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ABSTRACT Data storage optimizations (DS, e.g. low latency for data access) in data center networks(DCN)
are difficult online-making problems. Previously, they are done with heuristics under static network models
which highly rely on designers’ understanding of the environment. Encouraged by recent successes in deep
reinforcement learning techniques to solve intricate online assignment problems, we propose to use the
Q-learning (QL) technique to train and learn from historical DS decisions, which can significantly reduce
the data access delay. However, QL faces two challenges to be widely used in data centers. They are massive
input data and the blindness on parameter settings which severely hamper the convergence of the learning
process. To solve these two key problems, we develop an evolutionary QL scheme, named as LFDS (Low
latency and Fast convergence Data Storage). In the initial stage of the LFDS, the input matrix of QL is sparse
to shrink the dimensionality of the massive input data while retaining its information as much as possible.
In the following training phase, a specialized neural network is adopted to achieves a quick approximation.
To overcome the blindness during QL training, the two key parameters, learning rate, and discount rate
are carefully tested with real data input and network architecture. The preferred range of learning rate and
discount rate are recommended for the use of QL in data centers, which brings high training rewards and
fast convergence. Extensive simulations with real-world data show that the data access latency is decreased
by 23.5% and the convergence rate is increased by 15%.

INDEX TERMS Data center networks, data access, latency, reinforcement learning, q-learning.

I. INTRODUCTION
With the increased importance of data analysis in the cloud
data center networks, more and more service providers in
the world rely on data service as part of their core business
that affects the performance of that system, such as Amason,
Google and Microsoft [1]. But they have to battle daily with
data latency: slow data access rates can reduce their ability
to deliver new digital products and services, and thus harm
the profitability, customer relationships, and any operational
efficiency.

Selecting the right data storage configuration is critical for
both performance and cost [2]. The methodology of most
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existing researches is reducing latency by setting up models
and designing optimal algorithms [3]. However, factors that
cause the delay are diverse and dynamic, such as network
latency, disk latency and other types of latency(RAM, CPU,
etc.) [4]. Static models can neither describe the multiple
causes of delay nor be adapt to dynamics. How to take full
account of the dynamic factors of data centers to optimize
data storage is still an open challenge.

Since the data storage problem can be formulated as a
Markov decision process (MDP) [5], and MDP problem
can find an optimal action-selection policy by model-free
Q-learning [6], we choose Q-learning as the basic scheme to
decide the best data locations for lower latency. However, the
Q-learning technique faces two challenges to be widely used
in data issues for two reasons:(1) massive input data and (2)
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blindness on parameter settings, which severely hamper the
convergence of the learning process. To divide and conquer
these two problems, a Low latency and Fast convergence Data
Storage scheme, named as LFDS is designed. The LFDS
firstly sparse the input matrix of Q-learning to reduce the
dimensionality of the input while retaining its information as
much as possible. Then come to the training phase, a spe-
cialized neural network is adopted for Q-learning to achieves
a quick approximation. To overcome the blindness on the
training parameter setting, the relationship of the two key
parameters, learning rate and discount rate, are carefully stud-
ied and tested with real data input and network architecture.
The preferred range of learning rate and discount rate are
finally carefully analyzed and recommended for the data
center scenario, which brings high training rewards and fast
convergence.

The proposed LFDS acts as an agent interacting with the
data center environment and continuously makes actions of
choosing the storage location for each data item. By collect-
ing feedback from the environment, such as the current state
of request patterns, network conditions, and the resultant end-
to-end performance metrics (e.g., the read/write latency) due
to these actions, the LFDS will improve the next data access
location. Through this process, the agent can learn how to
make a better choice for data access.

The main contributions of this paper are summarized as
follows:

1) The data storage optimization problem is analyzed in a
data center environment, aiming at reducing data access
latency. A Q-Learning (QL) based scheme, named as
LFDS, is proposed combining with neural network
techniques.

