible in most cases and experts can help investors and fund managers by providing qualitative
information. According to above discussion, a new multi-stage qualitative approach is proposed to select
the optimal portfolio under linguistic Z-number environment. To achieve this aim, this study firstly develops
the Bonferroni mean (BM) operator and the geometric Bonferroni mean (GBM) operator under the lin-
guistic Z-number environment, and introduces linguistic Z-number Bonferroni mean (LZBM) operator and
linguistic Z-number geometric Bonferroni mean (LZGBM) operator to aggregate the qualitative evaluation
information. Then, using the developed aggregation operators, two qualitative portfolio selection models are
proposed based on the max-score rule and the score-accuracy trade-off rule for the general investors and
risky investors, respectively. Finally, to illustrate the validity of the proposed models, a case study including
20 corporations of Tehran stock exchange market in Iran is provided and the obtained results are analyzed.
Moreover, the qualitative proposed models are compared with another available model. The obtained results
indicate that the qualitative proposed approach can help investors and fund managers to make more credible
decisions so that they can select the optimal assets with considering different criteria when experts are
assured about their assessments or opinions. Therefore, the qualitative proposed models are superior and
more general in comparison with the other ones due to capturing the reliability of information. Also, the
obtained results show the influence of reliability measures in investment processes.

INDEX TERMS Portfolio selection, linguistic Z-number, reliability, linguistic scale function, aggregation
operator.

I. INTRODUCTION
Decision-making is an inseparable fact in the real world
and people always encounter different decisions in daily
life. Since complexity of the decision-making environment
is daily grown, decision makers (DMs) or managers no
longer are satisfied with the classic or deterministic proce-
dures for representing their knowledge about events and they
are intending to make more fruitful decisions using more
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general data. Hence, Zadeh [1], [2] introduced the fuzzy
set theory to consider uncertainty existing in assessment
information. However, the fuzzy set theory has shortcomings
in the uncertain information representing. The fuzzy sets
devote a single quantity to each element, which is called
the membership degree. These single quantities are placed
within the interval [0, 1]. But, they are not sufficient to
represent comprehensive data because of the loss of complete
knowledge [3]. Hence, in order to better represent qualitative
data, some authors introduced various types of fuzzy sets such
as the interval-valued fuzzy sets [4], the type-2 fuzzy sets [5],
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the fuzzy multi-sets [6], the intuitionistic fuzzy sets [7],
the hesitant fuzzy sets [8] and the interval-valued hesitant
fuzzy sets [9]. Although the fuzzy set theory and its developed
forms have created massive solstice in the description of
uncertain and ambiguous data, they are unable to capture the
reliability of information. Therefore, Zadeh [10] introduced a
new concept called Z-number in order to make more general
structure for representing uncertain information related to the
real world phenomena. Thus, in comparison with fuzzy set
theory and its extended forms, Z-numbers are powerful tools
for describing and modeling human knowledge. The studies
carried out on Z-numbers can be categorized into two aspects.
The first aspect includes the basic investigations such as
conversion techniques [11], [12], arithmetic operations over
Z-numbers [13]–[15], ranking methods [16]–[20] and devel-
opment researches [21], [22]. The second aspect is related to
the application of Z-numbers in decision-making and opti-
mization problems. Yang andWang [23] presented a stochas-
tic multi-criteria acceptability analysis (SMAA) model to aid
decision making problem under discrete Z-numbers.
Shen and Wang [24] developed a vlse kriterijumsk opti-
mizacija kompromisno resenjethe method called Z-VIKOR
method based on a new comprehensive weighted distance
measure under Z-numbers. Kang et al. [25] presented a
total utility under Z-number information and expressed its
mathematical properties to be applied in the decision making
problems. Sadi-Nezhad and Sotoudeh-Anvari [26] proposed
a new data envelopment analysis called Z-DEA. They uti-
lized the concept of Z-numbers to describe input and output
parameters in their model. Yaakob and Gegov [27] intro-
duced a novel technique for order preference by similarity
to ideal solution (TOPSIS) method based on the concept
of Z-numbers called Z-TOPSIS. Generally, the main advan-
tage of Z-numbers is that they incorporate possibilistic and
probabilistic constraints simultaneously. In other words,
the concept of Z-numbers can describe the real preferences,
qualitative assessments, estimations and opinions of decision-
makers.Moreover, they reflect reliability in addition to uncer-
tainty and ambiguity relevant to information simultaneously.
This particularity causes Z-numbers to be especially useful
for representing evaluation information particularly financial
information.

Due to the fuzziness and uncertainty of the real information
and the intrinsic ambiguity of expert knowledge, experts
usually utilize linguistic terms to express the evaluation infor-
mation. For instance, to assess the financial performance
of a corporation or estimate the future return of an asset,
experts can apply linguistic terms such as ‘‘low’’, ‘‘medium’’,
and ‘‘high’’. The utilization of linguistic terms increases
the credibility and flexibility of the decision-making mod-
els [28]. Linguistic variables were widely applied in dif-
ferent areas [29]–[34]. Rodríguez et al. [29], [35] and
Wang et al. [36] introduced hesitant fuzzy linguistic term
sets (HFLTSs) and intuitionistic linguistic sets, respectively.
The fuzziness and randomness existing in linguistic terms
accurately match up the constraint and probability measure

of Z-numbers [37]. Therefore, in order to combine linguis-
tic terms and Z-numbers, Peng and Wang [38] introduced
hesitant uncertain linguistic Z-numbers (HULZNs). Further-
more, Wang et al. [37] introduced linguistic Z-numbers and
extended their operations. The main advantage of the linguis-
tic Z-numbers (LZNs) is that they consider both the fuzziness
and randomness existing in qualitative information simulta-
neously. For instance, to evaluate the financial performance
of a firm or estimate the future return of an asset, a linguistic
Z-number can apply linguistic terms such as ‘‘low’’,
‘‘medium’’ and ‘‘high’’ to describe fuzzy constraint and
employ linguistic terms such as ‘‘seldom’’, ‘‘sometimes’’
and ‘‘usually’’ to represent the probability measure. In other
words, a linguistic Z-number such as (low, sometimes) can be
applied to assess the financial performance of a firm. As dis-
cussed, linguistic Z-numbers are more general, credible and
flexible structures for describing qualitative data, especially
in financial markets. Therefore, in this study, the linguistic
Z-numbers are employed to better describe the qualitative
financial data that experts estimate.

Generally, aggregation operators are useful tools to deal
with the assessment information under various types of
uncertain environments. Compared with traditional decision-
making methods, aggregation operators can obtain aggre-
gated values and then rank them. Due to the superior of
the aggregation methods in decision-making problems [39],
the idea of aggregation operators has become an inter-
esting issue of research. Up to now, there are only five
aggregation operators to aggregate evaluation information
under linguistic Z-number environment. Peng and Wang [38]
developed the hesitant uncertain linguistic Z-number power
weighted average operator and the hesitant uncertain lin-
guistic Z-number power weighted geometric operator. Also,
Mahmoodi et al. [40] proposed three weighted aver-
aging (WA) aggregation operators, which is called lin-
guistic Z-number weighted averaging (LZWA), linguistic
Z-number ordered weighted averaging (LZOWA) and lin-
guistic Z-number hybrid weighted averaging (LZHWA). The
main deficiency of these aggregation operators is that they do
not consider the interrelationship of input data and suppose
that all input arguments are independent. Thus, to overcome
this limitation, it is essential to develop more general aggre-
gation operators for handling interrelationship between input
arguments. Bonferroni mean (BM) operator [3] and geomet-
ric Bonferroni mean (GBM) operator [41] capture interre-
lationship among input arguments. In this study, the BM
and GBM operators are developed to aggregate linguistic
Z-number information.

