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ABSTRACT Automatic hippocampal volume measurement from brain magnetic resonance imaging (MRI)
is a crucial task and an important research area, especially in the study of neurodegenerative diseases;
hippocampal volume atrophy is known to be connected with Alzheimer’s disease. In this research work,
we propose a deep learning-based method to automatically measure the discrete hippocampal volume
without prior segmentation of the volumetric MRI scans.We constructed a 2-D convolutional neural network
(CNN) model that uses 3-channel 2-D patches to predict the number of voxels attributed to the hippocampus;
the number of estimated hippocampal voxels is multiplied by the voxel volume to measure the discrete
volume of the hippocampus. In addition, we demonstrate a preprocessing scheme to prepare the data using
a relatively small number of MRI scans. The average errors in the measured volumes of the proposed
approach and the compared atlas-based system were 4.3173 ± 3.5436 (avg. error% ± STD) and 4.1562
±3.5262 (avg. error % ± STD) for the left and right hippocampi, respectively. The correlation coefficients
of the proposed approach with atlas-based volume measurement were statistically significant (p-value <
0.01, R2 = 0.834 (left hippocampus), and R2 = 0.848 (right hippocampus) based on 0.05 significance
level), which suggests that the proposed approach can be used as a proxy method for the atlas-based system.
Furthermore, the proposed approach is computationally efficient and requires less than 2 seconds to calculate
the number of voxels for an MRI scan. Moreover, our method outperforms the state-of-the-art deep learning
approach, such as 2-D U-Net and SegNet in the context of voxel/volume estimation errors% for the left and
right hippocampi.

INDEX TERMS MRI, hippocampus, patch, Hough-CNN, localization, CNN, discrete volume.

I. INTRODUCTION
The hippocampus is a widely studied structure in the con-
text of learning, memory, stress and neurological disorders.
Hippocampal atrophy is known to be linked to various seri-
ous brain dysfunctions, such as Alzheimer’s disease [1], [2],
schizophrenia [3], and depression [1]. Hippocampal volume
measurement is a crucial task to perform automatically, and
it is relatively time consuming.

The hippocampus consists of distinct, interacting subre-
gions with a complex, heterogeneous structure [4]. There-
fore, it is highly difficult to perform critical analysis on its
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subregions and measure the exact volume. Because of the
increasing resolution of MRI scans, automatic segmentation
of the hippocampus with its subfields becomes possible.
To segment and measure the volume of hippocampi with
its subfields, several methods [5]–[9] have been developed.
Moreover, a few software packages, such as, FreeSurfer,
FIRST, SPM, and Neuro I, and online platforms, such as
VolBrain (https://volbrain.upv.es/) are available to estimate
the volume from MRI scans. The gold standard method to
measure hippocampal volume is the manual delineation of
brainMRI scans. However, this method requires careful work
by trained operators and is often impractically labor intensive.
Therefore, considerable attention from the research commu-
nities is being paid for developing an automatic system to
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FIGURE 1. This figure describes data generation process for the proposed method. Three-channel 2-D patches with their corresponding segmented labels
are generated for the volume measurement. The left and right hippocampal voxels’ locations from T1-weighted MRI scans were estimated using
two-stage ensemble Hough-CNN. The estimated voxel location is used to extract 3-D patches with the size of 64× 64× 64. The extracted 3-D patches
were then fed to the slicer to separate the slices for the axial, coronal and sagittal views. The axial, coronal and sagittal slices were normalized separately,
rotated by 2-degree with a factor of n-times (in our case, n=10) and reshape into a size of 32× 32× 1. Similarly, from segmented label MRI scans, using
the same voxel location and corresponding 3-D patches (size: 64× 64× 64) were generated. Slicer counts the number of pixels/voxels attributed in each
slice for the axial, coronal and sagittal views. The 2-D slices from T1-weighted MRI scans were concatenated (along axis=2 (0-based axis)) to construct
3-channel 2-D patches with the size of 32× 32× 3. The 2-D patches with their corresponding labels (number of voxels/pixels) were fed to train the
proposed CNN model. In the test phase, only the 2-D patches from the T1-weighted MRI scans are fed to the trained model to estimate the number of
voxels/pixels attributed to each slice from the corresponding MRI scans.

analyze the hippocampus with its important subfields, such
as the right parasubiculum, left and right presubiculum, right
subiculum, left dentate gyrus, left CA4, left HATA and right
tail. These subregions are believed to be correlated with
normal aging and Alzheimer’s disease. Moreover, they are
known to be more sensitive biomarkers of AD and neurolog-
ical disorders [4].

On the other hand, data acquisition plays a significant
role in the analysis process. Cross sectional data provides
less diversities than their longitudinal MRI data counter-
parts. Therefore, several large-scale investigations on MRI
data are being carried out, and different organizations,
including the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI), are collecting longitudinal MRI data along
with cross-sectional scans. In the longitudinal data acqui-
sition process, the confounding between-subject variability
is removed which enables accurate quantification of within-
subject neuroanatomical changes and deliver high sensitivity
[4], [10]–[12]. Using longitudinal high resolution 3T MRI
scans, it is possible to generate ex vivo atlas that allows us
to distinguish the multiple subregions of the hippocampus.
However, both MRI acquisition techniques [13] are being
used to provide a broad range of methods for analyzing
different neurological disorders effectively.

