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ABSTRACT There is a high degree of correlation among packets traversing the Internet. As these packets
are often routed through different paths, eliminating such correlation requires to process them individually.
Traditional universal compression solutions would not perform well over a single short packet because of the
insufficient data available for learning the unknown source parameters. In this paper, we define a notion of
correlation between information sources and characterize the average redundancy in universal compression
when side information from a correlated source is available. We show that the presence of side information
provides at least 50% traffic reduction over traditional universal compression when applied to network packet
data providing theoretical evidence for previous empirical studies.

INDEX TERMS Redundancy elimination, network compression, side information, correlated information
sources.

I. INTRODUCTION
Several studies have confirmed the presence of considerable
amount of correlation in network traffic data [1]–[5]. Specif-
ically, we may broadly define two types of correlation in
network traffic:
1) Temporal correlation within content from an informa-

tion source being delivered to a client.
2) Spatial correlation across content from different infor-

mation sources delivered to the same/different clients.
Network traffic abounds with the first dimension of temporal
correlation, which is well understood. For example, if traffic
contains mostly English text, there is significant correlation
within the content. The existence of the second dimension
of correlation is also confirmed in several real data experi-
ments [1]–[5].

This has motivated the employment of correlation elim-
ination techniques for network traffic data.1 The present
correlation elimination techniques are mostly based on con-
tent caching mechanisms used by solutions such as web-
caching [6], CDNs [7], and P2P networks [8]. However,
caching approaches that take place at the application layer,
do not effectively leverage the spatial correlation, which
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1Within the networking community, these techniques are known as redun-

dancy elimination (RE) but since redundancy has a specific meaning within
the universal compression community, we chose to refer to these techniques
as correlation elimination for the clarity of discussion.

exists mostly at the packet level [1]–[4]. To address these
issues, a few studies have considered ad-hoc methods such as
packet-level correlation elimination (deduplication) in which
redundant transmissions of segments of a packet that are seen
in previously sent packets are avoided [3], [4]. However, these
techniques are limited in scope and can only eliminate exact
duplicates from the segments of the packets leaving statistical
correlations intact.

It is natural to consider universal compression algorithms
for correlation elimination from network traffic data. While
universal compression algorithms, e.g., the Lempel-Ziv algo-
rithm [9], [10] and context tree weighting (CTW) [11], have
been very successful in many domains, they do not perform
very well on limited amount of data as learning the unknown
source statistics incurs an inevitable redundancy (compres-
sion overhead). This redundancy depends on the richness of
the class of the sources with respect to which the code is uni-
versal [12]–[16]. Further, traditional universal compression
would only attempt to deal with temporal correlation from
a stationary source and lacks the structure to leverage the
spatial correlation dimension.

In this paper, as an abstraction of correlation elimination
from network traffic, we study universal compression with
side information from a correlated source. The organization
of the paper and our contributions are summarized below.

• In Section II, we demonstrate that universal compression
of finite-length sequences (up to hundreds of kilobytes)
fundamentally suffers from a significant compression
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overhead. This motivates using side information for
removing this redundancy.

• In Section III, we present the formal problem setup.
We define a notion of correlation between two paramet-
ric information sources, and study strictly lossless and
almost lossless compressionwhen side information from
a correlated source is available to the encoder and/or the
decoder.

• In Section IV, we establish several nice properties of
correlated information sources. We show that the degree
of correlation is tuned with a single hyperparameter,
which results in independent information sources in one
end and duplicate sources in the other end.

• In Section V, we characterize the average maximin
redundancy with side information from a correlated
source. We also show that if permissible error is suffi-
ciently small the redundancy of almost lossless compres-
sion dominates the reduction in codeword length due to
the permissible error.

• In SectionVI, we define and characterize a notion of side
information gain and establish a sufficient condition on
the length of a side information string that would guar-
antee almost all of the benefits. We show that the side
information gain can be considerable in many scenarios
and derive a cutoff threshold on the size of memory
needed to obtain all of the side information gain.

• In Section VII, we show that the side information gain
is largely preserved even if the prefix constraint on the
code is dropped.

• In Section VIII, we provide a case study that shows how
these benefits would be extended in a network setting.

• Finally, the conclusions are summarized in Section IX.

II. MOTIVATION
We describe universal compression with side information
from a correlated source in the most basic scenario. We use
the notation xn = (x1, . . . , xn) to denote a string of length n
on the finite alphabet X . For example, for an 8-bit alphabet
that has 256 characters, each xi is a byte and xn denotes
a packet at the network layer. We assume that, as shown
in Fig. 1, the network consists of content server nodes S1 and
S2, an intermediate memory-enabled (relay or router) node
M , and client nodes C1 and C2.
Let’s assume that the content at S1 is stationary and cor-

related with the content at S2. Assume that ym has already

FIGURE 1. The basic abstraction of universal compression with side
information.

been routed through S2 → M → C2 path. Also, assume that
all nodes in the route, i.e., S2, M and C2, have memorized
the content ym. Now, assume that xn is to be routed through
S1 → M → C1 path. In this case, at the S1 → M link the
side information string is only available to the decoder, while
at theM → C1 link, the side information is only available to
the encoder. If xn was to be routed through S1 → M → C2
path, in this case, the side information would be available to
both the encoder and the decoder at M → C2 link. As such,
wewish to study universal compressionwith side information
that is available to the encoder and/or the decoder in this
paper.

Given the side information gain, in [17], we analyzed the
network-wide benefits of introducing memory-enabled nodes
to the network and provided results on memory placement
and routing for extending the gain to the entire network.
However, [17] did not explain how to characterize the side
information gain.

Let redundancy be the overhead in the number of bits
used for describing a random string drawn from an unknown
information source compared to the optimal codeword length
given by the Shannon code. In the universal compression of a
family of information sources that could be parametrizedwith
d unknown parameters, Rissanen showed that the expected
redundancy asymptotically scales as d

2 log n + o(log n) for
almost all sources in the family [13].2 Clarke and Barron [18]
derived the asymptotic average minimax redundancy for
memoryless sources to be d

2 log n + On(1).3 This was later
generalized by Atteson to Markov information sources [19].
The average minimax redundancy is concerned with the
redundancy of the worst parameter vector for the best code,
and hence, does not provide much information about the rest
of the source parameter values. However, in light of Ris-
sanen’s result one would expect that asymptotically almost
all information sources in the family behave similarly. The
question remains as how these would behave in the finite-
length regime.