One of the initial concerns on any portfolio selection prob-
lem is to choose the optimal combination of assets. However,
in the real investment processes, investors or fund managers
encounter positions in which the financial criteria have con-
flict together. Markowitz [42] presented a quantitative model
called mean-variance model in order to choose the optimal
portfolio based on a trade-off between the expected return and
the risk. He established a basic framework to optimize port-
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folio selection problems. Creating more diversified portfolios
is the principal privilege of Markowitz model. In spite of
the considerable significance of the Markowitz theory, some
scholars believed that diversification does not necessarily
lead to diminish the overall risk when the financial markets
encounter some political and economic tensions. On the other
hand, the Markowitz’s model only applied historical data
to represent the financial information while there are many
non-probability factors in the financial markets that cannot
be resolved applying probability theory. Thus, in order to
create more realistic models, many researchers developed
Markowitz model with consideration of different assump-
tions, constraints and objectives under various environments.
Some accomplished investigations on the Markowitz’s mean-
variance model under different types of uncertain environ-
ments are presented below. For example, Li and Xu [43]
presented a multi-objective portfolio selection model with
fuzzy random returns. Zhou and Xu [44] suggested a new
qualitative approach to choose the optimal portfolio under
hesitant fuzzy environment. Mansour et al. [45] proposed
a multi-objective imprecise programming for financial port-
folio selection model under fuzzy environment. However,
the mentioned portfolio models have shortcomings. For
instance, they are unable to capture expert’s reliability in the
evaluation information modeling. Therefore, in this study,
two qualitative portfolio models are proposed based on
aggregation operators under linguistic Z-number environ-
ment. On the basis of the mentioned analysis, the lin-
guistic Z-numbers can more credibly and flexibly describe
the knowledge, experience and judgment of experts. More-
over, BM and GBM operators aggregate assessment infor-
mation under linguistic Z-number environment and the
aggregated values are applied to formulate portfolio selec-
tion problem based on the max-score rule and the score-
accuracy trade-off rule. Therefore, the proposed method is
very powerful to manage the investment process by the
incorporation of asset allocation problem and aggregation
operators under linguistic Z-number environment. Thus,
the primary aims of this study are briefly highlighted as
follows:

1. Uncertainty is an inseparable element of financial mar-
kets. Thus, there are different predictions along with
various reliabilities about the future performance of
an asset. Since linguistic Z-numbers are more general
structures to represent the real world information and
incorporate possibilistic and probabilistic constraint,
we apply the concept of linguistic Z-numbers to better
describe and evaluate the future performance of each
asset with respect to different criteria.

2. We develop BM and GBM operators under linguistic
Z-number environment, and introduce LZBM operator
and LZGBM operator. The suggested operators are
very useful tools to analyze linguistic Z-number data,
and they generalize some available operators.

3. We propose a qualitative approach to model cardi-
nality constrained portfolio selection problem based

on LZBM and LZGBM operators under linguistic
Z-number environment, and we use the max-score rule
and the score-accuracy trade-off rule to formulate the
models.

The remainder of this study is structured as follows:
Section 2 includes the necessary prerequisite definitions.
In Section 3, we introduce two aggregation operators under
linguistic Z-number environment and present their properties.
Two new qualitative models are developed in order to select
the optimal assets in a portfolio based on linguistic Z-number
data in Section 4. Section 5 provides the required actual data
as a case study and the obtained results. Finally, conclud-
ing remarks and future work suggestions are presented in
Section 6.

II. PRELIMINARIES
This section covers the definitions, materials and fundamen-
tal operations of linguistic term sets and Z-numbers which are
required in this study.

A. THE LINGUISTIC TERM SETS
Definition 1: Suppose S = {si|i = 0, 1, . . . , 2p} is a

finite set of discrete linguistic terms having odd cardinal-
ity where si shows a possible value of linguistic variable
and p is a nonnegative integer. S possesses the following
features [32], [46]:

I. S is ordered: si < sj if and only if i < j
II. S conforms negation operator: neg (si) = s2p−i.
S is a discrete set of linguistic terms. When information

is aggregated together, the obtained results are not usually
compatible with the elements existing in the language eval-
uation scale. Hence, a continuous set is required to better
analyze real decision making problems. Xu [30], [47]–[49]
presented a continuous linguistic term set S̄ = {si|iε [0, p]}
where p is a adequately large positive integer and si < sj
if i < j. If si belongs to S, then si is named an original
linguistic term, otherwise, si is a virtual linguistic term. Often,
original linguistic terms are employed to assess alternatives
or express expert’s opinions. Virtual linguistic terms are only
obtained from the operations in order to maintain all resulted
information [37], [38], [50].

B. LINGUISTIC SCALE FUNCTIONS
Computation with linguistic terms is placed within the cat-
egory of computing with words. Therefore, to simplify
the computation and define the arithmetic operations under
uncertain linguistic environment, Wang et al. [51] presented
some linguistic scale functions (LSF). LSFs allocate various
semantic values to linguistic terms under variant status in
order to apply data and to represent the semantics more
effectually [51]. As stated by Xu [49], siεS has the strictly
monotonically ascending relationship with its subscript i.
Definition 2: Suppose θi (i = 0, 1, . . . , 2p), which belongs

to the positive real number set, is a numerical value, then the
linguistic scale function f, which is a strictly monotonically
ascending function with respect to label i, is described as
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follows [51]:

f : si→ θi where 0 ≤ θ0 ≤ θ1 ≤ . . . ≤ θ2p

When DMs express their opinions by applying the linguis-
tic terms siεS, the numeric value θi indicates the DM’s pref-
erence. Hence, the function or value denotes the semantics of
the linguistic terms [51].

Some linguistic scale functions, which can be used in the
operations of linguistic Z-numbers, are introduced in the
following [51].

1) f1 (si) is described according to the subscript function
g (si) = i as follows [51]:

f1 (si) = θi =
i
2p
(i = 0, 1, . . . , 2p) and θiε [0, 1]

(1)

2) f2 (si) is described according to the exponential scale as
follows [51]:

f2 (si) = θi =


ap − ap−i

2ap − 2
0 ≤ i ≤ p

ap + ai−p − 2
2ap − 2

p+ 1 ≤ i ≤ 2p

(2)

Two methods are proposed to compute the value of a.
The first one that has been suggested by Bao [50] is an
experimental method. This method states that the value
of a can be placed within the interval of [1.36, 1.4].
The second one is a subjective method. According
to this method, the value of a can be obtained as
ak = mora = k

√
m where k is the scale level and m

shows the importance ratio [50], [51].
3) The improved linguistic scale function (f3 (si)) is

described according to the concept of prospect theory
as follows [3], [52]:

f3 (si) = θi =


pα − (p− i)α

2pα
0 ≤ i ≤ p

pβ + (i− p)β

2pβ
p+ 1 ≤ i ≤ 2p

(3)

where α and β belong to the interval of (0, 1] and
θi =

i
2p when α = β = 1.

The mentioned linguistic scale functions (LSFs) can be
developed as a strictly monotonically ascending and contin-
uous function in order to maintain all the provided data and
simplify the computations. Then, it can easily be stated as
follows [51]:

f ∗ : S̄ → R+ s.t. f ∗ (si) = θi

C. LINGUISTIC Z-NUMBERS AND THEIR OPERATIONS
In this subsection, linguistic Z-numbers (LZNs) are intro-
duced and their arithmetic operations are defined.

D. Z-NUMBERS AND LINGUISTIC Z-NUMBERS
Decisionmaking and selection problems have always been an
inseparable fact in the life of human. Usually, the decisions
are made based on information, knowledge and experiments
of DMs. Naturally, information relevant to real world events
is imperfect, uncertain and ambiguous. Hence, fuzziness
imposing soft restrictions on the values of uncertain variables
is used to describe incomplete information [53]. With incre-
ment of complexity and dynamism of decision space, taking
into account only fussiness is no longer adequate. Therefore,
Zadeh [10] presented the concept of Z-numbers in order to
better investigate uncertain variables. Z-numbers associate
partial reliability as an intrinsic feature of information with
fuzziness.
Definition 3 ([10] Z-Number): A Z-number is formed two

components and is indicated as an ordered pair of fuzzy
numbers, Z =

(
Ã, B̃

)
. The first component, Ã, is a fuzzy

constraint on the valueswhich can be allocated to an uncertain
variable X . The second component, B̃, shows a soft restriction
on themeasure of reliability of Ã. Often Ã and B̃ are expressed
by using linguistic terms.
Definition 4 ([37] Linguistic Z-Numbers): Suppose V is a

universe of discourse and two finite discrete linguistic term
sets representing different preference data are defined as
S =

{
s0, s1, . . . , s2p

}
and S ′ =

{
s′0, s

′

1, . . . , s
′

2q

}
where

p and q are nonnegative integers. Therefore, a Z-number
linguistic set in V is defined as follows:

Z =
{(
v,A∅(v),Bϕ(v)

)
|vεV

}
(4)

where A∅(v) is a fuzzy constraint on the values which can be
assigned to the uncertain variable and Bϕ(v) characterizes a
reliability measure of the first component. A∅(v) and Bϕ(v) are
described by using uncertain linguistic terms.

