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ABSTRACT Direct volume rendering is a widely used technique for extracting information from three-
dimensional scalar fields acquired by measurement or numerical simulation. However, the translucency of
direct volume rendering to express the internal structure of the volume often makes it difficult to recognize
the depth of complex structures. In this paper, we propose a new method for applying depth-of-field effects
to volume ray-casting to improve the depth perception. A thin lens camera model is used to simulate rays
passing through different parts of lens. The proposed method is implemented in the GPU pipeline with
no preprocessing, so any acceleration techniques of volume ray-casting can be applied without restrictions.
We also propose a multi-pass rendering framework using progressive lens sampling. This new technique uses
a different number of lens samples per pixel, depending on the size of the circle of confusion at the point
where each ray intersects the volume data. In the experiments with various data, we demonstrated that higher
quality images with better depth perception were generated up to 9x faster than the existing depth-of-field
method in direct volume rendering.

INDEX TERMS Computer graphics, computers and information processing, image generation, imaging,
depth of field effect, direct volume rendering, ray casting, visualization.

I. INTRODUCTION
Volume visualization is used in various applications that
require interactive exploration of volume data. Especially in
the medical field, it helps doctors to navigate anatomical
structure of a patient quickly and accurately with mini-
mal cognitive effort. Medical imaging data, which is usu-
ally obtained by physical measurement devices such as CT
and MRI scanners, inherently has noise and inhomogeneity.
In addition, the organic shapes and spatial relationships
between anatomical structures can be often quite complex to
recognize, making medical visualiation difficult [1]. In direct
volume rendering, the scalar volumetric data is represented in
a semi-transparent color so that the inside of the object can be
captured. However, overlapping or hidden internal structures
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still make the spatial comprehension of the data difficult
due to translucency [2]. This makes the depth perception of
volume visualization more complicated for inhomogeneous
data such as medical image data.
Depth-of-field (DOF) is the range of the object’s distance

through which the eye or camera sees the object in focus.
Conversely, as the object is far away from the range, it gradu-
ally blurs. This is one of theways how humans perceive depth,
and it has been used in computer graphics to enhance realism
or draw attention to certain areas. The DOF effect in ray trac-
ing, which uses stochastic sampling to sample the aperture
of a lens to produce a high quality offline image, has been
studied and is considered as ground truth [3]. In the surface
rendering field, a lot of research is aimed at achieving DOF
effects in real time for use in games. Most researches focus
on post-processing a pinhole image using blur filters based on
its depth map [4], [5]. However, in volume rendering fields,
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DOF effects have been rarely researched. One well-known
DOF research in volume rendering is by Schott et al. [6],
which applies DOF effects to slice-based volume rendering.
The DOF effect can be easily integrated into slice-based
volume rendering by applying a blur filter between slices.
However, in some cases, this technique produces images with
excessive blurring. Except for this study, volume rendering
techniques with DOF, especially with respect to volume ray-
casting, have been rarely explored. Considering that the vol-
ume ray-casting has fewer restrictions and more acceleration
methods than slice-basedmethods [7], the DOF effect applied
to the volume ray-casting is more useful in realistically visu-
alizing medical volume data in real time.

In this paper, we introduce a real-time DOF volume
ray-casting method providing a realistic visualization. The
proposed method is GPU-friendly and easily integrated into
the volume ray-casting. It also matches well various acceler-
ation techniques related to the volume ray-casting. We enable
additional acceleration through progressive lens sampling,
which allows us to obtain DOF images in real time while
preserving image quality. The most important advantage of
the proposed method is that it is based on reliable DOF
image synthesis, ray tracing using lens sampling. The pro-
posed method can be used in medical applications, such as
preoperative planning or education with virtual or augmented
reality systems [8].

The contributions of this work are:

• A new approach using a thin lens model to simulate real-
istic depth-of-field effects in direct volume rendering.

• A fast depth-of-field rendering method for GPU-based
volume ray casting without any preprocessing or restric-
tions on its existing acceleration techniques.

• A new acceleration technique that uses multi-pass ren-
dering with progressive lens sampling based on a circle
of confusion.

This paper is organized as follows: In Section II, previous
works related to DOF are discussed. Section III describes
the thin lens model, a camera model for DOF effects used
in computer graphics, and volume visualization techniques.
Section IV proposes how to integrate the thin lens model
into the volume ray-casting and accelerate it using progres-
sive lens sampling. Implementation details are described
in Section V and the experimental results are presented in
Section VI. Finally, Section VII concludes the paper with
future works.