2) LFDS is designed to shrink the dimensionality of the
input matrix of QL under the premise that the integrity
of the input information is maintained.

3) The preferred setting of the two key parameters in QL,
learning rate and discount rate, are advised for the first
time on the big data benchmark, which plays a decisive
role in convergence.

4) Based on real data set, extensive simulations results
show that LFDS can reduce the average write and
read latency by 23.4% while the convergence time is
improved by 15%.

The remainder of this paper is outlined as follows. The
related works were concluded in Section II. Section III
presents the system architecture and problem formulation.
The LFDS scheme was proposed in Section IV. We evaluate
the scheme in Section V. Section VI gives the conclusion.

II. RELATED WORK
Since the accessibility of Big Data is on the top priority of
the knowledge discovery process, many efforts were done
on improving data centers’ efficiency. Two key concerns that
existed are low latency and energy consumption. Researches
have pointed out that well-designed data placement in data

centers can highly improve the above issues by reducing
data migrations, improving memory accesses to releases the
network bandwidth and disk latency.

Fan et al. [7] tackled the problem of green data placement
in data centers to strike a tradeoff among access latency, the
energy consumption of data centers and network transport.
The problem is proved to be NP-completeness and a 3-
proximation algorithm is prosed. To meet the latency require-
ments of the applications and clients, Xiang et al. [8] provided
an insightful upper bound on the average service delay of
erasure-coded storage with arbitrary service time distribution
and consisting of multiple heterogeneous files. Oh, et al. [9]
presented a lightweight system called Trips to model and
solve the data placement problem using mixed-integer linear
programming to determine data placement. In addition, to
adapt quickly to dynamics, they introduced the notion of
Target Locale List, a pro-active approach to avoid expen-
sive re-evaluation of the optimal placement. Ren et al. [10]
modeled the joint problem of data purchasing and data
placement within a cloud data market as a facility location
problem which is NP-hard, and gave a divide and conquer
design to get near-optimal results. Li et al. [11] analyzed
the complexity and compared algorithms for superposed data
uploading problem in networks with smart devices. Based
on this, Li et al. [12] designed a multi-model framework for
indoor localization via mobile edge computing technology.
Chen et al. [13] proposed visual object tracking algorithm
research based on adaptive combination kernel. To guaran-
tee QoS, Chen et al. [14] proposed a single-image super-
resolution algorithm based on structural self-similarity and
deformation data block features.

However, static models can neither describe the multiple
causes of delay nor be adapt to dynamics in data center
networks. Because the machine learning method can approxi-
mate the optimal solution by iteratively learning the feedback
from historical decisions, it is thought to be one of the best
tools to solve optimal problems under environments with
multiple dynamics factors. Wu et al. [15] gave a reinforce-
ment learning-based data storage scheme for vehicular ad
hoc networks, which can dynamically consider throughput,
vehicle mobility, and bandwidth efficiency by employing a
fuzzy logic algorithm. Xu et al. [16] proposed a reinforce-
ment learning-based job scheduling algorithm combining
with neural networks to reduce data centers’ cost. To enhance
the training speed, random pool sampling is proposed to
retrain the neural networks via accumulated training data, and
a unidirectional bridge network architecture is designed for
further by using historical knowledge. Liu et al. [5] presented
DataBot, a reinforcement learning-based adaptive model to
learn the optimal data placement policies facing dynamic
network conditions and time-varying request patterns.
Liao et al. [17] considered a practical data center networks
with Fat-Tree topology, and utilized a deep learning tech-
nology k-means to store most related data blocks, where k
is the number of cores in the Fat-Tree. Klimovic et al. [2]
presented a tool Selecta to recommend near-optimal
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configurations of cloud compute and storage resources for
data analytic workloads. An online incremental and decre-
mental learning algorithm based on a variable support vector
machine was proposed in [18].