E. LINGUISTIC Z-NUMBER OPERATIONS
Some operations of linguistic Z-numbers were extended by
Wang et al. [37] with consideration of both components
simultaneously. The proposed operations preserve both the
flexibility of linguistic term sets and the reliability value of
Z-numbers.
Definition 5 [37]: Suppose two linguistic Z-numbers are

defined as zi =
(
A∅(i),Bϕ(i)

)
and zj =

(
A∅(j),Bϕ(j)

)
. f ∗ and

g∗ functions can be chosen among f1 (si), f2 (si) and f3 (si).
Hence, some operations of linguistic Z-numbers are defined
as follows:

neg (zi)

=

(
f ∗−1

(
f ∗
(
A2p

)
− f ∗

(
A∅(i)

))
, g∗−1

(
g∗
(
B2q

)
− g∗

(
Bϕ(i)

)))
(5)

zi + zj

=

(
f ∗−1

(
f ∗
(
A∅(i)

)
+ f ∗

(
A∅(j)

))
,

g∗−1
(
f ∗
(
A∅(i)

)
×g∗

(
Bϕ(i)

)
+f ∗

(
A∅(j)

)
×g∗

(
Bϕ(j)

)
f ∗
(
A∅(i)

)
+f ∗

(
A∅(j)

) ))
(6)
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ρzi

=

(
f ∗−1

(
ρf ∗

(
A∅(i)

))
,Bϕ(i)

)
, ρ ≥ 0 (7)

zi × zj

=

(
f ∗−1

(
f ∗
(
A∅(i)

)
f ∗
(
A∅(j)

))
, g∗−1

(
g∗
(
Bϕ(i)

)
g∗
(
Bϕ(j)

)))
(8)

zρi

=

(
f ∗−1

(
f ∗
(
A∅(i)

)ρ)
, g∗−1

(
g∗
(
Bϕ(i)

)ρ))
, ρ ≥ 0 (9)

Definition 6 [37]: Suppose zi =
(
A∅(i),Bϕ(i)

)
is a linguistic

Z-numbers. Then, the score function of linguistic Z-number
is equal to:

E (zi) = f ∗
(
A∅(i)

)
× g∗

(
Bϕ(i)

)
(10)

The accuracy function of linguistic Z-number is as follows:

D (zi) = f ∗
(
A∅(i)

)
×
(
1− g∗

(
Bϕ(i)

))
(11)

By using the score and accuracy functions, a comparison
technique is defined for two LZNs as follows [37]:

I. If E (zi) > E
(
zj
)
, then zi > zj

II. If E (zi) = E
(
zj
)
, then

If D (zi) > D
(
zj
)
, then zi > zj

If D (zi) = D
(
zj
)
, then zi > zj

III. LINGUISTIC Z-NUMBER AGGREGATION OPERATORS
This section presents two aggregation operators for linguistic
Z-numbers and states their properties.

A. BONFERRONI MEAN (BM) OPERATORS AND
GEOMETRIC BONFERRONI MEAN OPERATORS
Definition 7 ([3] Bonferroni Mean Operators): Suppose

ci (i = 1, . . . ,m) is a set of non-negative real numbers and
r, t ≥ 0. Therefore, the Bonferroni mean (BM) operator is
defined as follows:

BM r,t (c1, c2, . . . , cm) =

 1
m (m− 1)

∑m
i=1
j=1
i6=j

cri c
t
j

 1
r+t

(12)

Definition 8 ([41] Geometric Bonferroni Mean Opera-
tors): Suppose ci (i = 1, . . . ,m) is a set of non-negative real
numbers and r, t ≥ 0. Therefore, the geometric Bonferroni

mean (GBM) operator is defined as follows:

GBM r,t (c1, c2, . . . , cm)=
1

r + t

∏m
i=1
j=1
i 6=j

(
rci + tcj

) 1
m(m−1)

(13)

The Bonferroni mean (BM) and geometric Bonferroni
mean (GBM) operators introduced by Bonferroni [3] and
Zhu et al. [41], respectively, are only proper when the
input parameters are non-negative exact values. Following to
Bonferroni [3] and Zhu et al. [41], some researchers
extended BM and GBM operators under uncertain informa-
tion. For example, Wei et al. [54] developed two aggre-
gation operators called the uncertain linguistic Bonferroni
mean (ULBM) and uncertain linguistic geometric Bonfer-
roni mean (ULGBM) operators under uncertain linguistic
information. Liu and Jin [55] presented some BM operators
based on trapezoid fuzzy linguistic variables. Liu et al. [56]
developed some partitioned Bonferroni mean operators for
intuitionistic fuzzy numbers. In the following subsections,
we develop the BM and GBM operators under linguistic
Z-numbers environment.

B. LINGUISTIC Z-NUMBER BONFERRONI MEAN (LZBM)
OPERATORS
Definition 9: Suppose Z=

{
zi=

(
A∅(i),Bϕ(i)

)
|i=1, . . . ,m

}
is a set of LZNs and r, t ≥ 0, then the LZBM operator can be
defined as follows:

LZBM r,t (z1, z2, . . . , zm) =

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

zri z
t
j

 1
r+t

(14)

Based on the operations of linguistic Z-numbers repre-
sented in Definition 5, we can get the following result.
Theorem 1: Suppose zi =

(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m) is a

set of LZNs. Then the aggregated value acquired according to
LZBM operator is also a LZN and it is computed as follows
(15), shown at the bottom of this page.

Proof: According to Definition 5, the aggregated value
is also a LZN. Now, by using the mathematical induction
method, Eq. (15) will easily be proven in the following.

At first, assume m = 2 and z1 =
(
A∅(1),Bϕ(1)

)
and

z2 =
(
A∅(2),Bϕ(2)

)
. Hence, according to Definition 5,

LZBM r,t (z1, z2, . . . , zm) =

f ∗−1

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)
 1

r+t
,

g∗−1



∑m

i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)× (g∗ (Bϕ(i))r g∗ (Bϕ(j))t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)


1
r+t


 (15)
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zr1, as shown at the bottom of this page. Then, LZBM r,t (z1, z2),
as shown at the bottom of this page.

It is obvious that Theorem 1 is true for the case of
m = 2. Now, it is assumed that this theorem is true form = k ,
therefore, we have LZBM r,t (z1, z2, . . . , zk), as shown at the
bottom of this page.

Finally, for the case of m = k + 1, we can acquire the
following expression LZBM r,t (z1, z2, . . . , zk+1), as shown at
the bottom of this page.

Since this theorem is true for the case ofm = k , it will also
be true for the case of m = k + 1. Consequently, according
to the mathematical induction, Eq. (15) is true for all m.

zr1

=

(
f ∗−1

((
f ∗
(
A∅(1)

))r )
, g∗−1

((
g∗
(
Bϕ(1)

))r ))
zt2

=

(
f ∗−1

((
f ∗
(
A∅(2)

))t)
, g∗−1

((
g∗
(
Bϕ(2)

))t))
zr1 × z

t
2

=

(
f ∗−1

((
f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
, g∗−1

((
g∗
(
Bϕ(1)

))r
×
(
g∗
(
Bϕ(2)

))t))
zr2 × z

t
1

=

(
f ∗−1

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t)
, g∗−1

((
g∗
(
Bϕ(2)

))r
×
(
g∗
(
Bϕ(1)

))t))(
zr1 × z

t
2
)
+
(
zr2 × z

t
1
)

=

(
f ∗−1

(((
f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t))
,

g∗−1


(((

f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
×

((
g∗
(
Bϕ(1)

))r
×
(
g∗
(
Bϕ(2)

))t))
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t
×

((
g∗
(
Bϕ(2)

))r
×
(
g∗
(
Bϕ(1)

))t))((
f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t)


1
m (m− 1)

((
zr1 × z

t
2
)
+
(
zr2 × z

t
1
))

=


f ∗−1

(
1

m(m−1)

(((
f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t)))
,

g∗−1
( (((

f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
×

((
g∗
(
Bϕ(1)

))r
×
(
g∗
(
Bϕ(2)

))t))
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t
×

((
g∗
(
Bϕ(2)