II. RELATED WORKS
Traditional computer graphics use a pinhole camera model
that creates focused images at all depths. However, human
eyes and real cameras collect light that passes through a
finite-size lens. Only objects located within depth of field are
in focus and other objects are gradually blurred as they are
far away from the focused distance. Since the introduction
of a lens and aperture camera model [9], research on DOF
effects have been actively conducted. The results thus far are

divided into two categories: the image-space approach and
the object-space approach.

The image-space approach is post-processing. First a pin-
hole image is rendered and at the same time the depth map is
stored in an additional buffer. Then each pixel of the pinhole
image is processed by the blur filter according to the size of
the circle of confusion calculated with depth information in
the depth map. This approach is very fast and is commonly
used to generate immersive scenes in games. The problem
is that the calculation time increases rapidly as the aperture
diameter of the lens increases. In addition, due to the lim-
itation of approximation using information of surrounding
pixels, intensity leakage (i.e., pixel intensities in a focused
area flowing into a blurred area) and blurring discontinuity
(i.e., discontinuity around blurred boundaries in front of a
focal plane) inevitably occur in an region where objects
partially overlap [5]. In order to overcome these problems,
several methods have been proposed, such as assigning pixel
weights [5], [10], dividing a pinhole image into multiple
layers based on its depth [4], and storing various information
about one pixel [11], [12].

The object-space approach simulates the rays that originate
from an object, pass through different parts of the lens, and
reach the image plane. Cook et al. [3] proposed the distributed
ray tracing (DRT) that spreads ray samples on the lens to gain
DOF effects in ray tracing. This method produces optically
correct results, eliminating the problems of the image-space
approach. However, a large number of lens samples are
required to obtain a high quality image, and the calcula-
tion time increases in proportion to the number of samples.
Therefore, to improve the rendering speed, a method of using
a hardware accumulation buffer [13] and a method select-
ing a level-of-detail according to the object distance [14]
have been proposed. However, it’s still difficult to reach real
time.

All of the DOF rendering studies presented earlier are
surface rendering techniques. For volumetric data, there is
a similar study in angiography visualization that blurs out
portions exceeding a certain threshold distance [15]. This
method borrows DOF concepts to improve depth perception
without simulating the actual DOF effect. Schott et al. [6]
is almost the only and representative way to implement
DOF effects for volume visualization. Schott’s method is
based on slice-based volume rendering and integrates blur
filters into the slice compositing process, like the image-space
approach. Volume slice sets are divided into front and rear
subsets of the focal plane and composited separately. As each
subset is synthesized sequentially, incremental filtering is
performed to sample and accumulate previous composite
results. The advantage of this method is that it requires
only minor modifications to the conventional slice-based
volume rendering without preprocessing. However, as the
compositing stage progresses, blur is repeatedly applied to
already-synthesized slices, which could result in exaggerated
blurring. Regarding another volume visualisation technique,
i.e., volume ray-casting popularly known as GPU-based
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FIGURE 1. Illustration of the thin lens model. Point p is on the focal plane
at distance zf and blue rays from point p gather at point p′ on the image
plane. Red rays starting at point q out of the focal plane form a blurry
circle on the image plane (circle of confusion, COC) at distance s [16].

volume rendering, to the best of our knowledge the DOF
research has not been proposed.

III. FUNDAMENTALS
A. THE THIN LENS MODEL
The way to create DOF effects in computer graphics is to
use the thin lens model instead of the conventional pinhole
camera model. The thin lens model assumes that the lens
is infinitely thin, which means that the refraction is ignored
inside the lens. Equation (1) is the thin lens equation.

1
f
=

1
s
+

1
zf
, (1)

where f is the focal length, s is the distance from the lens to
the image plane, and zf is the distance from the lens to the
focused object.

Fig. 1 shows the path of rays in the thin lens model. Rays
starting at the point p on the focal plane pass through the
lens and form the point p′ on the image plane. Rays starting
at the point q outside the focal plane gather at the point q′

at a place other than the image plane [17]. On the image
plane, it appears as a blurry circle called as the circle of
confusion (COC). The DOF is defined as a range of distances
from the lens to an object where the COC is so small that
objects appear sharply. The diameter c(z) of COC, which is
the diameter of COC for the point at the distance z, is calcu-
lated using (2) [6].

c(z) =
∣∣∣Af (zf − z)
z(zf − f )

∣∣∣, (2)

where z is the distance from the lens to the object and A is the
diameter of the aperture.