In [16, Theorem 1], using a probabilistic treatment,
we derived sharp lower bounds on the probability of the
event that the redundancy in the compression of a random
string of length n from a parametric source would be larger
than a certain fraction of d

2 log n. [16, Theorem 1] provides,
for any n, a lower bound on the probability measure of the
information sources for which the average redundancy of
the best universal compression scheme would be larger than
d
2 log n. To demonstrate the implications of this result in the
finite-length regime of interest in this paper, we consider an
example using a first-order Markov information source with
alphabet size k = 256. This information source is represented
using d = 256×255 = 62580 parameters.We further assume
that the source entropy rate is 0.5 bit per byte (Hn(θ )/n =
0.5). This assumption is inspired by experiments on real
network data traffic in [17, Section IV.A]. It is implied by [16,

2f (n) = o(g(n)) if and only if limn→∞
f (n)
g(n) = 0.

3f (n) = O(g(n)) if and only if limn→∞ sup f (n)
g(n) <∞.
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Theorem 1] that the compression overhead is more than 75%
for strings of length 256kB. We conclude that redundancy
is significant in the compression of finite-length low-entropy
sequences, such as the Internet traffic packets that are much
shorter than 256kB. It is this redundancy that we hope to
suppress using side information from a correlated source.
The compression overhead becomes negligible for very long
sequences (e.g., it is less than 2% for strings of length 64MB
and above), and hence, the side information gain vanishes as
O (log n/n) when the sequence length grows large.

It is also worth noting the scope of benefits expected from
universal compression of network traffic with side informa-
tion is significant since file sharing and web data comprise
more than 50% of network traffic [20] for which, the corre-
lation levels may be as high as 90% [1]. Further, universal
compression with side information is applicable to storage
reduction in cloud and distributed storage systems, traffic
reduction for Internet Service Providers, and power and
bandwidth reduction in wireless communications networks
(e.g., wireless sensors networks, cellular mobile networks,
hot spots). See [17], [21] for a more thorough investigation
of such applications and also for practical coding schemes
for network packet compression.

III. PROBLEM SETUP
Let X be a finite alphabet. We assume that the server S
comprises of two parametric sources θ (1), θ (2) ∈ 2d , where
θ (1) := (θ (1)1 , . . . , θ

(1)
d ) and θ (2) = (θ (2)1 , . . . , θ

(2)
d ), and

where 2d is a d-dimensional compact set. Denote µn
θ (1)

and
µn
θ (2)

as the probability measures defined by the parameter
vector θ on strings of length n. If the information sources are
memoryless, we let θ (1) be the stochastic vector associated
with the categorical distribution over source characters, and
2d would be the d-dimensional probability simplex. In the
memoryless case, µn

θ (1)
would be a product distribution.

In this paper, we consider a Bayesian setting where we
assume that θ (1) is a priori unknown but its prior is known.
Unless otherwise stated, we use the notation Xn ∈ X n

and Ym ∈ Xm to denote random string of length n and m
drawn from µn

θ (1)
and µm

θ (2)
, respectively. See Assumption 1

(appendix) for a set of regularity conditions that we assume
on the parametric family.

We put forth a notion of correlation between the parameter
vectors θ (1) and θ (2), which are jointly drawn. As we shall
see, the degree of correlation could be tuned using a hyper-
parameter t . We assume that the unknown (and unobserved)
parameter vector θ (1) follows a prior distribution q supported
on 2d . Let Z t be a random string of length t that is drawn
from µt

θ (1)
. We assume that given Z t , the parameter vectors

θ (1) and θ (2) are independent and identically distributed.
This is shown in the Markov chain represented in Fig. 2.
Wewill state several nice properties of this proposedmodel in
Section IV.

Note that this framework is fundamentally different from
Slepian-Wolf coding that also targets the spatial correlation

FIGURE 2. The correlation model between the two information sources.

between distributed information sources [22]–[25]. In Slep-
ian-Wolf coding, the sequences from the distributed sources
are assumed to have character-by-character correlation,
which is also different from our correlation model that is
due to the parameter vectors being unknown in a universal
compression setup.

Let Hn(θ ) denote the Shannon entropy of the source given
θ , i.e.,

Hn(θ ) , E
{
log

(
1

µθ (Xn)

)}
=

∑
xn∈X n

µθ (xn) log
(

1
µθ (xn)

)
. (1)

Throughout this paper expectations are taken over functions
of the random sequence Xn with respect to the (unknown)
probability measure µθ , and log(·) denotes the logarithm in
base 2, unless otherwise stated. We further use the nota-
tion H (θ ) to denote the entropy rate, defined as H (θ ) ,
limn→∞

1
nH

n(θ ).
Let I(θ ) be the Fisher information matrix, where each

element is given by

I(θ )ij , lim
n→∞

1
n log e

E
{

∂2

∂θi∂θj
log

(
1

µnθ (X
n)

)}
. (2)

Fisher information matrix quantifies the amount of informa-
tion, on the average, that a random string Xn from the source
conveys about the source parameters. Let Jeffreys’ prior on
2d be defined as

wJ (θ ) ,
|I(θ )|

1
2∫

φ∈2d
|I(φ)|

1
2 dφ

. (3)

Roughly speaking, Jeffreys’ prior is optimal in the sense that
the average minimax redundancy is asymptotically achieved
when the parameter vector θ is assumed to follow Jeffreys’
prior (see [18] for a formalized statement and proof). This
prior distribution is particularly interesting because it corre-
sponds to the worst-case compression performance for the
best compression scheme.