There are many different MRI analysis and clinical moti-
vations to pursue various methods for segmentation, such
as manual delineation, atlas/statistical-atlas-based methods
[14]–[18], statistical parametric approach and/or statistical
shape models [6], [19], [20], deformable morphometry-based
approaches [21], Bayesian approaches [4], [10], patch-based
methods [22], [23], machine learning-based approaches, and
deep learning-based approaches [3], [8], [9], [24]–[27]. Seg-
mentation of brain regions fromMRI scans using any of these
approaches does not strictly rely on the intensity information,
rather, the intensity distribution of different subfields has a
considerably overlapping intensity values. Furthermore, all
the edge boundaries are not properly visible in MRI scans.
For example, it is often seen that the white matter of the hip-
pocampus is not well resolved and its boundary can overlap
with that of the amygdala, in other words, the boundary can
be invisible [28]. Therefore, prior knowledge of hippocampal
boundaries is crucially important to trace it properly.

The most common method for segmenting and measur-
ing the volume is an atlas-based system. In an atlas-based
system, a reference image is used to coregister the target
images where the regions of interest are manually traced onto
reference images by an expert radiologist [14]. FreeSurfer is
a software package for subcortical segmentation and cortical
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parcellation, a popular example for atlas-based systems.
It uses atlas images to register/segment the regions of interest
from MRI scans. It offers the easiest way to perform such
automated operations but it is time consuming.

In this research project, we considered the T1-weighted
Gwangju Alzheimer’s and Related Dementia (GARD) cohort
dataset, consisting of 326 MRI scans, analyzed using the
ANT algorithm [7], which is included in the Neuro I soft-
ware package (http://www.infomeditech. com/). We explored
a deep learning algorithm to analyze MRI scans to local-
ize the hippocampi and measure the discrete volumes. The
hippocampi were localized automatically using two stage
ensemble Hough convolutional neural network (Hough-
CNN) model [29], and the voxel positions of hippocampi
were traced. Using those voxel locations, 2-D patches of the
left and right hippocampi were extracted to train deep learn-
ing models. Utilizing the deep learning models, we quan-
titatively estimated the left and right hippocampal volumes
automatically. To the best of our knowledge, this is the first
attempt to measure discrete volumes without prior segmenta-
tion of hippocampi from the MRI scans.

This paper is organized using the following hierarchy.
We illustrate the methodology in section II. In the same
section, we described the necessary preprocessing steps to
train, validate and test the individual model with their cor-
responding loss functions. In section III, we describe about
the dataset and error estimation procedures. Discrete volume
measurement procedure on the test phase and the comparative
analysis with other state-of-the-art deep learning methods
are explained in the same section. In section IV, we pro-
vide a detail overview of our method and it’s limitations.
Finally, a summary of the entire process is illustrated briefly
in section V.

A. PRIOR WORKS
Hippocampal shape, size, partial volume, contrast and reso-
lution constraints of MRI scans have led to the researchers
to develop several methods to facilitate the recognition of
its structure. To localize the hippocampus and measure the
volume accurately and visualize the subfields successfully,
several scanning processes and scanners are being built.
Although the manual delineation of MRI scans is still con-
sidered the gold standard, many automatic methods are being
proposed to perform segmentation and localization.

Depending on variations in head size, the total intracranial
volume(ICV) is calculated, which is also known as the total
cranial volume (TIV). Variation are observed because of dif-
ferent sexes, ages or races [6]. In [6], Ian B. Malone et al.
used Statistical Parametric Mapping 12 (SPM 12) to auto-
mate the segmentation for TIV measurement. The hippocam-
pal volume changes were measured by [5]. Mulder et al.
[5] measured hippocampal atrophy rates in healthy aging,
MCI and AD patients using the automated software pack-
age FreeSurfer (longitudinal processing stream) and manual
delineation. Their study was to observe the atrophy measure-
ments in between baseline scans and the 12-Month follow-

up visit in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset of 80 subjects. On the other hand, the hip-
pocampal subfields were studied using high-resolution 3T
MRI scans in [1]. Winterburn et al. [1] measured the whole
hippocampal volume along with the subfields volume using
ex vivo specimens in a 9.4T small-bore scanner. In [30], [31]
and [32], hippocampal and amygdala volume measurements
were performed to analyze different types of neurological
disorders, such as Alzheimer’s disease and temporal lobe
epilepsy. On the other hand, the relationship between mem-
ory/learning and hippocampal volumewas studied in 7-years-
old children by a group of researchers in [33] to understand
whether there is any viable objective that exists with hip-
pocampal volume in an early age. To predict Alzheimer’s dis-
ease (AD) in patients with mild cognitive impairment (MCI),
the hippocampal volume was studied by different groups of
researchers. In [34], MCI following AD was observed using
hippocampal volume changes.