In most of the above learning application researches,
convergence is rarely considered and users are relying on
default parameter settings provided by the training sys-
tem. A different parameter setting, however, might yield
a much higher-quality convergence. He et al. [19] stud-
ied parameters compressing in deep learning. Deblasio
and Kececioglu et al. [20] have considered biological bench-
marks for the first time the problem of learning the optimal
set of parameter choices for a parameter advisor, who proved
that learning an optimal set for an advisor is NP-complete.
They implemented an approximation algorithm to find sets
for advisors that are close to optimal. Considering the real-
time requirements of data analysis services, convergence
should require more attention and improvement. In this work,
aiming at improving the learning convergence, we design a
Low latency and Fast convergence Data Storage scheme by
(1)shrinking the dimensionality of the input matrix of QL
under the premise that the integrity of the input information
is maintained, and (2)advising the two key parameters of QL,
learning rate and discount rate, via analysis and tests.

III. SYSTEM ARCHITECTURE AND PROBLEM STATEMENT
A. THE DATA CENTER NETWORKS
Data center networks are comprised of three different three
entities, they aremaster nodes, data nodes, and clients. Taking
one storage system for example, it usually includes one mas-
ter node who is managing the data of data (metadata), over-
sees the following key operations that comprise the system.
Data nodes are responsible for storage and running parallel
computations on that data. Clients are the applications or the
load data into the cluster, submit jobs describing how that data
should be processed, and then retrieves or views the results of
the job when processing is finished.

The DCN has a distributed storage system consists of one
master node and a set ofN data nodes. Similar to the Hadoop
Distributed File System (HDFS) [21], when a file comes, it is
split into a set of data blocksD and these blocks are supposed
to be stored in a set of data nodes. The master node executes
file system namespace operations like opening, closing, and
renaming files and directories. It also determines the mapping
of blocks to data nodes. The data nodes are responsible for
serving read and write requests from the file system’s clients.
The data nodes also perform block creation, deletion, and
replication upon instruction from the master node.

To WRITE in a file, the client, master and data nodes will
interact with each other as the following steps:

1) The client actively requests to upload a file by com-
municating with the master node, and the master
node checks whether the target file already exists and
whether the parent directory for the target file exists.

2) The master node responds to the request of the client
and returns whether it can be uploaded.

3) After receiving the response from the master node, the
client will split the file into blocks and start requesting
the storage location for the first block.

4) The master node recommends a list of data nodes to the
client. Meanwhile, the starting time TWi,start is recorded.

5) The client selects one data node from the list and
requests to write in the first block. After the first data
node receives the request, it will continue to call the
second data node on the list, and then the second data
node calls the third data node, completes the entire data
node pipeline, and returns to the client step by step.

6) The client starts uploading the first block to the first
data node. The first data node receives one and passes
it to the second, and the second passes to the third.
Usually, each block has three replicas. The third data
node will send a feedback to the master node to record
the complete time for the data block, such as TWi,finish.

7) When a block transfer is completed, the client repeat
Step 1 until the target file is completely written in.

Denoting the latency of writing in the ith data block is LWi ,
then

LWi = TWi,finish − T
W
i,start (1)

To READ a file from the system, a client needs to interact
with the master (who stores all the metadata i.e. data about
the data). Now the master checks for required privileges, if
the client has sufficient privileges then the master provides
the address of the data node where a file is stored. Then
the client will interact directly with the respective servers to
read the data blocks. The master records the time duration
from receiving a request to complete reading and as LRi . For
the data analytical function, distributed applications run on
multiple data nodes and may require the transmission of data
blocks among them. Because the data analytical latency is
mainly related to the computation workload of data nodes
and influenced by the request task priority, the optimization
of analytical latency is beyond the scope of this paper.

The storage system is built on fat-tree [22], a typical net-
work topology found in data centers cite. Generally, a fat-
tree topology is typically referred to in terms of the number
of pods that are numbered left to right from Pod-0 to Pod-
(k − 1). The topology consists of k pods with three layers
of switches: edge switches, aggregation switches, and core
switches. Fig. 1 illustrates a distributed storage system and
the Fat-Tree topology of the DCN.