We consider the family of block codes that map any n-
string to a variable-length binary sequence, which also satisfy
Kraft’s inequality [26]. Let

C , X n
× {ε}m,

CE , X n
× Xm,

D , {0, 1}∗ × {ε}m,

DD , {0, 1}∗ × Xm, (4)

where ε denotes an erasure. We use c : C → {0, 1}∗ and cE :
CE → {0, 1}∗ to denote the encoder without and with side
information, respectively. Similarly, we also use d : D→ X n
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and dD : DD
→ X n to denote the decoder without and with

side information, respectively. We use notations

C , (X n, εm) ∈ C,
CE , (X n, ym) ∈ CE ,
D , (c(C), εm) ∈ D,
DE , (cE (CE ), εm) ∈ D,
DD , (c(C), ym) ∈ DD,

DED , (cE (CE ), ym) ∈ DD. (5)

Next, we present the notions of strictly lossless and almost
lossless source codes, which will be needed in the sequel.
While the definitions are only given for the case with no side
information at the encoder and the decoder, it is straightfor-
ward to extend them using the above definitions. Our main
focus in on prefix free codes that ensure unique decodability
of concatenated code blocks (see [27, Chapter 5.1]).
Definition 1: The code c : C → {0, 1}∗ is called strictly

lossless (also called zero-error) if there exists a reverse map-
ping d : D→ X n such that

∀C ∈ C : d(D) = xn.
Definition 2: Let µn,m denote a joint probability distribu-

tion on (xn, ym). The code cε : C → {0, 1}∗ is called almost
lossless with permissible error probability ε(n), if there exists
a reverse mapping dε : D→ X n such that

E{1e(Xn,Ym)} ≤ ε(n),

where 1e(xn) denotes the error indicator function, i.e,

1e(xn, ym) ,

{
1 dε(D) 6= xn,
0 otherwise,

where D and E are defined in (5).
Most of the practical data compression schemes are

examples of strictly lossless codes, namely, the arithmetic
code [28], Huffman code [29], Lempel-Ziv codes [9], [10],
and CTW code [11]. In almost lossless source coding, which
is a weaker notion of the lossless case, we allow a non-
zero error probability ε(n) for any finite n while if ε(n) =
on(1) the code is almost surely asymptotically error free. The
proofs of Shannon [30] for the existence of entropy achieving
source codes are based on almost lossless random codes.
The proof of the Slepian-Wolf theorem [22] also uses almost
lossless codes. Further, all of the practical implementations
of SW source coding are based on almost lossless codes
(see [24], [25]).

We consider four coding strategies according to the orien-
tation of the switches se and sd in Fig. 3 for the compression
of xn drawn from µn

θ (1)
provided that the sequence ym drawn

from µm
θ (2)

is available to the encoder/decoder or not.4

4In this paper, we assume that m and n are a priori known to both the
encoder and the decoder.

FIGURE 3. The compression model for universal source coding with two
correlated parameter vectors.

• Ucomp (Universal compression without side informa-
tion), where the switches se and sd in Fig. 3 are both
open. This corresponds to C ∈ C and D ∈ D.

• UcompE (Universal compression with encoder side
information), where the switch se in Fig. 3 is closed but
the switch sd is open. This corresponds to CE

∈ CE and
DE ∈ D.

• UcompD (Universal compression with decoder side
information), where the switch se in Fig. 3 is open but
the switch sd is closed. This corresponds to C ∈ C and
DD ∈ DD.

• UcompED (Universal compression with encoder-
decoder side information), where the switches se and sd
in Fig. 3 are both closed. This corresponds to CE

∈ CE
and DED ∈ DD.

IV. IMPLICATIONS OF THE CORRELATION MODEL
In this section, we study some implications of the proposed
correlation model. This section may be skipped by the reader
and only referred to when a particular lemma is needed in the
subsequent proofs.
Lemma 1: The joint distribution of (θ (1), θ (2)) for all t ≥ 0

is given by

pt (θ (1), θ (2)) = w(θ (1))w(θ (2))f t (θ (1), θ (2)), (6)

where f t (θ (1), θ (2)) is defined as

f t (θ (1), θ (2)) ,
∑
zt∈X t

(
µt
θ (1)

(zt )µt
θ (2)

(zt )∫
φ∈2d

µtφ(z
t )w(φ)dφ

)
. (7)

Proof: We have

pt (θ (2)|θ (1)) =
∑
zt∈X t

p(θ (2), zt |θ (1)) (8)

=

∑
zt∈X t

p(θ (2)|zt )µt
θ (1)

(zt ) (9)

= w(θ (2))
∑
zt∈X t

(
µt
θ (1)

(zt )µt
θ (2)

(zt )∫
φ∈2d

µtφ(z
t )w(φ)dφ

)
, (10)

where (9) follows from the fact that θ (2) and θ (1) are inde-
pendent and identically distributed given Z t , and (10) follows
from the Bayes rule. Hence, the result follows.
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Next, we find the marginal distribution of θ (2),
i.e., pt

θ (2)
(θ (2)).

Lemma 2: For all t ≥ 0, we have

pt (θ (2)) = w(θ (2)). (11)

Proof: The proof follows from the following equations

pt
θ (2)

(θ (2)) =
∫
2d

pt
θ (2)|θ (1)

(θ (2)|θ (1))w(θ (1))dθ (1)

= w(θ (2))
∫
2d

f t (θ (1), θ (2))w(θ (1))dθ (1) (12)

= w(θ (2)), (13)

where (12) follows from Lemma 8 (appendix).
Lemma 3: θ (2) is independent of θ (1) if and only if t = 0,

i.e.,

p0(θ (1), θ (2)) = w(θ (1))w(θ (2)). (14)

Proof: By definition of f t (·, ·), and the fact that
µ0
θ (1)

(z0) = 1, we have

f 0(θ (1), θ (2)) =

(
1∫

φ∈2d
w(φ)dφ

)
= 1. (15)

Hence, the claim follows by invoking Lemma 1.
Lemma 4: θ (2) converges in mean square to θ (1) as t →
∞, that is

lim
t→∞

E
{
‖θ (2) − θ (1)‖2

}
= 0. (16)