FreeSurfer 5.3.0 uses it’s own atlas scaling factor derived
from the registration images of an average template to
measure the TIV by utilizing a full affine transforma-
tion [6]. However, the latest version of FreeSurfer 6.0 has
upgraded functionality to segment and measure the volume
of hippocampal subfields using a computational atlas [35].
It requires a large amount of time (several hours for a single
MRI scan using a recon-all pipeline with an additional flag)
to register and/or segment a single MRI scan and measure
the volume of the whole hippocampus with its subfields.
On the other hand, FSL FIRST is a Bayesian model-based
subcortical brain segmentation/registration tool that uses
shapes/appearances from manually segmented images [36].
Similarly, Neuro I is another software package that was built
on an open source algorithm provided by ANTs (Advanced
Normalization Tools, (https://github.com/ANTsX/ANTs) [7]
to reconstruct MRI images into a three-dimensional model
andmeasure the thickness of the cerebral substructure volume
and cerebral cortex. In this study, we used the ANTmethod to
analyze data as a standard for the discrete volume measure-
ment to train, validate and test our proposed approach.

Deep learning is a powerful tool for solving numerous
complex problems in various disciplines, such as pattern
recognition, speech recognition and medical imaging. Var-
ious complicated medical imaging problems have already
been addressed using deep learning-based algorithms [9],
[37]–[41]. Wachinger et al. [9] proposed the deep learning-
based DeepNAT method to segment the neuroanatomy.
BrainNetCNNwas proposed byKawahara et al. [24], andwas
used to predict the neurodevelopment of the brain using Dif-
fusionMRI scans of preterm infants. Automatic hippocampal
subfield segmentation is a crucial task for large-scale studies.
Dolze et al. [3] proposed a 3-D fully convolutional network
for subcortical segmentation of MRI scans. They tested their
proposed network on two publicly available datasets (the
ISBR dataset and the ABIDE dataset). In [42], the authors
proposed U-Net, a deep learning-based method, to segment
biomedical images. Algorithms based on Hough-CNNs [8],

VOLUME 8, 2020 91727



A. Basher et al.: Automatic Localization and Discrete Volume Measurements of Hippocampi From MRI Data

FIGURE 2. Discrete volume measurement using the proposed approach.(a) Patch generator used in the single two stage Hough CNN model to locate the
hippocampus. Then, using that voxel location, 3-D patches (size: 64× 64× 64) are extracted, and then the 3-D patches are split into axial, coronal and
sagittal slices. The slices are resized into 32× 32 2-D patches. The data augmentation operation is performed on the slices. Similarly, using the same
localized voxel position, a 3-D patch (size: 64× 64× 64) is extracted from the labeled T1-weighted MRI data, and then, the patches are split into
axial,coronal and sagittal slices. The number of voxels that were assigned to represent the left and right hippocampi were counted from each slice. The
total number of voxels attributed to the hippocmapus in any slice is considered the slice area of that particular slice. The HLV denotes the hippocampus
label value. In our case, 17 and 53 were assigned the hippocampus label values for the left and right hippocampi, respectively. The calculated total
number of voxels from any slice is used as the ground truth for that particular slice. (b) In the test phase, we only generated the patches. The generated
patches are passed through the trained network to determine the number of voxels in the slices contributing to the hippocampus. Then, the areas of the
slices in the MRI scan are summed to measure the total area of an MRI scan and multiplied by the slice placement distance (DbSP) to calculate the
volume.

[43] [29] are used to detect and localize objects from images
of different modalities. Also, a two phase, multimodel auto-
matic brain tumour diagnosis system was developed using
CNN in [44]. The ensemble system of a deep convolutional
neural network (CNN) and transfer learning-based approach
were proposed by a group of researchers in [27], [45], [46] to
diagnose Alzheimer’s disease from MRI and fMRI scans.

B. CONTRIBUTIONS
This study investigates the possibility of measuring the hard
segmented discrete volume of hippocampi from MRI scans
using a CNN without performing prior segmentation. Mea-
suring the volume by segmenting the region of interest (ROI)
is a conventional method. We tried to eliminate this conven-
tional methodology and propose a direct approach to measure
the hippocampal discrete volume automatically using deep
learning. The proposed method is illustrated in Fig. 1 and

Fig. 2 for discrete volume measurement. The analysis of
MRI scans using a CNN after performing several preprocess-
ing steps offers us a quantitatively efficient deep learning-
based model to estimate the volume. Our proposed approach
requires a few seconds to estimate the hippocampal volume,
which allows for the on-site analysis of a patient’s condition.
Moreover, this method can be extended to measure any ROI
volume from 3-D cross-sectional/longitudinal MRI scans.

II. METHODS AND PREPROCESSING
Hippocampal volumes were automatically estimated from
MRI scans using the deep learning model. From the 3-DMRI
scans, the corresponding slices attributed to the hippocampi
were separated, and the number of voxels was calculated.
Then, the total number of voxels was multiplied by the
voxel volume associated with the left and right hippocampi;
thus, the hippocampal discrete volume was measured.
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An algorithm was developed using a CNN to estimate the
number of voxels associated with each slice. Prior to mea-
suring the number of voxels from each slice, it is necessary
to locate the left and right hippocampi inside an MRI scan.
The locations of the left and right hippocampi were estimated
using a two-stage Hough-CNN model similar to that in [29].
Using these estimated locations, 3-D patches were extracted,
and then the slices were separated into 2-D patches for further
preprocessing. The 2-D CNN models were trained using the
2-D patches. These trained models were used to calculate the
number of voxels contributing to the hippocampus in each
slice of the respective hemisphere in the test phase.