B. VOLUME VISUALIZATION
Volume visualization provides insight to users by displaying
volumetric data in two-dimensional images. Unlike surface
rendering where objects are represented as surfaces with
material properties, volume rendering deals with the structure
or unstructured three-dimensional data and shows both the
interior of the material and the boundary between materi-
als [18], [19]. Volume rendering algorithms can be grouped

into two categories: indirect volume rendering and direct
volume rendering.
Indirect Volume Rendering (IVR) techniques use geomet-

ric primitives (most commonly triangles) to approximate
surfaces contained in volumetric data, which can be ren-
dered using conventional graphics accelerator hardware. The
marching cubes algorithm [20] is mainly used for isosurface
extraction. Since only a surface representation is used, much
of the information contained in the data may be lost, and an
excessive amount of geometric primitives may be required for
proper surface approximation [21].
Direct volume rendering (DVR) techniques create a result

image directly from relevant voxels of the volumetric data.
Slice-based (or texture-based) volume rendering is performed
by slicing the 3D texture block that stores the volumetric data
into proxy planes oriented parallel to the view plane [21].
Volume ray-casting [21], [22] tracks rays from camera into
the volume, computing the volume-rendering integral along
these rays. Volume ray-casting is more widely used than
slice-based approaches because rays can be handled indepen-
dently from each other, allowing for several optimizations
strategies [7].

The DOF rendering in DVR proposed in this paper is based
on volume ray-casting. The proposed method is compared
with DRT [3], which is considered ground truth, to see that
it synthesizes the appropriate depth-of-field effects. DRT is a
ray tracing technique for surface rendering, but can be applied
to volume rendering by borrowing the concept of sampling
a lens and generating multiple rays from one pixel. In addi-
tion, the proposed method are compared to the existing DOF
method [6] based on slice-based volume rendering of DVR,
regarding the image quality and rendering performance.

IV. PROGRESSIVE DEPTH-OF-FIELD VOLUME
RAY-CASTING
In this section, we present a rendering method to create
DOF effects in volume ray-casting. Our method performs
three-pass rendering with progressive lens sampling to use
different numbers of lens samples per pixel. In the first render
pass, DOF effects are generated with the minimum number
of lens samples. And in the second and third render passes,
the aliasing is suppressed by adding lens samples to some
pixels where the COC size is expected to be large.

The proposed method works on the GPU pipeline without
any preprocessing. Phong shading, perspective projection,
and early ray termination (ERT) [22] are applied by default.

A. GEOMETRY SETUP
The basic idea of volume ray-casting is to generate a
ray towards the volume for each pixel and calculate the
volume-rendering integral along the ray [7]. There are a
variety of optimization techniques that take advantage of
the independent characteristics of the rays, which can be
directly used in reducing the time required for calculating
time-consuming DOF effects. To integrate DOF effects into
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FIGURE 2. Volume ray-casting based on the thin lens model for one pixel
value. First we find the intersection of the focal plane and the chief ray
(point p). Then trace sample rays from lens samples to the intersection
point p. The final pixel color is the average of the volume-rendering
integrals of all the sample rays. The distance interval [zfront , zback ] where
COC is less than or equal to the pixel size is for three-pass progressive
DOF rendering.

volume ray-casting, we simply place a thin lens at the camera
position and add a focal plane as shown in Fig. 2.
In the real pinhole camera, the image plane and objects

are located on the opposite sides relative to the pinhole.
In computer graphics, on the other hand, the image plane
is placed between the camera and objects to prevent the
resulting image from flipping. Like the real pinhole camera,
the thin lens model also has the image plane and objects in
opposite directions relative to the lens. The application of the
lens equation (1) can be confusing when the image plane is on
the same side as the objects. Therefore, it is better to use the
image plane only conceptually, and think of the focal plane
acting as the image plane to generate rays per pixel [16].

Fig. 2 shows how the thin lens model generates rays for
one pixel in image plane. The focal plane is placed at the focal
distance zf , set by user input, perpendicular to the optical axis.
DOF volume ray-casting begins by generating a chief ray per
pixel in the same way as the conventional volume ray-casting
(a green line in Fig. 2). After finding the position p where the
chief ray intersects the focal plane, sample rays start from lens
samples (blue dots on lens in Fig. 2) and then pass through the
focal point p (blue lines in Fig. 2). All sample rays compute
the volume-rendering integral individually, and then all the
volume-rendering integrals of all sample rays are averaged to
determine the final pixel color.