Proof: Let θ̂ (1)(Z t ) be the maximum likelihood esti-
mator (MLE) of θ (1) from the observation Z t . By definition,
θ̂ (1)(Z t ) also serves as the MLE for θ (2). Then,

E{‖θ (2) − θ (1)‖2} ≤ E{‖θ (2) − θ̂ (1)(Z t )‖2}

+E{‖θ (1) − θ̂ (1)(Z t )‖2} (17)

= 2E{‖θ (1) − θ̂ (1)(Z t )‖2}, (18)

and the statement follows from the convergence of MLE
in mean square for the parametric information source as
assumed in the regularity conditions put forth in Assump-
tion 1 (appendix).
Remark: The degree of correlation between the two param-

eter vectors θ (1) and θ (2) is determined by the hyperparameter
t . This degree of correlation varies from independence of the
two parameter vectors at t = 0 all the way to the vectors
being equal (convergence in mean square) when t → ∞.
Further note that the covariance matrix of the parameter
vectors θ (1) and θ (2) asymptotically as t grows large behaves
like 2

t I
−1(θ (1)).

V. AVERAGE MAXIMIN REDUNDANCY
In this section, we investigate the average maximin redun-
dancy in universal compression of correlated sources for
different coding strategies put forth in Section III.

A. Ucomp CODING STRATEGY
Let ln : X n

→ R+ denote the universal (strictly lossless)
length function for Ucomp.5 This is the length associatedwith
a strictly lossless code. A necessary and sufficient condition
for existence of a code that satisfies unique decodability is
given by Kraft inequality:∑

xn∈X n

2−l
n(xn)
≤ 1. (19)

Denote Ln as the set of all strictly lossless universal length
functions that satisfy Kraft inequality. Denote Rn(ln, θ) as the
average redundancy of the code with length function ln(·),
defined as

Rn(ln, θ) , EXn∼µn{ln(Xn)} − Hn(θ ). (20)

Define R as the minimax redundancy of Ucomp, i.e.,

Rn = max
w∈�d

min
ln∈Ln

∫
θ∈2d

Rn(ln, θ)w(θ )dθ. (21)

It is well known that the maximum above is attained by
Jeffreys’ prior in the asymptotic limit as n grows large. Hence,
in the rest of this paper we assume that θ (1), θ (2) ∼ wJ follow
Jeffreys’ prior given in (3). On the other hand, the length
function that achieves the inner minimization is simply the
information random variable.

ın(xn) , − log
(∫

θ∈2d

µnθ (x
n)wJ (θ )dθ

)
. (22)

Putting it all together, we have

Rn = I (Xn; θ ), (23)

where I (·; ·) denotes the mutual information. This is Gal-
lager’s redundancy-capacity theorem in [32].

Clarke and Barron [18] showed that the average maximin
redundancy for strictly lossless Ucomp is

Rn =
d
2
log

( n
2πe

)
+ log

∫
φ∈2d

|I(φ)|
1
2 dφ + on(1).

This result states that the average maximin redundancy in
Ucomp coding strategy is O(log n) and also is linearly pro-
portional to the number of unknown source parameters, d .

It is straightforward to define Rnε as the average redundancy
when θ (1) follows Jeffreys’ prior when we are restricted to
almost lossless codes with permissible error ε. Note that it
is clear that Rnε ≤ Rn. A natural question that arises is how
much reduction is achievable by allowing a permissible error
probability in decoding. Our main result on Ucomp coding
strategy with almost lossless codes is given in the following
theorem.
Theorem 1: If ε(n) = O( 1n ), then

Rnε = Rn − On(1). (24)

5We ignore the integer constraint on the length functions in this paper,
which will result in a negligible redundancy smaller than 1 bit and is exactly
analyzed in [26], [31].
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Proof: The proof is completed by invoking Lemma 12
in the appendix and noting that Rn = O(log n).
The content of Theorem 1 is that if the permissible error,

ε(n), in almost lossless compression vanishes fast enough as
n grows, then asymptotically the maximin risk imposed by
universality of compression dominates any savings obtained
by allowing an ε(n) average error in decoding. Hence, in the
rest of this paper we only focus on the family of strictly
lossless codes.

B. UcompE CODING STRATEGY
Since the side information sequence ym is not available to the
decoder, then the minimum number of average bits required
at the decoder to describe the random sequence Xn is indeed
H (Xn). On the other hand, it is straightforward to see that

H (Xn) = Hn(θ (1))+ I (Xn; θ (1)), (25)

where I (Xn; θ (1)) = Rn by the redundancy-capacity theorem.
Hence, in UcompE strategy, we establish that the side infor-
mation provided by ym only at the encoder does not provide
any benefit on the strictly lossless universal compression of
the sequence xn.

C. UcompD CODING STRATEGY
Considering the UcompD strategy, by Assumption 1
(appendix), the two sourcesµθ (1) and µθ (2) are d-dimensional
parametric ergodic sources. In other words, any pair
(xn, ym) ∈ X n

× Xm occurs with non-zero probability and
the support set of (xn, ym) is equal to the entire X n

× Xm.
Therefore, the knowledge of the side information sequence ym

at the decoder does not rule out any possibilities for xn at the
decoder. Hence, we conclude that side information provides
no reduction in average codeword length (see [33] and the
references therein for a discussion on zero-error coding).
However, this is not the case in almost lossless source coding.
See [21] for an almost lossless code in this case.