A. CONVOLUTIONAL NEURAL NETWORK
The proposed convolutional neural network (CNN) mod-
els [47], [48] consist of a number of layers that conduct
operations on the input data (Isize). The convolutional lay-
ers (C#filter

kernel ) perform convolution operations on the input
images Isize with a number of preset kernels. They are usu-
ally followed by a batch normalization layer and activa-
tion function, where the normalization layer normalizes the
convolution results and the activation function rescales the
batch-normalized convolution outputs in a non linear manner.
Pooling layers (PTypestride) are used to reduce the dimensions of
the outcomes produced by the previous layers through down-
sampling. The type of pooling can be max-pooling or average
pooling. Finally, to extract the high-level features, the fully
connected layers (F#filter ) are employed. The weights are
optimized during training through backpropagation [49].
CNNs are good at extracting features without requiring any
assistant from the user. The data are processed through the
layers in a feed-forward manner, the results of the network
are compared with the ground truth through a loss function,
and the error is backpropagated to update the weights of
all the layers.The training process continues until the model
converges. After completing the training, predictions can be
made by using the trained CNN model in a feed-forward
manner, and the results are reported from the outputs of the
last layer.

B. PATCH AND LABEL GENERATION FOR LOCALIZATION
The CNN models were designed in a similar way as those in
[29], [50] to localize the left and right hippocampi. The net-
work architecture has been changed slightly for this research
work. Instead of using three models for each stage, one
model was used for each stage; i.e., for the global phase,
one global model was used, and for the local phase, one
local model was used. For the global model, the patches
were extracted from the wholeMRI scan except the boundary
region. The uniformly distributed random sample points were
used to extract the global patches. The 96× 96 patches were
extracted with their corresponding displacement vectors and
then resized into 32 × 32 2-D patches. The global patches
were used to train the global model to estimate the global
position of the hippocampus. For the local model, 32 × 32-

sized patches were generated with corresponding displace-
ment vectors. The patches were normalized considering a
standard deviation of 1 and a mean of zero. Using these
patches, a local model was trained and validated to locate the
hippocampal positions from both sides of the hemispheres.

C. PATCH AND LABEL GENERATION FOR HARD
SEGMENTED DISCRETE VOLUME MEASUREMENTS
The 326 MRI samples were separated into 5 roughly equal
sections. The cross-validation were preformed by leaving
one fold out for testing. For comparison with deep learning
segmentation methods such as U-net and SegNet, only the
results from the fifth fold is compared.

Using two-stage Hough-CNN model, we located the left
and right hippocampi from the MRI scans. These located
coordinates are used to extract 64× 64× 64, 3-D patches in
the vicinity of the left and right hippocampi. From these 3-D
patches, the axial, coronal, and sagittal slices were extracted.
In the axial, coronal and sagittal planes, 64 slices were col-
lected for each view from each MRI scan. Then, the slices
were normalized separately. Using data augmentation tech-
nique; the slices are rotated by2 degrees and the dataset was
expanded 10 times. The 2 (−90 < 2 < 90) is chosen from
a random integer generator. The augmented slices were then
resized and reshaped into 32×32×1. At the end, the reshaped
axial, coronal and sagittal slices were concatenated along
axis=2 (0-based axis) to construct 3-channel 2-D patches of
size 32 × 32 × 3. From 1-channel gray 3-D MRI images,
we have generated 2-D 3-Channel input data for our proposed
model.

Similarly, the 64 × 64 × 64 3-D patches were extracted
from the segmented label MRI scans and were separated
into slices. Then, the numbers of voxels assigned to the left
and right hippocampi were counted. The number of voxels
counted from each slice is considered as the ground truth for
the corresponding slice in the original MRI. The complete
network detail and step by step processes for training and
testing are illustrated in Fig. 2. The patch generation and
label counting procedures for each MRI scan are explained
in Fig. 1.

D. LOCALIZATION NETWORK ARCHITECTURE
The two-stage ensemble Hough CNN [29] was implemented
with a minor change. The network sizes were kept the same
for the global Hough CNN (GH-CNN) and the local Hough
CNN (LH-CNN). The network consists of 6 convolutional
layers followed by 3 fully connected layers. Three max pool-
ing layers are used after 2nd , 3rd , and 4th convolutional layers.
Batch normalization [51] and ReLU [52] activation layers are
used after each of the convolutional layer. Similarly, the fully
connected layers are followed by ReLU activation and batch
normalization layers, except for the last layer. The last layer
is followed by a batch normalization layer. After the first
and second fully connected layers, 25% and 35% dropout are
used, respectively. The Adam optimizer [53] was used with
its default parameter settings except the learning rate, which
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FIGURE 3. The representative localization by the two-stage ensemble
Hough-CNN of right hippocampus is shown for best case (a, b, c) and
worst case (d, e, f) of the axial, coronal and sagittal views of the test MRI
scans of GARD data set.

is set to 1e-4. The network architecture details are illustrated
in Table 1.

E. LOCALIZATION
The global and local models were trained in exactly the same
way as in [29]. The global model learned the features from
the whole MRI scan and predicted the global position of
the hippocampus. Similarly, the local patches were extracted
to train the local model to predict the exact location of the
hippocampus. In each phase, the models were trained using
the Hough voting strategy described in [8], [29], [43]. In the
test phase, the positions estimated by the global model were
used to extract the local patches to predict the exact posi-
tion of the hippocampus. The Localized coordinates of the
hippocampi in the test MRI scans were used to extract 3-
D patches to estimate the volume of the hippocampi in the
corresponding MRI scans. The representative localization of
right hippocampus by the two-stage Hough-CNN is shown
in Fig. 3.