))r
×
(
g∗
(
Bϕ(1)

))t))((
f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t)
)

LZBM r,t (z1, z2) =


f ∗−1

((
1

m(m−1)

(((
f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t))) 1
r+t

)
,

g∗−1

(
(((

f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
×

((
g∗
(
Bϕ(1)

))r
×
(
g∗
(
Bϕ(2)

))t))
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t
×

((
g∗
(
Bϕ(2)

))r
×
(
g∗
(
Bϕ(1)

))t))((
f ∗
(
A∅(1)

))r
×
(
f ∗
(
A∅(2)

))t)
+

((
f ∗
(
A∅(2)

))r
×
(
f ∗
(
A∅(1)

))t)
) 1
r+t





LZBM r,t (z1, z2, . . . , zk) =

f ∗−1

 1
m (m− 1)

∑k
i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

))r
×
(
f ∗
(
A∅(j)

))t) 1
r+t
,

g∗−1



∑k

i=1
j=1
i 6=j

(((
f ∗
(
A∅(i)

))r
×
(
f ∗
(
A∅(j)

))t)
×

((
g∗
(
Bϕ(i)

))r
×
(
g∗
(
Bϕ(j)

))t))
∑k

i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

))r
×
(
f ∗
(
A∅(j)

))t)


1
r+t




LZBM r,t (z1, z2, . . . , zk+1) =

f ∗−1

 1
m (m− 1)

∑k+1
i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

))r
×
(
f ∗
(
A∅(j)

))t) 1
r+t
,

g∗−1




∑k+1

i=1
j=1
i 6=j

(((
f ∗
(
A∅(i)

))r
×
(
f ∗
(
A∅(j)

))t)
×

((
g∗
(
Bϕ(i)

))r
×
(
g∗
(
Bϕ(j)

))t))
∑k

i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

))r
×
(
f ∗
(
A∅(j)

))t)


1
r+t




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It can easily be proven that the LZBM operator has the
following properties.
Theorem 2 (Idempotency): Suppose zi =

(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m) is a collection of linguistic Z-numbers. If all
zi are equal, i.e. zi =

(
A∅(i),Bϕ(i)

)
= z̄ =

(
A∅,Bϕ

)
for all i,

then

LZBMr,t (z1, z2, . . . , zm) = z̄

Proof:LZBMr,t (z1, z2, . . . , zm), as shown at the bottom
of this page.
Theorem 3 (Boundedness): Suppose zi =

(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m) is a collection of linguistic Z-numbers, and let

z− = min
i
zi =

(
Az− ,Bz−

)
=

(
min
i

(
A∅(i)

)
,min

i

(
Bϕ(i)

))
z+ = max

i
zi =

(
Az+ ,Bz+

)
=

(
max
i

(
A∅(i)

)
,max

i

(
Bϕ(i)

))
Then

z− ≤ LZBMr,t (z1, z2, . . . , zm) ≤ z+

Proof: Let LZBMr,t (z1, z2, . . . , zm) = zT =(
A∅(T ),Bϕ(T )

)
, since Az− ≤ A∅(i) and Bz− ≤ Bϕ(i). Thus,

f ∗
(
Az−

)
≤ f ∗

(
A∅(i)

)
and g∗

(
Bz−

)
≤ g∗

(
Bϕ(i)

)
and z− < zi.

Then, we have:

E
(
z−
)
= f ∗

(
Az−

)
× g∗

(
Bz−

)
≤ E (zT )

= f ∗
(
A∅(T )

)
× g∗

(
Bϕ(T )

)
where zT , as shown at the bottom of the this page.
Therefore, z− ≤ LZBMr,t (z1, z2, . . . , zm) can be

obtained based on the comparison method of linguis-
tic Z-numbers presented in Definition 6. Similarly,
LZBMr,t (z1, z2, . . . , zm) ≤ z+ can also be obtained. Thus,
z− ≤ LZBMr,t (z1, z2, . . . , zm) ≤ z+.
Theorem 4 (Monotonicity): Suppose zi =

(
A∅(i),Bϕ(i)

)
and

z′i =
(
A′
∅(i),B

′

ϕ(i)

)
(i = 1, . . . ,m) are two sets of LZNs. If ∀i :

zi ≤ z′i, then

LZBMr,t (z1, z2, . . . , zm) ≤ LZBMr,t (z′1, z′2, . . . , z′m).
Proof: Since zi ≤ z′i, according to Definition 5, it can be

resulted that A∅(i) ≤ A′
∅(i) and Bϕ(i) ≤ B′ϕ(i), for all i. There-

fore, f ∗
(
A∅(i)

)
≤ f ∗

(
A′
∅(i)

)
and g∗

(
Bϕ(i)

)
≤ g∗

(
B′ϕ(i)

)
.

Consequently, we have LZBMr,t (z1, z2, . . . , zm), as shown
at the bottom of the next page.

LZBMr,t (z1, z2, . . . , zm) = LZBMr,t (z̄, z̄, . . . , z̄)

=

f ∗−1

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗ (A∅)r f ∗ (A∅)t

) 1
r+t
,

g∗−1



∑m

i=1
j=1
i 6=j

((
f ∗ (A∅)r f ∗ (A∅)t

)
×

(
g∗
(
Bϕ
)r g∗ (Bϕ)t))

∑m
i=1
j=1
i 6=j

(
f ∗ (A∅)r f ∗ (A∅)t

)


1
r+t




=

f ∗−1 (((f ∗ (A∅)r f ∗ (A∅)t)) 1
r+t

)
, g∗−1


(f ∗ (A∅)r f ∗ (A∅)t)×

(
g∗
(
Bϕ
)r g∗ (Bϕ)t)

f ∗ (A∅)r f ∗ (A∅)t


1
r+t




=

(
f ∗−1

(
f ∗ (A∅)

)
, g∗−1

(
g∗
(
Bϕ
)))
=
(
A∅,Bϕ

)
= z̄

zT =
(
A∅(T ),Bϕ(T )

)
=

f ∗−1

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)
 1

r+t
,

g∗−1



∑m

i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)× (g∗ (Bϕ(i))r g∗ (Bϕ(j))t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)


1
r+t



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Theorem 5 (Commutativity): Suppose zi =
(
A∅(i),Bϕ(i)

)
and z′i =

(
A′
∅(i),B

′

ϕ(i)

)
(i = 1, . . . ,m) are two sets of LZNs,

where z′i =
(
A′
∅(i),B

′

ϕ(i)

)
(i = 1, . . . ,m) is any permutation

of zi =
(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m), then

LZBMr,t (z1, z2, . . . , zm) = LZBMr,t (z′1, z′2, . . . , z′m).
Proof: Let z′i =

(
A′
∅(i),B

′

ϕ(i)

)
, then

LZBMr,t (z′1, z′2, . . . , z′m), as shown at the bottom of this
page.

Since z′i =
(
A′
∅(i),B

′

ϕ(i)

)
(i = 1, . . . ,m) is any permutation

of zi =
(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m), then by Eq. 15, we have

LZBMr,t (z′1, z′2, . . . , z′m), as shown at the bottom of the next
page.

Now some special cases of the LZBM operator are dis-
cussed with respect to the parameters r and t .

Case 1: If t → 0, then the LZBM operator is reduced to
the linguistic Z-number generalized mean (LZGM) operator.
lim
t→0

LZBMr,t (z1, z2, . . . , zm), as shown at the bottom of the
next page.
Case 2: If r →2 and t → 0, then the LZBM operator

is reduced to the linguistic Z-number square mean (LZSM)
operator.

LZBM2,0 (z1, z2, . . . , zm) =
(
1
m

∑m

i=1
z2i

) 1
2

= LZSM (z1, z2, . . . , zm)

Case 3: If r → 1 and t → 0, then the LZBM oper-
ator is reduced to the linguistic Z-number mean (LZM)
operator.