B. PROBLEM STATEMENT
In the big data storage system as mentioned before, dif-
ferent data streams accessed by analytic workloads have
distinct characteristics. Selecting the right to compute and
storage data node for data analytic applications is difficult
as the space of available options is large and the interactions
between options are complex [2]. How to decide the optimal
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FIGURE 1. The architecture of the data storage system.

data access location among all available data nodes to reduce
latency is critical for both performance and cost.

Since the DCN environment is complex and dynamic, the
traditional static model is no more suitable for the optimiza-
tion problem of DCN. The data access can be formulated as a
finite Markov decision process (FMDP) as described in one
of our previous works [5], for (1) the amount of candidate
data access locations(data nodes) are finite, and (2) each data
access decision depends only upon the present state of the
DCN, not on the sequence of events that preceded it, which is
called as the Markov property. Because for any given FMDP,
given infinite exploration time and a partly-random policy,
Q-learning can identify an optimal action-selection policy [23]
and it is a model-free reinforcement learning algorithm,
Q-learning is chosen as the solution to learn dynamically
from the historical DCN data access and apply improved data
access decision.

Although DQL can provide us with the optimal solution
through the finite Markov decision process, that is, when the
request arrives, it can determine the optimal storage location
for us. However, imagine that in the era of big data, with the
exponential growth of data, facing the dynamic allocation of
massive data and the demand of low latency, if all these data
are used as input of neural network learning, it will result
in huge input and training space and a low convergence of
the training process. In another word, the input of massive
data hinders the advantage of Q-learning. How to reduce the
training input while retaining information becomes the key
issue.

IV. DESIGN OF THE LOW LATENCY AND FAST
CONVERGENCE DATA ACCESS SCHEME (LFDS)
LFDS is composed of two parts: (1) the basic Deep
Q-Learning scheme (DQL) for dealing with the dynamic
environment and data access patterns, (2) the Sparse input
matrix method to further reduce the input state scale of DQL.
Fig. 3 give the overview of the LFDS scheme, followed by
design details of each part.

A. THE BASIC DEEP Q-LEARNING SCHEME
Q-learning is used on the master node acting as an agent inter-
acting with the data storage system. This agent continuously

FIGURE 2. Data storage system with the Fat-Tree topology: The master
node, switches and data nodes.

FIGURE 3. The overview of the LFDS scheme.

makes actions of choosing the write/read location for each
data block and collects the feedback from the environment,
including the current state of request patterns and network
conditions, and the resultant end-to-end performance metrics
(e.g. the read/write latency) due to these actions.

1) DESIGN OF Q-LEARNING
Similar to [5], the fundamental design of Q-learning consists
of three sets: states S, actionsA and rewardQ-function. Each
State of the storage system will changed according to each
Action, and brings differentReward, which can be expressed
as: S ×A→ R.
States: According to the characteristics of the big data

center, we divide the state into three categories, in which the
state information comes from the data read/write request log.
• Network conditions include the average latency of a read
request from the source node i to the destination node j
which is denoted as LRij , and the average latency of write
requests which is LWij , where i, j ∈ N . The average delay
is measured in a real-time network state information log.

• Request frequency include [24]: 1) Read rate or fre-
quency of data block m from source server i, denoted
by F [R]

i,m ; 2) Write rate of data block m to source server
i, denoted by F [W ]

i,m ; 3) Read rate of all data block from
source server i, denoted by F̂ [R]

i ; 4) Write rate of all data
block to source server i, denoted by F̂ [W ]

i .
Action:We use a to represent the destination node (storage

node) of data itemwriting.N is the number of storage servers,
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where a ∈ N . We use an array to represent the action set.
When the action is taken (i.e. after the target node is success-
fully stored), set the index value of the corresponding array to
1 (the index of the array is the number of the current storage
node), and set all other indexes to 0. In the dynamic data
center network environment, the actions taken by the master
node agent at every moment may affect the load balance of
the data center.
Reward: The big data center system needs to evaluate