D. UcompED CODING STRATEGY
In the case of UcompED, let ln,m : X n

× Xm
→ R+ denote

the universal prefix-free strictly lossless length function.
Denote Ln,m as the set of all possible such length functions.
Denote Rn,m(ln,m, θ (1), θ (2)) as the expected redundancy of
the code with length function ln,m(·, ·):

Rn,m(ln,m, θ (1), θ (2))

, EXn,Ym∼µn,m
θ (1),θ (2)

{ln,m(Xn,Ym)} − Hn(θ (1)), (26)

where µn,m
θ (1),θ (2)

is the product distribution

µ
n,m
θ (1),θ (2)

(xn, ym) , µn
θ (1)

(xn)µm
θ (2)

(ym). (27)

Here we assume that θ (1), θ (2) follow the correlation model
that we put forth in this paper with their marginals being
Jeffreys’ prior. Hence, we define

Rn,m,t , E(θ (1),θ (2))∼pt

{
min

ln,m∈Ln,m
Rn,m(ln,m, θ (1), θ (2))

}
. (28)

In this case, following the same lines of arguments in [32],
we can conclude that

Rn,m,t = I (Xn; θ (1)|Ym). (29)

The following intuitive inequality demonstrates that the
redundancy decreases when side information is available.
Lemma 5: For all n,m, t ≥ 0, we have

Rn,m,t ≤ Rn. (30)

with equality if and only if min{n,m, t} = 0.
Proof: First notice that Rn,m,t = I (Xn; θ (1)|Ym) and

Rn = I (Xn; θ (1)) and hence the inequality is achieved by
applying Lemma 9 (appendix) and noticing theMarkov chain
Xn→ θ (1)→ Ym.
Equality holds if and only if I (Xn;Ym) = 0. We just need

to show that I (Xn;Ym) = 0 if and only if min{n,m, t} = 0.
If n = 0 or m = 0, then I (Xn;Ym) = 0. If t = 0, then θ (1)

and θ (2) are independent by Lemma 3. Hence, Xn and Ym are
also independent. Conversely, assume that n,m > 0, then by
Lemma 3, I (Xn;Ym) = 0 only if t = 0 completing the proof.

According to Lemma 5, side information cannot hurt,
which is intuitively expected. However, there is no benefit
provided by the side information when the two parameter
vectors of the sources S1 and S2 are independent. This is
not surprising as when θ (1) and θ (2) are independent, then
Xn (produced by S1) and Ym (produced by S2) are also
independent. Thus, the knowledge of ym does not affect the
distribution of xn. Hence, ym cannot be used toward the
reduction of the codeword length for xn.
Next, we present our main result on the average maximin

redundancy for strictly lossless UcompED coding.
Theorem 2: For strictly lossless UcompED coding,

if min{m, t} = On(1), then

Rn,m,t = Rn − On(1),

and if min{m, t} = ωn(1), then6

Rn,m,t = R̂(n,m, t)+ on(1),

where R̂(n,m, t) is defined as

R̂(n,m, t) ,
d
2
log

(
1+

n
m?(m, t)

)
, (31)

and m?(·, ·) is given by the following:
1

m?(m, t)
,

1
m
+

2
t
. (32)

Proof: Recall that

Rn,m,t = I (Xn; θ (1)|Ym). (33)

Further, note the following Markov chain

θ̂ (1)(Xn)→ θ (1)→ Z t → θ (2)→ Ym. (34)

Assuming that min{m, t} = ωn(1), i.e., both grow unbounded
with n. Then, we can rely on the asymptotic normality of all

6f (n) = ω(g(n)) if and only if g(n) = o(f (n)).
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of the variables above and noting that θ̂ (1)(Xn) is a sufficient
statistic for Xn, then θ (1) is Gaussian distributed with mean
θ̂ (Ym) with variance 1

m? =
2
t +

1
m given Ym. Hence, invoking

Lemma 10 (appendix) we arrive at the desired result.
For min{m, t} = On(1), notice that from Lemma 9 we can

deduce that

I (Xn; θ (1))− I (Xn; θ (1)|Ym) = I (Xn;Ym)

≤ I (θ (1);Ym). (35)

Hence, the result is concluded by noting that I (θ (1);Ym) =
On(1).

Theorem 2 characterizes the average maximin redundancy
in the case of UcompED with side information from a corre-
lated source. If the sources are not sufficiently correlated or
the side information string is not long enough, then not much
performance improvement is expected and the redundancy
is close to that of Ucomp strategy. On the other hand, for
sufficiently correlated information sources with sufficiently
long side information string, one expects that the redundancy
would be significantly reduced. In a sense, m?(m, t) can be
thought of as the effective length of the side information
string. When t → ∞, we see that m?(m, t) ≈ m while for
smaller t , we see that m?(m, t) < m.

VI. SIDE INFORMATION GAIN
In this section, we define and characterize the side infor-
mation gain in the different coding strategies described in
Section III. Side information gain is defined as the ratio of
the expected codeword length of the traditional universal
compression (i.e., Ucomp) to that of the universal compres-
sion with side information from a correlated source (i.e.,
UcompED):

gn,m,t (θ ) ,
Hn(θ )+ Rn

Hn(θ )+ Rn,m,t
, (36)

In other words, gn,m,t (θ ) is the side information gain on a
string of length n drawn from µnθ and compressed using
UcompED coding strategy with a side information string
of length m drawn from a correlated source with degree of
correlation t .
The following is a trivial lower bound on the side informa-

tion gain.
Lemma 6: For all n,m, t ≥ 0, and θ ∈ 2d :

gn,m,t (θ ) ≥ 1. (37)

Proof: This is proved by invoking Lemma 5.
Next, we present our main result on the side information

gain in the next theorem.
Theorem 3: If min{m, t} = On(1), then gn,m,t (θ ) = 1 +

O( 1n ). If min{m, t} = ωn(1):

gn,m,t (θ ) = 1+
Rn − R̂(n,m, t)

Hn(θ )+ R̂(n,m, t)
+ O

(
1
n

)
, (38)

where R̂(n,m, t) is defined in (31).

Proof: The theorem is proved by invoking Theorem 2
and light algebraic manipulations.