LZBM1,0 (z1, z2, . . . , zm) =
1
m

∑m

i=1
zi

= LZM (z1, z2, . . . , zm)

LZBMr,t (z1, z2, . . . , zm)

=

f ∗−1

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)
 1

r+t
,

g∗−1



∑m

i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)× (g∗ (Bϕ(i))r g∗ (Bϕ(j))t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)


1
r+t



≤

f ∗−1

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t) 1
r+t
,

g∗−1




∑m

i=1
j=1
i 6=j

((
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t)
×

(
g∗
(
B′ϕ(i)

)r
g∗
(
B′ϕ(j)

)t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t)


1
r+t



= LZBMr,t (z′1, z′2, . . . , z′m)

LZBMr,t (z′1, z′2, . . . , z′m) =
f ∗−1


 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t) 1
r+t
,

g∗−1




∑m

i=1
j=1
i 6=j

((
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t)
×

(
g∗
(
B′ϕ(i)

)r
g∗
(
B′ϕ(j)

)t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t)


1
r+t



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Case 4: If r →1 and t → 1, then the LZBM operator is
reduced to the linguistic Z-number interrelated square mean
(LZISM) operator.

LZBM1,1 (z1, z2, . . . , zm) =

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

zizj

 1
2

= LZISM (z1, z2, . . . , zm)

C. LINGUISTIC Z-NUMBER GEOMETRIC BONFERRONI
MEAN (LZGBM) OPERATORS
Definition 10:SupposeZ=

{
zi=

(
A∅(i),Bϕ(i)

)
|i=1, . . . ,m

}
is a set of LZNs and r, t ≥ 0, then the LZGBM operator can
be defined as follows:

LZGBM r,t (z1, z2, . . . , zm)

=
1

r + t

(∏m
i=1j=1
i 6=j

(
rzi + tzj

)) 1
m(m−1)

(16)

LZBMr,t (z′1, z′2, . . . , z′m) =
f ∗−1


 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t) 1
r+t
,

g∗−1




∑m

i=1
j=1
i 6=j

((
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t)
×

(
g∗
(
B′ϕ(i)

)r
g∗
(
B′ϕ(j)

)t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A′
∅(i)

)r
f ∗
(
A′
∅(j)

)t)


1
r+t



=

f ∗−1

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)
 1

r+t
,

g∗−1



∑m

i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)× (g∗ (Bϕ(i))r g∗ (Bϕ(j))t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)


1
r+t



= LZBMr,t (z1, z2, . . . , zm).

lim
t→0

LZBMr,t (z1, z2, . . . , zm) = lim
t→0

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

zri z
t
j


1
r+t

= lim
t→0

f ∗−1

 1
m (m− 1)

∑m
i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)


1
r+t
,

g∗−1




∑m

i=1
j=1
i 6=j

((
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)× (g∗ (Bϕ(i))r g∗ (Bϕ(j))t))
∑m

i=1
j=1
i 6=j

(
f ∗
(
A∅(i)

)r f ∗ (A∅(j))t)


1
r+t



=

(
f ∗−1

((
1
m

∑m

i=1

(
f ∗
(
A∅(i)

)r)) 1
r
)
,

g∗−1

(∑m
i=1

((
f ∗
(
A∅(i)

)r)
×
(
g∗
(
Bϕ(i)

)r))∑m
i=1

(
f ∗
(
A∅(i)

)r)
) 1

r


=

(
1
m

∑m

i=1
zri

) 1
r

= LZGM r,0 (z1, z2, . . . , zm)
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Based on the operations of linguistic Z-numbers repre-
sented in Definition 5, we can get the following result.
Theorem 6: Suppose zi =

(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m) is a

set of LZNs. Then the aggregated value acquired according to
LZGBM operator is also a LZN and it is computed as follows
(17), as shown at the bottom of this page.

Similarly, Theorem 1 can easily be proven by using the
mathematical induction method.

It can easily be proven that the LZBM operator has the
following properties.
Theorem 7 (Idempotency): Suppose zi =

(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m) is a collection of linguistic Z-numbers. If all
zi are equal, i.e. zi =

(
A∅(i),Bϕ(i)

)
= z̄ =

(
A∅,Bϕ

)
for all i,

then

LZGBMr,t (z1, z2, . . . , zm) = z̄

Theorem 8 (Boundedness): Suppose zi =
(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m) is a collection of linguistic Z-numbers, and let

z− = min
i
zi =

(
Az− ,Bz−

)
=

(
min
i

(
A∅(i)

)
,min

i

(
Bϕ(i)

))
z+ = max

i
zi =

(
Az+ ,Bz+

)
=

(
max
i

(
A∅(i)

)
,max

i

(
Bϕ(i)

))
Then

z− ≤ LZGBMr,t (z1, z2, . . . , zm) ≤ z+

Theorem 9 (Monotonicity): Suppose zi =
(
A∅(i),Bϕ(i)

)
and

z′i =
(
A′
∅(i),B

′

ϕ(i)

)
(i = 1, . . . ,m) are two sets of LZNs. If ∀i :

zi ≤ z′i, then

LZGBMr,t (z1, z2, . . . , zm) ≤ LZGBMr,t (z′1, z′2, . . . , z′m).
Theorem 10 (Commutativity): Suppose zi =

(
A∅(i),Bϕ(i)

)
and z′i =

(
A′
∅(i),B

′

ϕ(i)

)
(i = 1, . . . ,m) are two sets of LZNs,

where z′i =
(
A′
∅(i),B

′

ϕ(i)

)
(i = 1, . . . ,m) is any permutation

of zi =
(
A∅(i),Bϕ(i)

)
(i = 1, . . . ,m), then

LZGBMr,t (z1, z2, . . . , zm) = LZGBMr,t (z′1, z′2, . . . , z′m).
Now some special cases of the LZGBM operator are dis-

cussed with respect to the parameters r and t .
Case 1: If t → 0, then the LZGBM operator is

reduced to the linguistic Z-number generalized geometric
mean (LZGGM) operator. lim

t→0
LZGBMr,t (z1, z2, . . . , zm), as

shown at the bottom of this page.
Case 2: If r →2 and t → 0, then the LZGBM operator

is reduced to the linguistic Z-number square geometric mean
(LZSGM) operator.

LZGBM2,0 (z1, z2, . . . , zm) =
1
2

(∏m

i=1
(2zi)

) 1
m

= LZSGM (z1, z2, . . . , zm)

LZGBM r,t (z1, z2, . . . , zm) =

f ∗−1
 1
r + t


∏m

i=1
j=1
i 6=j

(
rf ∗

(
A∅(i)

)
+ tf ∗

(
A∅(j)

)) 1
m(m−1)


,

g∗−1


∏m

i=1
j=1
i 6=j

((
rf ∗

(
A∅(i)

)
× g∗

(
Bϕ(i)

))
+
(
tf ∗
(
A∅(j)

)
× g∗

(
Bϕ(j)

))
rf ∗

(
A∅(i)

)
+ tf ∗

(
A∅(j)

) ) 1
m(m−1)


 (17)

lim
t→0

LZGBMr,t (z1, z2, . . . , zm) =

 1
r + t

∏m
i=1
j=1
i6=j

(
rzi + tzj

) 1
m(m−1)


= lim

t→0

f ∗−1
 1
r + t


∏m

i=1
j=1
i 6=j

(
rf ∗

(
A∅(i)

)
+ tf ∗

(
A∅(j)

)) 1
m(m−1)


,

g∗−1


∏m

i=1
j=1
i 6=j

((
rf ∗

(
A∅(i)

)
× g∗

(
Bϕ(i)

))
+
(
tf ∗
(
A∅(j)

)
× g∗

(
Bϕ(j)

))
rf ∗

(
A∅(i)

)
+ tf ∗

(
A∅(j)

) ) 1
m(m−1)




=

f ∗−1 (1
r

((∏m

i=1

(
rf ∗

(
A∅(i)

))) 1
m
))

, g∗−1

(∏m

i=1

((
rf ∗

(
A∅(i)

)
× g∗

(
Bϕ(i)

))
rf ∗

(
A∅(i)

) )) 1
m


=
1
r

(∏m

i=1
(rzi)

) 1
m
= LZGGM r,0 (z1, z2, . . . , zm)
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Case 3: If r →1 and t → 0, then the LZGBM operator is
reduced to the linguistic Z-number geometric mean (LZGM)
operator.

LZGBM1,0 (z1, z2, . . . , zm) =
(∏m

i=1
(zi)
) 1
m

= LZGM (z1, z2, . . . , zm)

Case 4: If r →1 and t → 1, then the LZGBM operator
is reduced to the linguistic Z-number interrelated square geo-
metric mean (LZISGM) operator.