F. DISCRETE VOLUME MEASUREMENT NETWORK
ARCHITECTURE
For the left and right hippocampi’s discrete volume mea-
surements, we designed identical network structures. Six
convolutional layers were used to form the CNN structures
followed by a batch normalization layer and ReLU activation
function. A Max pooling layer are used after 2nd , 3rd , and 4th

convolutional layers. The fully connected layers are concate-
nated with the batch normalization layer and ReLU activation
function. After the last fully connected layer, we used a
batch normalization layer. The Adam optimizer is used with
the default parameter settings with a learning rate of 1e-4.
The detailed network architecture is shown in Table 2 and
Fig. 2(a).

FIGURE 4. Training and testing loss (GARD cohort dataset): (a, c) and (b,
d) are the training loss and testing loss on fifth fold for the left and right
hippocampi, respectively.

G. LOSS FUNCTION
To train the two-stage ensemble localization network model,
the mean squared error is considered as the loss function.

MSEHippocampus localization

=
1

α ∗ q

j=α∗q∑
j=1


×

(
1
3

(
(Xj − X ′j )

2
+ (Yj − Y ′j )

2
+ (Zj − Z ′j )

2
))

(1)

where α is the number of patches generated from each MRI
and q is the total number of MRI scans used for training.
(Xj,Yj,Zj) are the target displacement vectors and (X ′j ,Y

′
j ,Z
′
j )

are the predicted displacement vectors.
For hard segmented volume measurements, we used the

mean squared error as a loss function as well. The squared
differences between the predicted number of voxels of any
particular slice and the true number of voxels of the same slice
were used to train the network.

MSEDiscrete volume

=
1
n

j=β∗n∑
j=1


∗
1
3

(
(AXj − A

′
Xj )

2
+ (AYj − A

′
Yj )

2
+ (AZj − A

′
Zj )

2
)

(2)

where, AXj , AYj ,AZj are the true numbers of voxels attributed
to the corresponding jth slices of the axial, coronal and sagittal
views, respectively, calculated by the ANT method, whereas,
A′Xj ,A

′
Yj ,A
′
Zj are the corresponding predicted numbers of vox-

els of the same jth slice using our proposed approach. Here, β
is the number of slices contributing to the hippocampus and
n is the factor by which the slices are augmented to increase
the dataset size to train the proposed neural network.
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TABLE 1. GH-CNN and LH-CNN network architectures used with the GARD cohort dataset.

TABLE 2. LHM and RHM network architectures used with the GARD cohort dataset to measure the discrete volume of the left and right Hippocampi.

TABLE 3. Left and Right hippocampi: 5-Fold cross-validation results for the discrete volume measurements.

The representative training and testing curves are shown
in Fig. 4. We validated the proposed models by performing
5 folds cross validation. The cross-validated results are shown
in Table 3. We used a HP workstation Intel Xeon Processor
(3.10 GHz) with 32GB RAM along with INVIDIA Quadro
MD4000 GPU (8GB) to conduct the training, validation and
testing operation.

III. EXPERIMENTAL RESULTS
A. DATASET
We used the GARD cohort dataset to verify our proposed
approach. The GARD cohort dataset consists of 326 MRI
scans of 326 patients. The patient age range is from 49 to
87 years, and the average age is 70.0184±6.074 (avg. age ±
STD). This dataset is divided into four classes: Alzheimer’s
disease dementia (ADD), asymptomatic Alzheimer’s disease
(aAD), mild Alzheimer’s diseases (MCI), and normal control
(NC). The GARD cohort dataset was analysed using the
ANT algorithm (Neuro I software package). Using ANT,
the regions of interest (ROIs) were segmented, and the vol-
umesweremeasured. The segmentedMRIROIsweremarked
using specific label values. The left and right hippocampi
were identified using label values of 17 and 53, respectively.
T1-weighted 326 MRI scans with corresponding 326 seg-
mented label MRI scans are considered in this research work.

The MRI scans have 0.512mm3 sized voxels with the dimen-
sions of 320× 212× 240.

B. DISCRETE VOLUME MEASUREMENT
In an MRIMXYZ , if any voxel in location (X,Y,Z) contributes
to the hippocampus, it is assigned as a target voxel to the
corresponding slice. The total number of voxels attributed
to the hippocampus in any particular slice are considered
for the area measurement of that particular slice. In this
way, we calculated the total number of voxels in different
slices from an MRI scan. The slice area is multiplied by the
slice placement distance DbSP to calculate the total discrete
volume.

Let us consider that for the axial, coronal, and sagittal
views of any particular MRI scan, if the numbers of hip-
pocampal voxels in that MRI scan are AX ,AY , and AZ for
each view, which can be separately considered as the total
area of hippocampus in that MRI scan for each view, then the
total number of voxels attributed to the hippocampus can be
expressed using the following equation.