GPU-based volume ray-casting uses front-to-back com-
positing with ERT, so the more opaque is the volume,
the faster the rendering ends. In the focus range [zfront , zback ]
where the COC is smaller than the pixel size (red lines
in Fig. 2), all sample rays pass through the volume along
roughly the same path, which is similar to the path of the
chief ray. Therefore, if the boundary of the volume at which
the sample rays start is in this range, it produces almost
the same result as the conventional volume ray-casting. This
means that we can apply different numbers of lens samples
for each pixel, depending on whether the ray’s starting point
falls within the range [zfront , zback ] or not. More details are
covered in the next section.

FIGURE 3. Disk sampling strategies. Left: polar mapping. Right:
polar4 mapping.

B. PROGRESSIVE LENS SAMPLING
To get a high-quality DOF rendering without aliasing,
we need to use a sufficient number of lens samples. However,
the calculation time increases in proportion to the number of
lens samples. Therefore, it is necessary to select an appro-
priate sampling technique that uses a small number of lens
samples without compromising the image quality. In a recent
study, Christensen [23] proposed a method for effectively
sampling a disk light source in ray tracing. Referring to
Christensen’s paper, we choose the combination of polar4
mapping and Owen-scrambled Sobol’ (0,2) sequence for pro-
gressive lens sampling. This combination provides the best
results among progressive disk sampling strategies where it
is important to distribute samples randomly and evenly over
unit circles.
Polar mapping is the most commonly used disk sampling

that converts a point (u, v) on a unit square to a unit circle with
r =
√
u and φ = 2πv. But, it creates rather irregular shapes

with poor aspect ratios. To overcome this problem, polar4
mapping is proposed with some changes in polar mapping.
In the polar4 mapping, samples are mapped from the unit
square only to the quarter-circle wedge in the first quadrant.
Then, the samples in the first quadrant are rotated by 90,
180, and 270 degrees, adding new samples to the remaining
quadrants. As shown in Fig. 3, the samples of the polar4
mapping (right) are more evenly distributed throughout the
circle than those of the polar mapping (left).
Sample patterns are divided into two categories: sample

sets and sample sequences. Sample sets consist of finite
unordered sample points, and sample sequences consist of
infinite ordered sample points. Progressive (hierarchical)
sample sequences are well distributed with any prefix of the
entire sequence [24]. Christensen’s paper [23] confirmed that
Owen-scrambled Sobol’ (0,2) [25] is one of the best progres-
sive sample sequences showing even distribution when used
with the polar4 mapping. So we generate a progressive sam-
ple sequence with Owen-scrambled Sobol’ (0,2) and split it
into three subsequences for three-pass rendering. The length
of each subsequence is set to the number of samples accu-
mulated up to the previous pass, which makes each render
pass use twice the number of samples used up to the previous
pass. In Fig. 4, the samples newly used in each render pass
are shown as filled circles, and the samples already used in
the previous passes are shown as open circles. Each render
pass adds new samples to be distributed well including the
previous ones, producing a natural resulting image even if the
final render pass is different for each pixel.
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FIGURE 4. Progressive lens sample sequence of three-pass rendering.
16 samples generated with Owen-scrambled Sobol’ (0,2) are mapped to a
unit circle using polar4 mapping. Filled circles represent the sample
points newly added in each render pass. Open circles represent the
sample points used in the previous pass.

FIGURE 5. COC-based progressive rendering determines the number of
render passes, based on the starting point of the chief ray in the COC
graph (bottom): blue points go through one pass, green points do two
passes, and red points do three passes.

Fig. 5 shows how to determine the final render pass for
each pixel based on the COC. [zfront , zback ] is the DOF where
the COC size is smaller than the pixel size csharp. This range
can be obtained using (3) and (4). The pixel size, denoted by
csharp is calculated using (5).

zfront =
Afzf

Af + csharp(zf − f )
(3)

zback =
Afzf

Af − csharp(zf − f )
(4)

csharp =
2
h
× s× tan(

FOV
2

), (5)

where h is the height of viewport, s is the distance from lens
to the image plane, and FOV is user’s field of view.
As the object moves far away from the focal distance zf ,

the size of the COC increases (see the COC graph in Fig. 5).
The size of the COC increases dramatically, especially when
the object moves toward the eye from the focal distance. This
indicates that as the object before the DOF is closer to the eye,
the more aliasing will appear if a sufficient number of lens
samples are not used. Therefore, we add a distance boundary
zρ using (6) in front of zfront to set more lens samples near

FIGURE 6. Rendering pipeline of the progressive DOF ray-casting.
Processes newly added to the conventional volume ray-casting are
shaded.