LZGBM1,1 (z1, z2, . . . , zm) =
1
2

∏m
i=1
j=1
i 6=j

(zi + zj)

 1
m(m−1)

= LZISGM (z1, z2, . . . , zm)

IV. THE PORTFOLIO SELECTION PROBLEMS BASED ON
THE PROPOSED AGGREGATION OPERATORS UNDER
LINGUISTIC Z-NUMBER ENVIRONMENT
In this section, a qualitative framework is proposed to
construct the portfolios based on the proposed aggregation
operators under linguistic Z-number environment. Expert’s
knowledge and opinions are themost important source of data
to evaluate the performance of assets that can be applied to
describe uncertainty and reliability of information, simultane-
ously. The proposed aggregation operators are powerful tools
to incorporate expert’s opinions under linguistic Z-number
environment. Figure 1 shows a total schematic of the pro-
posed method.

FIGURE 1. Typical flowchart for the portfolio selection based on the
linguistic Z-number aggregation operators.

Therefore, let us investigate n risky assets with uncertain
rate of return R̃i (i = 1, . . . , n). Suppose li (≥ 0) is the min-
imum fraction of total capital which can be invested in the
ith asset and ui (0 ≤ li ≤ ui) is the maximum fraction of total
investment which can be assigned to the ith asset. Let xi is
the weight of the ith asset in the portfolio and yi is a binary
variable which is equal to one when the corresponding asset is
allocated to portfolio, otherwise it is zero. Hence, the standard

form of portfolio selectionmodel is presented as follows [57]:

Model 1 :

Max
∑n

i=1
R̃ixi (18)

S.t.
∑n

i=1

∑n

k=1
Cov(Ri,Rk )xixk ≤ σ 2

g (19)∑n

i=1
xi = 1 (20)∑n

i=1
yi = h (21)

liyi ≤ xi ≤ uiyi, i = 1, . . . , n (22)

yi ∈ {0, 1}, i = 1, . . . , n (23)

xi ≥ 0, i = 1, . . . , n (24)

where Cov(Ri,Rk ) is the covariance between returns of the
ith and k th assets. Constraint (20) is the budget constraint.
Constraint (21) called cardinality constraint guarantees that
the portfolio is confined to preserve a predetermined number
of assets such as h. Eventually, constraint (24) shows the
prohibition of short selling.

A. THE PROPOSED QUALITATIVE APPROACH FOR
CARDINALITY CONSTRAINED PORTFOLIO SELECTION
PROBLEM UNDER LINGUISTIC Z-NUMBER ENVIRONMENT
In this subsection, two scenarios are considered to model the
portfolio selection problem under the linguistic Z-number
environment. In the first scenario, which is proper for the
general investors, a qualitative portfolio model is proposed
based on the max-score rule. In the second scenario, which
can be used by the risky investors, a qualitative model is
developed based on score-accuracy trade-off rule.

Suppose an investor or a fund manager is interested
in investing on n risky assets {y1, y2, . . . , yn}. He/she
selects the asset based on m criteria {c1, c2, . . . , cm}.
To make more credible decisions, they use experts’ opin-
ions. Thus, experts evaluate the performance of each asset
with respect to different criteria. The evaluation informa-
tion is represented by the linguistic Z-numbers as Zij =(
Aij
∅(α),B

ij
ϕ(α)

)
(i = 1, . . . , n; j = 1, . . . ,m)where Aij

∅(α) ∈ S

is a fuzzy constraint on the values that experts devote to the ith

asset with respect to the jth criterion, and Bij
ϕ(α) ∈ S′ is a relia-

bility measure of the first component. In other words, experts
apply a linguistic term selected the set of S =

{
s0, . . . , s2p

}
to express their assessments about the performance of each
asset and then use a linguistic term from the set of S′ ={
s′0, . . . , s

′

2q

}
to describe their reliability in the assessments.

This qualitative data can be indicated as a decision matrix
with linguistic Z-number elements as Z =

[
zij
]
n×m.

In this step, the aggregation techniques described in
Section 3 are applied to combine the linguistic Z-number
information, and the comprehensive assessment values
vi =

(
Avi
∅(i),B

vi
ϕ(i)

)
(i = 1, . . . , n) are calculated for each

asset. Therefore, the decision matrix Z =
[
zij
]
n×m is con-

verted into a column vectorV = [vi]n×1. The aggregated
values vi can be obtained based on the proposed aggregation
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operators as follows:

vi = LZBM (zi1, . . . , zim)

Or vi = LZGBM (zi1, . . . , zim)

Now, the score and accuracy values of the aggregated
results are obtained, respectively, as follows:

E (vi) = f ∗
(
Avi
∅(i)

)
× g∗

(
Bviϕ(i)

)
D (vi) = f ∗

(
Avi
∅(i)

)
×

(
1− g∗

(
Bviϕ(i)

))
According to Definition 6, the score function shows the

grade of adaptability to which the asset i satisfies the
investor’s requirement. The greater the score value, the more
adaptability the asset i satisfies the investor’s requirement.
Also, according to Definition 6, the accuracy function eval-
uates the grade of accuracy of linguistic Z-numbers. Thus,
the greater the accuracy value, the more grade of accuracy
of linguistic Z-number. Since the relationship among the
score and accuracy functions is equivalent to the relationship
among the mean and variance of quantitative information
under deterministic environment [58], we can apply the score
and accuracy values to evaluate the expected return and risk of
portfolio under the linguistic Z-number environment. In the
following, similar to the traditional asset allocation models,
two qualitative portfolio selection models are proposed to
assign the optimal assets and obtain the optimal investment
ratios.

Based on Definition 6, the best alternatives are selected
according to higher score value [37]. Therefore, the first
scenario is formulated by using the max-score rule to obtain
the optimal portfolio as follows:

Model 2 : Max
∑n

i=1

((
f ∗i
(
AVi
∅(i)

)
× g∗i

(
BViϕ(i)

))
xi
)

s.t. Constraints (20) – (24)

It should be noted that Model 2 is appropriate for general
investors who only seek to maximize expected return. Since
the linguistic Z-number sets cannot be discerned when they
have the equal score values, the accuracy values are used
to compare these alternatives such that the best alternative
has the highest accuracy value [37]. Therefore, by using this
issue, the second scenario is modeled based on a trade-off
between the score and accuracy values. Model 3 is proper for
the risky investors who want to attain the maximum expected
return along with the desirable level of risk. Finally, this
qualitative model is proposed based on the score-accuracy
trade-off rule to allocate the optimal assets as follows:

Model 3 :

Max
∑n

i=1

((
f ∗i
(
AVi
∅(i)

)
× g∗i

(
BViϕ(i)

))
xi
)

s.t.
∑n

i=1

((
f ∗i
(
AVi
∅(i)

)
×

(
1− g∗i

(
BViϕ(i)

)))
xi
)
≥ γ

Constraints (20) - (24).

where γ ∈
[
0,max1≤i≤naccuracy value

]
is considered as

investor’s preference for a minimum admissible risk level of
the portfolio. The following cases may occur:

1- if γ > max1≤i≤naccuracy value, then, no feasible
solution can be detected.

2- if γ = max1≤i≤naccuracy value, then, only some of
assets having the maximum accuracy value can be
selected.

3- if 0 ≤ γ < max1≤i≤n accuracy value, then, the higher
the γ -value is the higher the effect of admissible risk
level in the portfolio selection. The lower the γ -value
is the lower the effect of admissible risk level in the
portfolio selection.

The proposed models are mixed integer linear convex opti-
mization problems. The linearity structure of these models
maintains a very significant feature that every local optimal
point is also a global optimal point. This feature guarantees
that the obtained solutions by the proposed models are opti-
mal. However, computational complexity of mixed integer
linear optimization problems is associated with the number of
binary and integer variables [59]. Speranza [59] indicated that
finding the proper solutions for portfolio selection models
(as a MILP model) in a rational time is impossible when
the number of assets is greater than 15. In the following,
Mansini and Speranza [60] proved that solving portfolio
selection model with round lots is NP-hard. In the litera-
ture, some authors such as Mashayekhi and Omrani [57] and
Li and Xu [43] developed genetic algorithm to look for more
suitable solutions in cardinality constrained portfolio models.
Therefore, in this study, genetic algorithm (GA) is applied in
order to achieve high quality solutions.