Consider the case where the string length n grows to infin-
ity. Intuitively, we would expect the side information gain to
vanish in this case.
Lemma 7: For any m, t ≥ 0 and any θ ∈ 2d , we have

lim
n→∞

gn,m,t (θ ) = 1. (39)

Let us demonstrate the significance of the side information
gain through an example. We let the information source be
a first-order Markov source with alphabet size k = 256.
We also assume that the source is such that Hn(θ )/n = 0.5
bit per source character (byte). In Fig. 4, the lower bound on
the side information gain is demonstrated as a function of the
sequence length n for different values of the memory size m.
As can be seen, significant improvement in the compression
may be achieved using memorization. For example, the lower
bound on g32kB,m,∞(θ ) is equal to 1.39, 1.92, 2.22, and 2.32,
for m equal to 128kB, 512kB, 2MB, and 8MB, respectively.
Further, g512kB,∞,∞(θ ) = 2.35. Hence, more than a factor of
two improvement is expected on top of traditional universal
compression when network packets of lengths up to 32kB are
compressed using side information. See [17, Section III] for
practical compression methods that aim at achieving these
improvements. As demonstrated in Fig. 4, the side informa-
tion gain for memory of size 8MB is very close to gn,∞,∞(θ ),
and hence, increasing the memory size beyond 8MB does not
result in substantial increase of the side information gain. On
the other hand, we further observe that as n → ∞, the side
information gain becomes negligible regardless of the length
of the side information string. For example, at n = 32MB
even when m→∞, we have g32MB,∞,∞

≈ 1.01, which is a
subtle improvement. This is not surprising as the redundancy
that is removed via the side information isO(log n), and hence
the gain in (38) is O( log nn ) which vanishes as n grows.

FIGURE 4. Theoretical lower bound on the side information
gain gM(n,m, θ,0.05,0) for the first-order Markov source with alphabet
size k = 256 and entropy rate Hn(θ)/n = 0.5.
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Thus far, we have shown that significant performance
improvement is obtained from side information on the com-
pression of finite-length strings from low-entropy sources.
As also was evident in the previous example, as the size
of the memory increases the performance of the universal
compression with side information is improved. However,
there is a certain memory size beyond which increasing the
side information length does not provide further compression
improvement. In this section, we will quantify the required
size of memory such that the benefits of the memory-assisted
compression apply.

Then, the following theorem determines the size of the
required memory for achieving (1 − δ) fraction of the gain
for unlimited memory. Let ĝn,t (θ ) be defined as

ĝn,t (θ ) , 1+
Rn

Hn(θ )
. (40)

It is straightforward to see that ĝn,t (θ ) is the limit of side infor-
mation gain as the effective side information string length
m?(m, t)→∞, where m?(·, ·) is defined in (32).
Theorem 4: Let mnδ (θ ) be defined as

mnδ (θ ) ,
1− δ
δ

n
Hn(θ )

d
2
log e. (41)

Then, for any m, t ≥ 0 such that m?(m, t) ≥ mnδ (θ ), we have

gn,m,t (θ ) ≥ (1− δ)̂gn,t (θ ).

Proof: By invoking Theorem 3, we have

gn,m,t (θ ) ≥
Hn(θ )

Hn(θ )+ R̂(n,m, t)
ĝn,t (θ ). (42)

Hence, we need to show that form?(m, t) > mn,tδ (θ ), we have

Hn(θ )

Hn(θ )+ R̂(n,m, t)
≥ (1− δ). (43)

By noting the definition of mnδ (θ ), for any m?(m, t) >

mnδ (θ ), we have

d
2

n
m?(m, t)

log e ≤
δ

1− δ
Hn(θ ). (44)

By noting that log
(
1+ n

m

)
≤

n
m log e, we have

d
2
log

(
1+

n
m?(m, t)

)
≤

δ

1− δ
Hn(θ ), (45)

and hence, the proof is completed by noting the definition of
R̂(n,m, t) in (31) and light algebraic manipulations.

Theorem 4 determines the size of the memory that is
sufficient for the gain to be at least a fraction (1−δ) of the gain
obtained as m → ∞. Considering our working example of
the first-order Markov source in this section with Hn(θ )/n =
0.5, with δ = 0.01, we have mδ(θ ) ≈ 8.9MB is sufficient
for the gain to reach 99% of its maximum confirming our
previous observation. This also complements the practical
observations reported in [17, Section IV.C].

VII. IMPACT OF PREFIX CONSTRAINT
Thus far, all of the results of the paper are on prefix-free codes
that satisfy Kraft inequality in (19). However, we remind
the reader that our main application is in network packet
compression. In this case, the code need not be uniquely
decodable (satisfy Kraft inequality) as the beginning and the
end of each block is already determined by the header of
the packet. Thus, the unique decodability condition is too
restrictive and can be relaxed. It is only necessary for the
mapping (the code) to be injective so as to ensure that one
block of length n can be uniquely decoded. Such codes are
known as one-to-one codes. These are also called nonsingular
codes in [27, Chapter 5.1]. An interesting fact about one-to-
one codes is that while the average codeword length of prefix-
free codes can never be smaller than the Shannon entropy,
the average codeword length of one-to-one codes can go
below the entropy (cf. [34]–[38] and the references therein).

Let ln∗(·) denote a strictly lossless one-to-one length func-
tion. Further, denote Ln∗ as the collection of all one-to-one
codes (bijective mappings to binary sequences) on sequences
of length n. Let Rn∗(l

n
∗, θ) denote the average redundancy of

the one-to-one code, which is defined in the usual way as

Rn∗(l
n
∗, θ) , E{ln∗(X

n)} − Hn(θ ). (46)

Further, define

Rn∗ , max
w∈�d

min
ln∗∈Ln∗

∫
θ∈2d

Rn∗(l
n
∗, θ)w(θ )dθ, (47)

where �d denotes the set of probability measures on 2d .
Theorem 5: The following bound holds:

Rn∗ ≥
d − 2
2

log
n

2πe
− log 2πe2

+

∫
θ∈2d

|I(θ )|
1
2 dθ + O

(
1
√
n

)
. (48)

Proof: We have

H (Xn) = H (Xn|θ )+ I (Xn; θ ) (49)

Assuming that θ follows Jeffreys’ prior, we can get

H (Xn) = Hn
+ Rn, (50)

where Rn is the average minimax redundancy for prefix-free
codes given in (24) and Hn is given by

Hn ,
∫
θ∈2d

Hn(θ )wJ (θ )dθ. (51)