every data location update (action), that is, the reward in
reinforcement learning. The goal of data center network opti-
mization is to obtain low latency data deployment by maxi-
mizing rewards. The reward is defined as the reciprocal of the
weighted sum of read/write delays for data item movement
at time [t, t ′), lw refers to the write latency, lRk is the read
latency of the k th round of training [24]. t is the time when
the data item m to be written, and t ′ is the time of next write
operation tom. In this period, although the data is only written
once, there may be multiple read operations, it is necessary to
calculate the delay of all read operations during this period.
Then average delay is seen as a reward for this time. The
calculation method of reward is shown in Formula 2.

Reward =
1
lw
+

1
|k|

∑
k∈K

1

lRk
(2)

2) OPTIMAL VALUE FUNCTION
The Markov decision process (MDP) indicates that the next
time state of the system is only the current time state, which
is independent of the historical state:

P (St+1|St , St−1, · · · , S1, S0) (3)

We use (S,A,P) to represent MDP, that is, S to represent
the state, A to action and P to the probability of state tran-
sition which means the probability of state St transferred to
St+1 by action At at time t. We define the state set S =
{s1, s2, · · · , sn}, Action set A = {node1, node2, · · · , noden}.
Our goal is to obtain a low latency data deployment strategy
by using a reinforcement learning algorithm. The strategy
here represents the mapping from the state to the action,
which is given by the conditional probability distribution π ,
that is, the distribution of the action set in the known state s:

π(a|s) = P [At = a|St = s] (4)

In Formula 4, strategy π specifies an action probability in
each state s. When strategy π has been solved, we can use
strategy π to figure out what action to take in any state s.
When we adopt the strategy π according to the current state
s and action a, the system will interact with the environment
according to the current strategy and get rewards. Reinforce-
ment learning ultimately seeks the optimal strategy, which
is measured by the cumulative return from environmental
feedback. The greater the cumulative return, the closer to
the optimal solution. When the master node agent adopts the
policy π , we can calculate the cumulative return. Cumulative

return is defined as:

Gt = Rt+1 + γRt+2 + γRt+3 · · · =
∞∑
k=0

γ kRt+k+1 (5)

where R is the reward, k is the round of training, γ is discount
factor, which is generally less than 1. Usually, the present
reward is more important.

When themaster node agent uses the policyπ , the expected
value of the cumulative reward under the state s is defined as
the state-value function:

Vπ (s) = Eπ

[
∞∑
k=0

γ kRt+k+1|St = s

]
(6)

Accordingly, the state-behavior value function is:

Qt+1(s, a) = (1− αt (s, a))Qt (s, a)+ αt (s, a)(RM (s, a)

+γ max
b∈U (s′

Qt (s′, b)) (7)

Finding the optimal strategy is equivalent to solve the
optimal value function:

Q∗(s, a) = max
π

Qπ (s, a) (8)

The updating formula of value function is as follows:

∀s, a : Q0(s, a) = C

∀s, a : Qt+1(s, a) = (1− αωt (s, a))Qt (s, a)

+αωt (s, a)(RM (s, a)+ γ max
b∈U (s)

Qt (s, b))

(9)

3) POLICY DESIGN
The master node agent explores the dynamic network envi-
ronment through the ε-greedy strategy. In other words, the
probability of ε is used to select random actions, and the
probability of 1-ε is used to calculate and make an optimal
action according to the current Q value, Where ε is a number
greater than 0 and less than 1. The mathematical expression
of ε-greedy strategy is:

π (a|s)←


1− ε +

ε

|A(ε)|
if a = argmaxa Q(s, a)

ε

|A(s)|
if a 6= argmaxa Q(s, a)

(10)

4) DEEP Q-NETWORK
Q-Learning can solve the Markov decision problem in low
dimensional state space, but in the real data center network,
everymicrosecond has to deal with huge data. It is not rational
to use the Q-Table to store state-action pairs. In this paper,
deep neural uses formula 6 to fit the state-value function [5].
Every time a certain number of samples are collected and the
Q-function is updated, that is to say, the parameters of the
neural network are constantly updated, to learn the optimal
action. Fig. 4 shows the deep neural network structure.