V. CASE STUDY AND COMPUTATIONAL RESULTS
To illustrate the validation of the proposed qualitative
approach, the proposed models (Model 2 and Model 3) are
applied in a real case. Tehran Stock Exchange (TSE) Market
in Iran is considered as the resource of information. The
necessary data is available through the site of Tehran stock
exchange market.1 TSE is Iran’s largest stock exchange,
which first opened in 1967. In May 2012, TSE listed
339 companies with a combined market capitalization of
US$104.21 billion. There are 37 industries such as the auto-
motive, telecommunications, petrochemical, mining, steel
iron, copper, banking, and financial mediation at the stock
market in TSE. At the end of each season, the department of
information of the Tehran stock exchange market reveals the
name of 50 best corporations. These corporations are selected
by certain criteria. We choose 20 firms (y1, . . . , y20) with
the best performance in the latest financial statement from
20 January 2019 to 20 November 2019 to validate the pro-
posed qualitative approach. Then, based on the fundamental
analysis, one expert expressed her/his qualitative opinions
about the future performance of each asset with respect to
the mentioned criteria by using linguistic terms.

As discussed above, the investment decisions are gen-
erally made based on the assessments and opinions of
experts. Obtaining exact quantitative information about the

1www.TSE.ir
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TABLE 1. The performance of each asset with respect to criteria which is
described by using LZNs.

performance of each asset with respect to different criteria
is often difficult and sometimes impossible because there
are some uncertain and unpredictable factors such as polit-
ical and economic tensions, which can influence the wor-
thiness of securities. In addition, because there are some
newly added firms to Tehran Stock Exchange Market in Iran,
the quantitative financial information about them are not
adequately accessible. Hence, investors cannot completely
obtain the financial information about these firms. In this
situation, the proposed qualitative approaches, which have
been extended under linguistic Z-number environment, are
more suitable in order to select the optimal portfolio and
obtain the optimal investment ratios. Consequently, the port-
folio selection approach proposed in the previous sections is
used in this case study.

Generally, investors or fund managers use different cri-
teria to assess the available assets (y1, . . . , y20). Thus, it is
assumed that they want to utilize three following crite-
ria to evaluate the performance of each asset: the prof-
itability of investment c1, the reputation of corporation
c2 and liquidity c3. Then, experts evaluate the perfor-
mance of each asset with respect to these three criteria
and express their opinions in the form of linguistic terms.
All the assessment information is represented by the lin-
guistic Z-numbers as Zij (i = 1, . . . , 20; j = 1, 2, 3). For this
aim, expert applies a linguistic term from the set of
S = {s0, s1, s2, s3, s4, s5, s6, s7, s8} ={very very low, very
low, low, almost medium, medium, almost high, high, very
high, perfect} to express his/her assessment about each
asset and then he/she uses a linguistic term from the set of
S′ =

{
s′0, s

′

1, s
′

2, s
′

3, s
′

4

}
= {seldom, occasionally, frequently,

regularly, usually} to represent his/her reliability in the
assessments. Consequently, the Z-number linguistic matrix
Z =

[
zij
]
20×3 is constructed, which is shown in Table 1.

Step 1: The comprehensive values for each asset
are calculated by using LZBM and LZGBM operators
(for r = t = 0.5) and the Z-number linguistic matrix

TABLE 2. The aggregated results based on the proposed operators for
f ∗

(
θi

)
= f1

(
θi

)
and g∗

(
θi

)
= f1

(
θi

)
.

TABLE 3. The score and accuracy values of aggregated results.

Z =
[
zij
]
20×3 is transformed into the column vector of

aggregated values V = [vi]20×1. The aggregated results,
which are calculated based on the proposed operators, are
listed in Table 2. Then, according to Definition 6, the score
and accuracy values of each asset are obtained, and their
results are reported in Table 3.
Step 2:The qualitative portfolio selection approach is mod-

eled based on Model 2 and Model 3 for general investors and
risky investors, respectively.
Step 3: The models resulted based on two proposed opera-

tors are solved by GA. The input parameters of the proposed
models are as follows: h = 6, li = 0.05 and ui = 0.6.
The parameters of genetic algorithm are adjusted by apply-
ing Taguchi experimental design method [61]. The Taguchi
toolbox in Minitab software is employed to tune parameters.
The adjusted parameters of GA are as follows: POPsize : 150;
crossover rate: 0.75; mutation rate: 0.2; maximum iteration:
400. GA is run 10 times for each case in MATLAB R2014a
on a PC with Pentium(R) Dual core-CPU 2.0 GHz Processor
and 2 GB of RAM memory.

The selected assets and their investment ratios along with
the performance of the selected portfolios resulted by using
Model 2 and Model 3 are indicated in Tables 4 and 5,
respectively. Moreover, Figures 2 and 3 show the investment
ratios of the selected assets based on Model 2 and Model 3,
respectively.

As mentioned above, three criteria (the profitability
of investment c1, the reputation of corporation c2 and
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TABLE 4. The selected portfolios obtained by using Model 2.

TABLE 5. The selected portfolios obtained by using Model 3 for γ = 0.3.

FIGURE 2. The investment ratios of the selected assets which are
obtained by Model 2.

FIGURE 3. The investment ratios of the selected assets which are
obtained by Model 3 for γ = 0.3.

liquidity c3) have been considered in order to evaluate the
assets and allocate the appropriate securities by using the pro-
posed qualitative approach. Here, the computational results,
which are obtained by Model 2 and Model 3, are separately
discussed as follows:
Portfolio Selection Using Model 2: As shown in Figure 2,

f ∗ (θi) = f1 (θi) and g∗ (θi) = f1 (θi) are applied to deal
with linguistic Z-number information, and the optimal assets
devote to portfolio using Model 2 under the proposed opera-
tors. Therefore, if LZBM and LZGBM operators are used to
calculate the comprehensive values of assets, then the perfor-
mance of assets 4 and 10 become better than the remaining
assets. As clear in Table 4, some assets such as 1, 11 and 17,

which are selected by Model 2 under the proposed operators,
have lower values of profitability, reputation and liquidity in
comparison with the assets 15 and 20, but their reliability
measures are high. This issue reflects the influence of reli-
ability measures in the evaluation information modeling.

Moreover, since two components of linguistic Z-numbers
demonstrate experts’ opinions and assessments about the per-
formance of each asset, different LSFs can be used to describe
them. Various LSFs can be devoted to the first component in
order to represent experts’ opinions and evaluations. Also,
different LSFs can be allocated to the second component
to characterize the confidence level related to information.
Therefore, investors or decision-makers can effectively and
flexibly select different LSFs according to their priorities in
order to achieve more accurate results. Moreover, it can be
noted that the main core of portfolio optimization problem is
diversification. Therefore, this study applies the cardinality
constraint to handle the portfolio diversification. Using cardi-
nality constraint, investors can determine the number of assets
(h) that they can manage in their portfolio. Furthermore,
the maximal and minimal portions (ui and li) of the total
budget, which can be invested in each asset, help investors
to assign the capital according to their preferences. Also,
the lower bound constraint prevents a great number of very
slight investment and upper bound constraint guarantees the
diversification portfolio. Consequently, if the diversification
resulted byModel 2 does not satisfy investor, more diversified
portfolios can be constructed by changing h, liand ui.
Portfolio Selection Using Model 3: As it can be seen

in Figure 3, the performance of some assets such as 4, 10, 13,
15 and 20 becomes better than other assets when LZBM and
LZGBMoperators are used to calculate the aggregated values
of assets. Moreover, it is clear in Figure 3 that Model 3 can
select the optimal portfolio based on a trade-off between the
score value and the accuracy value.

A. SENSITIVITY ANALYSIS
In this subsection, the results of sensitivity analysis are dis-
cussed under two situations:

1- The effects of the critical parameters t and r on the port-
folio selection problem based on LZBM and LZGBM
operators.

2- The influences of alterations of the desirable risk level
of the portfolio (γ ) in Model 3.

B. THE INFLUENCE OF PARAMETERS t AND r ON THE
PORTFOLIO SELECTION PROBLEM BASED ON LZBM AND
LZGBM OPERATORS
To analyze the effect of variation of input parameters t and
r in LZBM and LZGBM operators, the various values of
parameters t and r are used to investigate the obtained results
of portfolio selection.