We now invoke the main theorem in [34] to obtain a lower
bound on E{ln∗(X

n)}. The proof is completed by observing
that logHn

≤ log n and noting that the average redundancy
for the case where θ follows Jeffreys’ prior provides a lower
limit on the average maximin redundancy.
Theorem 5 shows that the compression overhead as mea-

sured against entropy is d−2
2 log n+ On(1). However, as dis-

cussed earlier, non-universal one-to-one codes achieve an
average codeword length that can go below entropy. In partic-
ular, for the family of parametric sources studied in this paper,
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for almost all θ ∈ 2d , it is shown that the average codeword
length is given by Hn(θ ) − 1

2 log n + On(1) [35], [36], [38].
Hence, the cost of universality is d−1

2 log n+On(1). See [39],
[40] for a more complete study of the one-to-one universal
compression problem. Additionally, see [41] for new insights
on why the cost of universality scales with one less parameter
in one-to-one compression, i.e., d−12 , as compared to d

2 for
prefix-free codes.

It is desirable to characterize how much reduction is
offered by universal one-to-one compression compared with
the prefix-free universal compression. We compare the per-
formance of universal one-to-one codes with that of the
universal prefix-free codes through the running numerical
example from Section II. This example is based on a first-
order Markov source with alphabet size |X | = 256, where
the number of source parameters is d = 256 × 255 =
62580. Note that we have not provided an actual code for the
one-to-one universal compression. We compare the converse
bound of Theorem 5 with the average maximin redundancy
of universal prefix-free codes.

Fig. 5 compares the minimum average number of bits
per symbol required to compress the class of the first-order
Markov sources normalized to the entropy of the sequence
for different values of entropy rates in bits per source symbol
(per byte). As can be seen, relaxing the prefix constraint at
its best does not offer meaningful performance improvement
on the compression performance as the curves for the prefix-
free codes and one-to-one codes almost coincide. This leads
to the conclusion that the universal one-to-one codes are not
of much practical interest.

FIGURE 5. Average maximin redundancy as a function of string length for
prefix-free and one-to-one universal codes for different values of entropy
rate Hn(θ)/n.

On the other hand, if the source entropy rate is 1 bit per byte
(Hn(θ )/n = 1), the compression rate on sequences of length
32kB (for both prefix-free and one-to-one codes) is around
2.25 times the entropy-rate, which results in more than 100%
overhead on top of the entropy-rate for both prefix-free and
one-to-one universal codes. Hence, we conclude that average
redundancy poses significant overhead in the universal com-
pression of finite-length low-entropy sequences, such as the
Internet traffic, which cannot be compensated by dropping

the prefix constraint. Hence, the side information gain pro-
vided from a correlated information source is essential even
if the prefix constraint is dropped.

VIII. A NETWORK CASE STUDY
In this section, we demonstrate how the side information gain
could be leveraged in terms of the compression of network
traffic. Assume that source S is the CNN server and the packet
size is n = 1kB. Further, assume that the memory size is
4MB. In Section II, we demonstrated that for this source,
the average compression ratio for Ucomp is 1

nE{l
n(Xn)} =

4.42 bits per byte for this packet size. We further expected
that the side information gain for such packet size be at least
g = 5. Note that the rest of this discussion is concerned as
to how the side information gain impacts the overall perfor-
mance in the network.

We define the network-wide gain of side information mea-
sured in bit×hop (BH) for the sample network presented
in Fig. 6, where M denotes the memory element. Assume
that the server S would serve the client C in the network.
The intermediate nodes Ri are not capable of memorization.
Recall that the side information gain g is only achievavle on
every link in a path where the encoder and the decoder both
have access to the side information string.

FIGURE 6. The sample network in case study.

Let d(S,C) denote the length of the shortest path from
S to C , which is clearly d(S,C) = 3, e.g., using the path
e1, e5, e10. Let BH(S,C) denote the minimum bit-hop cost
required to transmit the sequence (of length n) from S to C
without any compression mechanism, which is BH(S,C) =
24kbits (which is 1kB×8bits/byte×3). In the case of end-to-
end universal compression, i.e., using Ucomp, on the average
we need to transmit BHUcomp = E{ln(Xn)}d(S,C) bit×hop
for the transmission of a packet of length n to the client.
On the other hand, in the case of universal compres-

sion with side information, i.e., using UcompED, for every
information bit on the path from the server to the mem-
ory element M , we can leverage the side information, and
hence, we only require 1

nE{l
n,m(Xn,Ym)} = 1

ngE{l
n(Xn)} bit

transmissions per each source character that is transmitted
to the memory element. Then, the memory element M will
decode the received codeword using UcompED decoder and
the side information string ym. It will then re-encode the
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result using Ucomp encoder for the final destination (the
client C). In this example, this implies that we require to
transmit 2

nE{l
n,m(Xn,Ym)} bit×hop on the average from S

toM on links e1 and e3 (where d(S,M ) = 2) for each source
character. Then, we transmit the message using E{ln(Xn)}
bit×hop per source character from M to C on the link e9.
Let BHUcompED be the minimum bit×hop cost for transmit-
ting the string (of length n) using network compression that
leverages side information in the S → M path, i.e.,

BHUcompED = d(S,M )E{ln,m(Xn,Ym)}

+d(M ,C)E{ln(Xn)}

= 2E{ln,m(Xn,Ym)} + E{ln(Xn)}. (52)

Further, let GBH be the bit×hop gain of network compression,
defined as GBH =

BHUcomp
BHUcompED

. Thus, GBH = 2.14 in this
example by substituting g = 5. In other words, network
compression (using UcompED in the S → M path) achieves
more than a factor of 2 saving in bit×hop over the traditional
universal compression of the packet (using Ucomp from
S to C) in the sample network.

In [17], we fully characterize the scaling of the bit×hop
gain, GBH, for scale-free networks (random power-law
graphs) as a function of side information gain, g. We show
that GBH ≈ g if the fraction of nodes in the network equipped
with memorization capability is larger than a phase-transition
cutoff. We refer the interested reader to [17] for more
details.