A(X ,Y ,Z ) =
1
3
(AX + AY + AZ ) (3)

Next, for the β number of slices attributed to the hip-
pocampus from any MRI scan with an augmentation factor
of n, we can derive a general formula to calculate the total

VOLUME 8, 2020 91731



A. Basher et al.: Automatic Localization and Discrete Volume Measurements of Hippocampi From MRI Data

FIGURE 5. Measured left hippocampal volumes using our proposed approach and the ANT method on fifth fold.

FIGURE 6. Measured right hippocampal volumes using our proposed approach and the ANT method on fifth fold.

number of voxels that form the hippocampus in any particular
hemisphere.

A(Xβ ,Yβ ,Zβ ) =
1
n

β∗n∑
i=1

1
3

(
AXi + AYi + AZi

) (4)

To calculate the discrete volume, the estimated number of
voxels needs to be multiplied by the voxel spacing distance,
in other words, the number of voxels will be multiplied by the
voxel volume.

Vd = A(Xβ ,Yβ ,Zβ ) ∗ DbSP (5)

Here, Vd is the measured discrete volume of the target MRI
scan. The whole procedure of our proposed approach of
discrete volume measurement is shown in Algorithm 1. The
measured discrete volume of theMRI scans of fifth fold using
the proposed approach and the ANT method are reported
using bar graphs in Fig. 5 and Fig. 6.

C. ERROR ESTIMATION FROM THE PREDICTED VOLUME
If the predicted discrete volume and discrete volume mea-
sured by the ANT method are V predicted and V Actual , the pre-
diction error of our proposed approach with the ANT method
can be expressed as follows.

dEPrediction Error = |VActual − V Predicted | (6)

Now, we can express the estimated errors in the discrete
volume measurements as a percentage using the following
expression.

dE% =

(
EPrediction Error

V Actual
x100

)
% (7)

The average errors in the measured volumes using the
proposed approach and the ANTmethod for the left and right
hippocampi are 4.3173 and 4.1562, respectively. In Tables 4
and 5, the predicted discrete volume with their corresponding
errors are illustrated for 10 MRI scans (best case and worest
case scenarios) along with their original discrete volumes.
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TABLE 4. Estimated discrete volumes measured by our method and the ANT methods with the errors in percentage between the methods (left
hippocampus).

TABLE 5. Estimated discrete volumes measured by our method and the ANT method with the errors in percentage between the methods (right
hippocampus).

D. STATISTICAL ANALYSIS
We performed a statistical analysis on the volumes measured
by our proposed approach and the ANT method to determine
whether our proposed approach has any statistical signifi-
cance. To show the agreement in the volume measurements
between our proposed method and those of the ANT method,
Bland and Altman [54] mean-difference plots were generated
using SPSS 16.0. The plots are shown in Fig. 7 and Fig. 8. The
p-value measured in the test was less than .01 (p<.01), which
indicates that it supported the null hypothesis; i.e., the meth-
ods that were utilized to measure the discrete volume of hip-
pocampi were similar and statistically significant. We report
the measured volume in Fig. 5 and Fig. 6.
The results were further analyzed to assess the suitability of

the proposed approach as a substitute for atlas-based systems,
such as the ANT algorithm. We calculated the squared Pear-
son correlation coefficients (R2) comparing our method with
the ANT method, where a large R2 indicates that the method
can be utilized as a proxy. The measured R2 values were
0.834 (95% confidence intervals) and 0.848 (95% confidence
intervals) for the left and right hippocampi, respectively. Two
scatter plots of the discrete volumes of the left and right
hippocampi measured by our method and the ANT algorithm
with a linear line of best fit are shown in Fig. 9 and Fig. 10.

FIGURE 7. Left Hippocampus: fifth fold scatter plot (our approach minus
the ANT method plotted against their mean) of the discrete volumes
measured by our proposed approach and the ANT method with 95%
limits of agreement (LOAs) confined by green and orange lines.

E. COMPARATIVE ANALYSIS WITH OTHER METHODS
We performed a comparison test of our method with the 2-D
UNet [42] and SegNet [55]. The segmentation matrices such
as IoU, F1 score, Dice coefficient are not applicable in our
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Algorithm 1 Discrete Volume Measurement

1 Data: Input MRI scan,MXYZ ,

2 Output: Estimated Volume, Vd ,

3 Get the Hippocampus location using,

H(X ,Y ,Z ) = two-stage H-CNN(MXYZ ),

4 Extract 3-D patches from

MXYZ using H(X ,Y ,Z ),

5 Separate the 2-D axial, coronal and sagittal

slices from the 3-D patches,

6 Perform the normalization operation

on each 2-D slice,

7 Resize the 2-D slices to 32x32,

8 Augment the resized 2-D slices

by factor of n using a 2-degree rotation,

9 Generate 3-channel 2-D patch sample

Sβ∗n, where, Sβ∗n = {S1 · · · Sβ∗n},

10 For i : 1 to β ∗ n do

11 AXβ∗n ,AYβ∗n ,AZβ∗n ← Sβ∗n

to the trained CNN model;

12 A(Xβ ,Yβ ,Zβ ) =
1
n

(
β∗n∑
j=1

1
3

(
AXj + AYj + AZj

))
13 Vd = A(Xβ ,Yβ ,Zβ ) * DbSP

comparison study. Instead, average voxel/volume errors% are
compared. The dice coefficents are also reported as refer-
ences.