The network delay matrix x1 is the average delay of the
end i sending read operation request to the destination j. if we
use N to represent the number of servers in the data center,
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FIGURE 4. Deep neural network structure.

then the network delay matrix size is N × N . The read-write
requestmatrix x2 is the frequency of each data item requesting
operation from the original end. If we useM to represent the
number of data items, the size of the read/write request matrix
isM×N . Because there is only one source side of the current
data block request and there are N servers in total, the size of
Node deployment matrix is 1× N .
(wi,j, b) is used to represent parameters in neural networks.

w(l)
i,j represents the weight of the connection between i unit of

l layer and j unit of l+1 layer. b(l)i is the deviation parameter.
z(l)i is the weighted sum of i unit input in l layer, which can
be calculated by Formula 11.

zli =
nl∑
j=l

w(l)
ij xj + b

(l)
i (11)

When training neural network, there is a functional rela-
tionship between the output of the L layer node and the input
of the L + 1 layer node, such as Formula 12, which is called
activation function.

a(l)i = f
(
z(l)i
)

(12)

In this paper, We use the Rectified Linear Unit (Relu) as
the excitation function, which is a piecewise linear func-
tion. When the input parameter p is greater than zero, the
output is equal to the input and when p is less than zero,
the output is zero. Compared with sigmoid, Relu tends to
converge more easily in multi-layer deep neural network
training.

After training, the weights in the neural network will be
updated. It uses back propagation (BP) to update the weights
in the network. Gradient descent is a very common method
to find the local minimum value. Constructing square loss
function for for a single sample (x(i), y(i)) in a training set
T = {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}:

J
(
W , b, x(i), y(i)

)
=

1
2

∥∥∥hw,b (x(i))− y(i)∥∥∥2 (13)

According to the loss function, the gradient descentmethod
is used to updateW (l)

i,j and b
(l)
i :

W (l)
t,j = W (l)

i,j − α
∂

∂W (l)
i

J (w, b) (14)

b(l)i = b(l)i − α
∂

∂b(l)i
J (w, b) (15)

Every iteration of gradient descent calculates all samples,
which will affect the speed of convergence. So in this paper,
we use stochastic gradient descent (SGD) to randomly select
a group of samples from each iteration. In the case of large
sample data, we can get an acceptable loss value without
training all the samples.

When the system is running, clients continuously send
read/write requests to the master node agent. By using the
state matrix s of the current time t as the input of the neural
network, the agent obtains the action a of the time t through
the neural network or the greedy search strategy. Then the
agent takes the action a in the data center network environ-
ment of the time t + 1 to obtain the data center network state
and the reward of the time t+1.We can see that thewhole data
center environment is dynamic. After continuous attempts,
the master node will select 1281 sample data from the sample
pool as training data, and constantly update the parameters in
the neural network. In the end, the master node can take the
optimal node deployment location according to the current
load status of the data center network.

B. SPARSE INPUT MATRIX METHOD
By analyzing the features of real data, we observed that only a
few data appeared frequently and Zipf’s law [25] is satisfied.
As shown in Fig. 5, In other words, we do not need to consider
all the read/write request and only a small part of them covers
the read/write request law. Sparsity refers to retraining the
main feature information in the input as much as possible and
eliminating the secondary feature parameters. In the training
process, as many feature parameters as possible are expected
to be zero, so that the practical and effective information can
be concentrated in a low-dimensional space.

In our system, we assume that there are N data nodes and
M data blocks. fm,n denote the request frequency of data block
m by the node n. The Data-node matrix is recorded as:

A =

 f1,1 . . . f1,n
...