IX. CONCLUSION
In this paper, we formulated and studied universal compres-
sion with side information from a correlated source. We
showed that redundancy can impose a significant overhead
in universal compression of finite-length sequences, such as
network packets.We put forth a notion of correlation between
information sources where the degree of correlation is con-
trolled by a single hyperparameter.We showed that side infor-
mation from a correlated source can significantly suppress
the redundancy in universal compression.We defined the side
information gain and showed that it can be large with reason-
able side information size for small strings, such as network
packets. We showed that this gain is largely preserved even
if the code is allowed to be only almost lossless allowing a
sufficiently small error that vanishes asymptotically. We also
showed that dropping the prefix constraint would not remedy
the universal compression problem either. Finally, we showed
how these benefits are applicable in network compression in a
case study.

ASSUMPTIONS AND PROOFS
Assumption 1 (regularity conditions): We need some reg-

ularity conditions to hold for the parametric model so that
our results can be derived.

1) The parametric model is smooth, i.e., twice differen-
tiable with respect to θ in the interior of 2d so that

the Fisher information matrix can be defined. Further,
the limit in (2) exists.

2) The determinant of fisher information matrix is finite
for all θ in the interior of 2d and the normalization
constant in the denominator of (3) is finite.

3) The parametric model has a minimal d-dimensional
representation, i.e., I(θ ) is full-rank. Hence, I−1(θ )
exists.

4) We require that the central limit theorem holds for the
maximum likelihood estimator θ̂ (xn) of each θ in the
interior of 2d so that (θ̂ (Xn) − θ )

√
n converges to

a normal distribution with zero mean and covariance
matrix I−1(θ ).

Lemma 8: For all t ≥ 0, we have

Eθ (1)∼q
{
f t (θ (1), θ (2))

}
=

∫
θ (1)∈2d

f t (θ (1), θ (2))w(θ (1))dθ (1)

= 1. (53)

Proof: Following the equations∫
θ (1)∈2d

f t (θ (1), θ (2))w(θ (1))dθ (1)

=

∑
zt∈X t

(
µt
θ (2)

(zt )
∫
θ (1)∈2d

µt
θ (1)

(zt )w(θ (1))dθ (1)∫
φ∈2d

µtφ(z
t )w(φ)dφ

)

=

∑
zt∈X t

µt
θ (2)

(zt ) (54)

= 1, (55)

where (54) is obtained since the two integral terms in the
numerator and denominator cancel each other out.
Lemma 9: Let X → Y → Z form a Markov chain. Then,

I (X;Y ) ≥ I (X;Y |Z ), (56)

with equality if and only if I (X;Z ) = 0. The gap in the
inequality is also fully characterized by

I (X;Y )− I (X;Y |Z ) = I (X;Z ). (57)

Proof: This is a well-known result on Markov chains
and could be proved by applying the chain rule to I (X;Y ,Z )
in different orders and noting that I (X;Z |Y ) = 0 due to the
Markov chain.
Lemma 10: Let X → Y → Z form aMarkov chain, where

X ,Y ,Z are all Gaussian distributed and supported on Rd .
Further, let X follow a non-informative improper uniform
distribution on Rd . Let Y be a noisy observation of X with
variance σ 2, i.e., Y = X + N1 where N1 ∼ N (0d , σ 2 Id )
is independent of X, and 0d and Id denote the d-dimensional
all-zero vector and identity matrix, respectively. In the same
way, let Z be a noisy observation of Y with variance τ 2.
Then,

I (X;Y |Z ) =
d
2
log

(
1+

τ 2

σ 2

)
. (58)
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Proof: The proof is completed by following the follow-
ing equations:

I (X;Y |Z ) = h(X |Z )− h(X |Y ,Z ) (59)

= h(X |Z )− h(X |Y ) (60)

=
d
2
log
(
2πe(σ 2

+τ 2)
)
−
d
2
log(2πeσ 2) (61)

=
d
2
log

(
1+

τ 2

σ 2

)
. (62)

where h denotes differential entropy.
Lemma 11: The following inequality holds:

H (Xn|1e(Xn), X̂n) ≤ εH (Xn). (63)

Proof:

H (Xn|1e(Xn), X̂n)= (1− ε)H (Xn|1e(Xn, ) = 0, X̂n)

+εH (Xn|1e(Xn) = 1, X̂n) (64)

≤ εn log |X |. (65)

The first term in (64) is zero since if 1e(Xn) = 0, we have
Xn = X̂n and hence

H (Xn|1e(Xn, ) = 0, X̂n) = 0.

The inequality in (65) then follows from the fact that xn is
supported on X n, and hence its entropy is bounded from
above by n log |X |.
Lemma 12: The average minimax redundancy for the

almost lossless Ucomp coding strategy is lower bounded by

Rnε ≥ (1− ε)Rn − hb(ε)− εn log |X |,

where hb(ε) is the binary entropy function defined as:

hb(ε) , ε log
(
1
ε

)
+ (1− ε) log

(
1

1− ε

)
. (66)

Proof: Consider H (Xn, X̂n, 1e(Xn)). Note that both X̂n

and 1e(Xn) are deterministic functions of Xn and hence

H (Xn, X̂n, 1e(Xn)) = H (Xn). (67)

On the other hand, we can also use the chain rule in a different
order to obtain

H (Xn, X̂n, 1e(Xn)) = H (X̂n)+ H (1e(Xn)|X̂n)

+H (Xn|1(Xn), X̂n). (68)

Hence,

H (X̂n) = H (Xn)− H (1e(Xn)|X̂n)− H (Xn|1(Xn), X̂n)

≥ H (Xn)− hb(ε)− H (Xn|1(Xn), X̂n) (69)

≥ H (Xn)− hb(ε)− εn log |X |, (70)

where the inequality in (69) is due to the fact that
H (1e(Xn)|X̂n) ≤ H (1e(Xn)) = hb(ε) and the inequality
in (70) is due to Lemma 11. The proof of the lemma is
completed by noting that H (Xn) = Hn(θ )+ Rn.
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