1) DATA PREPROCESSING FOR U-Net AND SegNet
We have trained the U-Net and SegNet using the same
MRI scans that were used to train our proposed models.
Similarly, the testing set was also kept the same. We have
used the axial slices for training, validation and testing the
U-Net and SegNet. Previously, using two-stage Hough-CNN,
we have located the left and right hippocampi’s locations of
the MRI scans. Those voxels locations were used to extract
3-D patches of size 80× 80× 80. We intentionally increased
the size of patches to provide more global view of the brain
regions. Then the axial slices (size: 80 × 80) were extracted

FIGURE 8. Right hippocampus: fifth fold scatter plot (our approach minus
the ANT method plotted against their mean) of the discrete volumes
measured by our proposed approach and the ANT method with 95%
limits of agreement (LOAs) confined by green and orange lines.

FIGURE 9. Left hippocampus: fifth fold scatter plot of the discrete
volumes measured by our proposed approach and the ANT method with
the linear line of best fit (not forced through the origin).

FIGURE 10. Right hippocampus: fifth fold scatter plot of the discrete
volume measured by our proposed approach and the ANT method with
the linear line of best fit (not forced through the origin).

from the 3-D patches. The generated 2-D axial slices were
normalized using a mean of zero and standard deviation of 1.
The slice were reshaped into a size of 80×80×1. The original
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TABLE 6. U-Net and SegNet training information for left and right hippocampi on GARD Dataset.

FIGURE 11. The visual interpretation of segmented volume with the voxel estimation are shown for the right hippocampus of a test sample
for ANT method (a), U-Net (b), SegNet (c) and our proposed approach (d). As our method does not generate any mask instead it directly
predicts the number of voxels attributed to the hippocampus, therefore, there is no graphical interpretation available for our method.

U-Net used 512×512 images [42] (ISBI 2012 dataset) which
wasmuch bigger than our 2-D patches of size 80×80. Similar
to the T1-weighted MRI scans preparation, the segmented
label MRI scans were pre-processed to generate the ground
truths. We replaced HLV value (left hippocampus = 17 and
Right hippocampus= 53) to 1 after generating the patches for
both right and left hippocampi. The preprocessed data were
used to train, validate and test the U-Net and SegNet. The

detail of U-Net and SegNet are illustrated in the following
sections.

2) U-Net
We have implemented the U-Net [42] using Keras library
(backend: Tensorflow). The original implementation was
kept same with few modifications. The loss function has
been modified in our implementation. We used dice loss with
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TABLE 7. Comparative performance analysis: the average voxel/volume estimation errors%.

TABLE 8. Inference time to estimate the voxels/volume.

sigmoid activation in the last layer instead of cross entropy
loss with softmax activation that was used in the original
implementation using Caffe library. The network parameters
optimization was performed using Adam optimizer with a
learning rate of 1e-5 along with other default parameter set-
tings instead of SGD optimizer.

We have trained the U-Net with a 20 epochs that had taken
approximately 12 hours for each side of the hippocampus in
the same machine that we have used to train the proposed
models. The dice losses for training, validation and testing
are shown in Table 6 with the dice coefficient of the predicted
mask images for the test MRI scans (fifth fold) against the
ground truth. The dice coefficient values were calculated
after reconstruction of the 3-D volume (size:80 × 80 × 80)
from axial slices of mask images predicted by the trained
U-Net. The estimated average dice coefficients for left and
right hippocampi are 0.8114±0.0471 and 0.8130±0.0359
(Dice±STD) for MRI scans from fifth fold, respectively. The
average computational time to predict the mask image was
3.28 seconds for eachMRI scan (eachMRI scan (80×80×80,
3-D patch) consisted of axial slices of 80 sample patches).

3) SegNet
SegNet [55] (Encoder-Decoder Architecture) was imple-
mented using Keras library (backend: Tensorflow). In the
decoder side, we modified the last layer activation function
from softmax to sigmoid and changed the loss function to
dice loss. The official SegNet was trained on RGB images,
therefore, the input of the encoder side is 3-channel data.
In this case, we changed it to 1-channel encoder input. Rest of
the architecture was kept same as the original SegNet except
for the optimizer.

SegNet was trained with 40 epochs requiring more than
57 hours for each side of the hippocampus in the same
machine. We replaced SGD optimizer by Adam and used

a learning rate of 1e-5 with other parameter settings as
default. The detail dice losses of the SegNet training, val-
idation and testing along with dice coefficients for the left
and right hippocampi are shown in Table 6. After recon-
structing 3-D masked volumes (size: 80 × 80 × 80) from
the predicted axial slices of test MRI scans by the trained
SegNet, the dice coefficients were estimated for the left
and right hippocampi. The average dice coefficients are
0.8960±0.0356 and 0.9080±0.0230 for the left and right
hippocampi, respectively. The average computational time
for SegNet was 5.92 seconds for each reconstructed 3-D
Volume.

IV. DISCUSSION
Hippocampal atrophy is a primary feature that contributes
to the diagnosis of Alzheimer’s disease. Tracing the hip-
pocampus and automatically measuring its volume is a
complicated and time-consuming task, even for expert neuro-
radiologist [17]. Several methods were introduced to segment
and measure the volume automatically, such as automatic
segmentation using an atlas and/or a probabilistic atlas-based
method [4], deformation-based morphometry [21], [56], and
statistical parametric approach [20], [57], [58]. Very recently,
machine learning and deep learning algorithms have been
proposed to trace and estimate the volume from MRI scans.
All these methods were developed to detect or segment
and analyze ROIs in the MRI scans for neurodegenerative
diseases.