. . .
...

fm,1 · · · fm,n

 (16)

The maximum frequency value of row i of A denoted as
fmax . If the variance between fi,j and fmax is less than a certain
value d , then we call this data block i asActive Data in nodes
j. Otherwise, we call it Inactive Data and set f(i,j) = 0.

Active Data ←
(
fmax − fi,j

)2
< d, (d > 0) (17)

Inactive Data ←
(
fmax − fi,j

)2
> d, (d > 0) (18)

1Generally, the selection range is between (0, 232], and then 128 is the
most used value for small batches in the q-learning algorithm
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FIGURE 5. The distribution of requests among 30 data nodes.

We use the data blocks with high request frequency as the
input of our neural network, so neural network does not need
to train all the data. By preprocessing the data frequency
request in advance and reducing the deep Q-learning status
input, the following matrix B is obtained. Matrix B is formed
by sparseness of matrix A, where k � m.

B =

 f1,1 . . . f1,n
...

. . .
...

fk,1 · · · fk,n

 (19)

V. PERFORMANCE EVALUATION
Based on the real trace data, Microsoft Research Cambridge
Trace [26], a series of simulations are carried out in this
section. The experimental environment of this paper is based
on the Ubuntu 16.04 operating system. The hardware config-
uration is equipped with Intel @ Xeon (R) CPU e5-2697 V2
processor, 8G memory and 512GB hard disk. The required
software includes mininet v2.2.0, openflow 1.3, floodlight
v1.2 and memcached v1.59.

Through simulations, the performance of the proposed
LFDS in improving read/write latency is compared with
related benchmarks, and the convergence of each algorithm
is compared. Finally, the impact of the learning rate and
discount rate setting on the performance of the algorithm is
tested. Benchmark works used in this paper include:

1) DateBot [24]: the basic Q-learning scheme for data
storage using the original state space matrix.

2) CommonIP [27]: metaserver selects the node closest to
the current copy to place data.

3) DSBK [17]: data deployment strategy based on
k-means which is used to cluster the data.

Mininet [28] is used to simulate the data center network in
this paper. Mininet has the advantages of fast start-up speed,
large scalability, multiple bandwidths, easy installation and
use, which is very suitable for our simulation environment
construction. We have built a three-layer switch network
topology of Fat-Tree, and we set the direct link bandwidth

FIGURE 6. The simulated topology of the fattree.

FIGURE 7. The impact of sparse input matrix method on read/write
latency.

of each switch to 1Gbps [7]. A Fat-Tree, as shown in Fig. 6,
is set to 4 pods, so there are 32 hosts in the network. Each host
is equipped with Memcache. Each storage host has a client as
the request source and a memcached process as the request-
target. Memcache is a memory-based cache system, which
supports the storage of key-value pairs. It has excellent data
reading and writing performance and distributed expansion
capability. Similar to HDFS, we adopt a 3-copy data backup
strategy.

A. READ/WRITE LATENCY PERFORMANCE
We explored the impact of the sparse input matrix method
on DQL. We have carried out two groups of experiments
between the LFDS and the Datebot. From Fig. 7(a), we can
see that during the first 1500s of system operation, when
the request operation sent by the client is read, the average
read/write latency is lower than the Datebot. After the 1500s,
the convergence of the two algorithms is the same. In general,
the sparse input matrix method reduces the average latency
of reading operation by 39.3 ms. On the other hand, from
Fig. 7(b), the sparse input matrix method reduces the average
latency of write operation by 45.67ms. We can explain that
for the data center, the sparse DQL state-space matrix is
helpful to improve network utilization and reduce the internal
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FIGURE 8. Latency of all deployment strategy.

FIGURE 9. The impact of learning rate and discount rate on reward.

backbone network load. It is more helpful for its master node
to adopt the optimal server node deployment to achieve lower
read-write latency.