First, the role of parameters t and r is analyzed on LZBM
operator. As seen in Table 6, we find that the selected assets
based on Model 2 using LZMB operator with various val-
ues of t and r are slightly different, but their investment
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TABLE 6. Portfolio selection for different values of parameters t and r
based on LZBM in Model 2.

ratios are different. It is clear that both selected assets and
their investment ratios have been diversified when the values
of parameters t and r are changed. Also, the score value
of alternatives (assets) becomes greater when the values of
parameters t and r are increased. Here, there is a remarkable
point that with increase of the values of parameters t and r ,
the assets with high score value are selected. For example,
if t = 0.5 and r = 0.5, the score values of some assets such as
4, 10 and 11 are equal to 0.79, 0.785, and 0.539, respectively.
Now, if t = 100 and r = 100, the assets 4, 10 and 11 with the
score values 0.808, 0.87 and 0.558 are assigned to the optimal
portfolio. On the basis of these discussions, the parameters
t and r can reflect the preferences of investors or DMs.
In the practical applications, the pessimistic or circumspect
investors can devote higher values to the parameters t and
r . Therefore, every investor or fund manager can choose the
proper values of the parameters t and r according to their
preferences.

Figure 4 shows the sensitivity of the portfolio performance
with respect to the parameters t and r . It is obvious that the
portfolio performance becomes greater when the values of
parameters t and r are increased.

FIGURE 4. The sensitivity of the portfolio performance with respect to the
parameters t and r in Model 2 based on LZBM operator.

Now, the effect of the parameters t and r is investigated to
choose portfolio based on Model 2 under LZGBM operator.
Table 7 shows the results of sensitivity analysis. Similar to the
obtained results for LZBM operator, we find that the assets

TABLE 7. Portfolio selection for different values of parameters t and r
based on LZGBM in Model 2.

selected based on Model 2 using LZGMB operator with vari-
ous values of t and r are slightly different, but their investment
ratios are different. As it is obvious in Table 7, investors
or fund managers can select more diversified portfolio with
variation of the parameter values t and r . Moreover, unlike
LZBM operator, in this situation, the score values of each
asset become lower when the values of parameters t and r
are increased. For instance, if t = 0.5 and r = 0.5, the score
values of some assets such as 1, 2, and 4 are equal to 0.53,
0.61, and 0.143, respectively. Now, if t = 100 and r = 0.5,
the assets 1, 2 and 4 with the score values 0.52, 0.59 and
0.037 are assigned to the optimal portfolio. Based on this,
the parameters t and r can reflect the mentality of investors or
DMs. In the practical applications, the pessimistic or circum-
spect investors can allocate lower values to the parameters
t and r to deal with LZGBM operator. Therefore, every
investor or fund manager can choose the proper values of the
parameters t and r according to their preferences.

Figure 5 indicates the sensitivity of the portfolio perfor-
mance with respect to the parameters t and r in Model 2
based on LZGBM operator. It is obvious that the portfolio
performance becomes lower when the values of parameters t
and r are increased.

FIGURE 5. The sensitivity of the portfolio performance with respect to the
parameters t and r in Model 2 based on LZGBM operator.
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TABLE 8. Portfolio selection based on the various values of admissible
risk level γ in Model 3.

C. THE INFLUENCE OF PARAMETER γ ON THE
PORTFOLIO SELECTION PROBLEM IN MODEL 3
In this subsection, sensitivity analysis is implemented by
altering the desirable risk level of the portfolio (γ ). It can
be derived from the results reported in Table 8 that the more
diversified portfolios are constructed at in a given risk level
(γ ) when the desirable level of risk is changed. This can help
investors or DMs better manage investments corresponding
to their preferences. In addition, as shown in Figure 6, the
attainment level of the max-score value is reduced when
the γ -value is increased. This issue matches up with diver-
sification axiom and reflects a trade-off between the score
value and accuracy value. Moreover, it can be noted that the
determination of γ -value may depend on the mentality of
investor. A conservative investor can select higher γ -value,
but a risk-seeker investor can select lower γ -value. Therefore,
this issue can provide additional useful information to help
the investors efficiently for making more fruitful decisions.

FIGURE 6. Trade-off among the max-score value and risk level using
Model 3.

D. COMPARISON WITH BONFERRONI MEAN (BM)
OPERATOR [3]
BM operator was introduced by Bonferroni [3], which can
only be used in situations where input arguments are crisp
numbers. However, in financial markets, exact values cannot
play a role in representing qualitative information because
of the growing complexity and diversity of socio-economic
environment. DMs always express their opinions in the form
of various possible linguistic terms with different reliabilities.

TABLE 9. The selected assets result by different methods.

Linguistic Z-numbers properly satisfy this requirement. But
the BM operator is unable to solve portfolio selection prob-
lems under Linguistic Z-number environment. Therefore, it is
essential to develop some linguistic Z-numbers BM operators
in order to solve these problems. To sum up, the proposed
operators can be used to aggregate evaluation information
under linguistic Z-number environment.

E. COMPARISON WITH MAHMOODI et al. METHOD [40]
In order to further investigate the validity of the
proposed aggregation operators, we compare them with
Mahmoodi et al. methods [40] built on some linguistic
Z-number weighted averaging operators. The selected assets
obtained by Model 2 are shown in Table 9.

From Table 9, it can be found that the assets selected
by LZBM and LZGBM operators are slightly different
from the assets obtained by LZWA, LZOWA and LZHWA
operators [40]. This difference displays an advantage of the
proposed aggregation operators which capture the interrela-
tionship between input arguments, while Mahmoodi et al.
methods [40] suppose the input arguments are independent.

Therefore, the proposed aggregation operators can be
more general and suitable for handling real portfolio selec-
tion problems where the input arguments have interacting
relationships.

F. MANAGERIAL RESULTS
On the basis of the above analysis, the proposed qualitative
approach for portfolio selection problems has the following
advantages:

1. Linguistic Z-numbers can be applied more flexibly and
effectively in order to describe the required financial
information. Since the expression of financial data in
the form of LZNs is far more convenient, experts’
assessment data can easily be represented as linguistic
Z-numbers.

2. Since the utilization of linguistic scale functions in
the arithmetic operations of LZNs lead to the genera-
tion of various results, investors or fund managers can
flexibly employ different LSFs according to their pref-
erences and priorities. Therefore, the proposed qualita-
tive approach can present more diversified portfolios.

3. In this study, two aggregation operators are pro-
posed to combine the linguistic Z-number information.
The LZBM and LZGBM operators consider the
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interrelationship between the input arguments, which
is necessary in the real investment processes. Although
there are some aggregation operators to aggregate
information under different kinds of fuzzy environ-
ment, the reliability of data is not considered. The
proposed aggregation operators not only consider the
interrelationship of input arguments, but also capture
the requirement of reliability. Therefore, the proposed
operators aremore general than other existing operators
and deal with uncertain information.

4. The proposed models are developed to select the
optimal portfolio with consideration of uncertainty
and reliability of linguistic assessment information,
simultaneously. These models are superior than others
because of three main reasons:

• Preventing data loss in the asset management.
• Considering the data reliability in addition to the
interrelationship of input arguments.

• Matching with the preferences of investors
or DMs.

VI. CONCLUSION
A qualitative and holistic methodology is presented to con-
struct more diversified portfolios with the consideration
of investor’s preferences. The main steps of the extended
methodology are: (i) extending two aggregation operators
under linguistic Z-number environment and introducing
LZBM operator and LZGBM operator to combine the lin-
guistic Z-number information; (ii) proposing two qualita-
tive hybrid portfolio optimization models under linguistic
Z-number environment to assist investors for more flexible
and more credible selecting the optimal portfolios accord-
ing to their preferences. A qualitative portfolio optimization
model has been proposed based on the max-score rule which
is suitable for the general investors, and another qualitative
portfolio optimization model has been presented according
to the score-accuracy trade-off rule which is proper for risky
investors. These proposed models can distinguish the risk
seeker investors and the risk averter investors with the vari-
ation of the risk level. Moreover, to illustrate the effective-
ness, the efficient frontiers of the qualitative proposed models
have been analyzed. The results indicate that investors and
fund managers can more flexibly and more reliably construct
more diversified portfolio with the determination of various
values of input parameters or different LSFs based on their
preferences. For future research, the proposed approach can
be applied to model group portfolio selection problems based
on different aggregation operators under linguistic Z-number
environment. Moreover, the proposed models can be devel-
oped according to other assumptions, constraints and objec-
tives such as ethical goals, and entropy constraints.
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