In this research work, we analyzed the GARD cohort
dataset of 326 MRI scans using a deep learning algorithm.
The purpose of this studywas tomeasure the discrete volumes
of the MRI scans and compare them with the atlas-based sys-
tem to determine whether we can use the proposed approach
as a proxy method. We estimated the number of voxels
attributed to the corresponding slices, which contribute to
the left and right hippocampi on each slice. Then, the total
number of voxels was multiplied by the voxel volume to
measure the discrete volume of that particularMRI scan. Sev-
eral research initiatives have been implemented to segment
the ROIs based on voxels. In [28], based on probabilistic
information, multiple ROIs, including the hippocampi, were
segmented by assigning a specific label to the respective vox-
els for a particular ROI. We used a CNN model to determine
the numbers of voxels of the hippocampi. After determining
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the voxels, we calculated the volume multiplied by the voxel
volume.

We performed a statistical analysis based on the measured
volumes to determine whether the proposed approach is a
viable substitute for the atlas-based system. We calculated
the squared Pearson correlation coefficients of the reported
discrete volumes. The values of R2 were 0.834 and 0.848
(95% confidence intervals) for the left and right hippocampi,
respectively. In [59], the authors’ reported Pearson correla-
tion coefficients of 0.83 / 0.82 for the manually measured
volume and their method for the left hippocampus. Although
it is a completely different case, as the datasets are not
same, we can have an intuition of a proxy method from
this statistical study. Two scatter plots with linear lines of
best fit are shown in Fig. 9 and Fig. 10 based on our study.
To assess the agreement in the values from our proposed
CNN-based approach and the atlas-based approach, we used
Bland and Altman [54] plots. The two measurements for
the same MRI scan are expected to report the same result,
i.e., the same volume, where the slop of regression line will
be close to 1.We plotted the difference against the mean value
which allows us to assess the bias and deviation. Bias values
of 42.72 and 9.98 for the left and right hippocampi shown
in Fig. 7 and Fig. 8 signify that, on average, the proposed
method measures the volumes of 42.72 mm3 and 9.98 mm3

less than the compared ANT method [7] for the left and
right hippocampi, respectively. However, we found that both
methods were strongly correlated, and the measured p-value
was less than 0.01.

At the end, the proposed method was compared with the
state-of-the-art deep learning methods, such as U-Net and
SegNet. The detail implementation and other changes made
in the original architecture of U-Net and SegNet are explained
in the previous sections. The U-Net performance was good
in the context of dice coefficient (0.8114±0.0471 and
0.8130±0.0359 (Dice±STD) for the left and right hip-
pocampi, respectively), however, the average voxel/volume
errors% were comparatively very high (13.086±10.761 and
17.812±14.748 (Error%±STD) for the left and right hip-
pocampi, respectively). Therefore, the proposed method out-
performed the U-Net in the context of average voxel/volume
estimation errors%. Moreover, SegNet performance was bet-
ter than U-Net, however, our proposed method offers less
average voxel/volume errors% than the SegNet. The average
voxel/volume errors% for the left and right hippocampi of
MRI scans from fifth fold along with the computational time
are shown in Table 7 and Table 8. The proposed method’s
inference time is given for the final CNN model (Localiza-
tion models (two-stage Hough-CNN) require 2 seconds to
estimate the hippocampus position in an MRI scan.). ANT
method’s reported inference time is for the whole brain
processing, whereas, the other methods only process the
hippocampal region. The representative segmentation per-
formance of U-Net, SegNet and ANT method with direct
estimation of voxels on the same MRI scan by the proposed
method are shown in Fig. 11.

A. LIMITATIONS
Although the proposed approach estimates the discrete seg-
mentation volume, it cannot visualize the exact shapes of
the hippocampi. The motivation of this research work is to
measure the volume directly for on-site diagnosis and observe
the volume changes in the baseline scanswith other time point
scans, such as 4-, 8-, and 12-Month visits.

V. CONCLUSION
In this research paper, we demonstrated a complete automatic
neural network-based approach to measure discrete volumes
from MRI scans. Our proposed method can accurately mea-
sure the left and right discrete hippocampal volumes from
MRI scans and saves the time in a large margin by dis-
carding the conventional method of measuring the volume
by manually segmenting the region of interest. As volume
atrophy is one of the primary biomarkers for Alzheimer’s
disease, the automatic estimation of discrete volumes from
MRI scans can help in the diagnosis of Alzheimer’s disease.
The average errors of the predicted discrete volumes with the
ANT method of the left and right hippocampi were 4.3173
± 3.5436 (avg. error % ± STD) and 4.1562 ±3.5262 (avg.
error % ± STD), respectively. The statistical analysis of the
measured volumes showed that the volumes measured by
proposed approach were significantly correlated with those
from the ANT method. In addition, the proposed approach
outperforms the state-of-the-art deep learning methods, such
as U-Net and SegNet in case of average voxel/volume estima-
tion errors%. The proposed approach can be used as a proxy
method for themeasurement of the discrete volume fromMRI
scans.
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