Finally, we compared the read/write latency performance
of all deployment strategy. It can be seen from Fig. 8 that dur-
ing the 3000s running of our system, the average read-write
delay of DQL is 81.7ms and 43.98ms respectively, which is
2.4% and 28.4% lower than DSBK (k = 4), and 63.9% and
82.4% lower than CommonIP respectively. We can conclude
that in the same experimental environment, DQL and DSBK
have lower average read/write latency than CommonIP. In the
aspect of data write operation, DQL reduces the latency by
28.4% compared with DSBK.

B. IMPACT OF LEARNING RATE AND DISCOUNT RATE ON
CONVERGENCE
We test the impact of learning rate α and discount rate γ on
reward in Q-learning. The learning rate refers to how much
difference between each iteration will be learned, and the
discount rate is the attenuation value of the future reward.
To control the variables, we preset the learning rate and a
discount rate as 0.075 and 0.7 respectively.

As shown in Fig. 9(a) when the learning rate is 0.06, the
reward value obtained by each action (storing data) taken
by the master node agent fluctuates between 40 and 80, and
the change is not very large over time but rebounds around
the 2600s.When the learning rate is 0.08 and 0.075 within the
1500s of system operation, there is a significant difference in
reward: ARAα0.08 > ARAα0.075 > ARAα0.06, and AVA is reward
per action. When the system runs for the 1500s, ARAα0.08
and ARAα0.075 are the same. While they all grow faster than
ARAα0.06.

FIGURE 10. The Cumulative Distribution Function of read/write latency.

According to Fig. 9(b), during the operation of the system,
the master node continuously deploys and stores the data,
and obtains the corresponding reward from the network envi-
ronment, to optimize the deployment strategy of the master
node. By changing the attenuation value of the reward, we
can find the optimal value for our scheme. During the system
operation time, ARAγ0.8 > ARAγ0.9 > ARAγ0.7. To sum up,
when the learning rate is 0.08 and the discount factor is
0.8, the reward for the master node to take action will be
greater.

C. CONVERGENCE COMPARISON
The faster the algorithm converges, the faster the data deploy-
ment scheme can be given. By comparing the cumulative
distribution function of read/write latency of each scheme,
we can see the convergence of the scheme. In another word,
the fast the CDF curve convergent, the better the scheme.
Given a simple example, in the Fig. 10(a), it is shown that
when the read latency of LFDS’s is 100ms, its CDF is about
0.95, which means that the distribution probability is 95%
when the read latency is less than 100ms. And the CDF
value of LFDS is already 1 at about 200ms, while that of the
CommonIP reaches 1 at about 800ms. This means that LFDS
has a faster convergence than CommonIP and can provide a
data deployment scheme faster than the CommonIP.

By analyzing the CDF value of CommonIP, DSBK (k= 8),
DSBK (k= 4) and LFDS, it is found that when the CDF value
of CommonIP is 0.6, the read-write delay is 200ms.When the
CDF ofDSBK(k= 8) is 0.6, the read/write latency is 174.2ms
(as shown in Fig. 10(a)) and 177.7ms (as shown in Fig. 10(b)).
When the CDF ofDSBK(k= 4) is 0.6, its read/write latency is
85.4ms and 112.2ms. The cumulative distribution probability
of LFDS is 0.6, and the delay is 81.4ms, 42.6ms. With the
sparse input matrix and the dedicated set learning/discount
rate, LFDS outperforms its counterparts on convergence,
which means high efficiency on data storage.

VI. CONCLUSION
This paper studied the data center storage method for reduc-
ing read/write latency in the data center. An evolutionary
Q-learning scheme, named as LFDS (Low latency and Fast
convergence Data Storage), was proposed. Reinforcement
learning was used to obtain the optimal assignment and the
neural network to fit the input data. Furthermore, the input
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matrix of Q-learning was sparse to shrink the dimensionality
of the massive input data. The simulation-based on real data
shows that LFDS can effectively reduce the read/write latency
of DCN.
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