the eye. If the starting point of each pixel’s chief ray is farther
than zfront , only one pass is rendered. But if the starting point
of the chief ray is between [zρ , zfront ], it renders up to two
passes; and if less than zρ , it renders three passes. ρ in (6) is a
constant that determines the level of progressive renderings.
If the COC is greater than ρ times the pixel size, the rendering
goes up to three passes. ρ(≥ 1) is empirically set to obtain an
image without aliasing, depending on the data context and the
transfer function used (described in detail in Section VI).

zρ =
Afzf

Af − ρ × csharp(zf − f )
(6)

V. IMPLEMENTATION DETAIL
GPU-based volume ray-casting stores the entire volume data
in a 3D texture and performs the ray-casting in the fragment
shader for each pixel [26]. Fig. 6 shows a block diagram of
progressive DOF volume ray-casting proposed in this paper,
which extends the GPU-based volume ray-casting. Thewhole
process consists of four steps, with the additional processes
for DOF effects shaded in Fig. 6.
In the first step, we create a volume bounding box (VBB) of

which vertices are the 3D texture coordinates of the volume.
Then in the viewing direction of the camera, the front and
back faces of VBB are rendered and stored into 2D textures,
respectively. This process utilizes the hardware rasterization
of the GPU to quickly calculate the start and end positions
of chief rays. In addition to this, the focal plane that fills
the entire screen is rendered and stored into a 2D texture.
At this point, each vertex color of the focal plane is set to
the focal distance given by the user, expressed in 3D texture
coordinates of the volume.

At the beginning of the second step, we check whether
the starting position of the chief ray is within the range of
the corresponding render pass in Section IV-B. In this step,
we compute the chief ray by extracting the start coordinates
from the VBB front texture and the end coordinates from
the VBB back texture. Then, after obtaining the focal point
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FIGURE 7. Renderings of bonsai data set (256× 256× 256 voxels) generated by DOF volume ray-casting. (a), (b), and (c) 1-pass DOF volume
ray-casting with 4, 8, and 16 lens samples, respectively. (d) 3-pass DOF volume ray-casting with 16 progressive lens samples. The bottom row shows a
close-up image of the yellow square region in the top row. The red dot indicates the point in focus. In each image, gradients were computed on the fly.

Algorithm 1 DOF Ray-Casting Pipeline
Data: Volume, TransferFunction, FocalPlane

1 chiefRay← a primary DVR ray
2 p← intersection between chiefRay and FocalPlane
3 sampleRays[N ]← from lensSamples[N ] passing
through p

4 while a marching position x of chiefRay is in Volume do
5 accumulateda← 0
6 foreach s = 0 to N do
7 (intensity, gradient)← Texture3D(Volume, x)
8 shadedrgba←

Shading(TransferFunction, intensity, gradient)
9 composited[s]rgba← Compositing(shadedrgba)
10 accumulateda+ = composited[s]a
11 march sampleRays[s]
12 end
13 if accumulateda >= (N − 0.1) then
14 goto line 18
15 end
16 march chiefRay
17 end
18 fragColor ← mean of composited[N ]rgba values

coordinates from the focal plane texture, sample rays are
calculated starting from the lens samples and passing through
the focal point. The lens samples in Fig. 4 are used according
to the current render pass.

In the third step, the volume ray-casting of each sam-
ple ray is performed. When sample rays are cast, their

volume-rendering integrals are calculated and accumulated
individually. If the chief ray is out of the volume or the
opacity of all the sample rays saturates, the ray-casting
loop stops and the integral results of all the sample rays
are averaged. Note that the chief ray is only used for
geometry setup and is not used to calculate the resulting
color.

In the final step, the resulting colors from the previous and
current render passes are averaged and stored in the render
buffer. The same process is repeated going back to the second
stage until the final render pass is performed.

VI. EXPERIMENTAL RESULTS
The proposed method and the slice-based DOF volume ren-
dering [6] were implemented using OpenGL/GLSL on a
personal computer with an Intel i7-770K 4.2GHzCPU (32GB
RAM) and NVIDIA GeForce GTX 1080 GPU. DRT [3]
images were rendered using the Intel OSPRay [27], [28] ray
tracing engine on the same environment. All images were ren-
dered at 512× 512 resolution and a simple one-dimensional
transfer function widely used for each volume data was
applied. DOF effects of the slice-based DOFmethod [6] were
generated by taking 2×2 samples when blurring during slice
traversal.

Fig. 7 shows images of the bonsai data set rendered
by DOF volume ray-casting with various sample counts.
The focus is on the tree trunk so that the leaves closer
to the camera are blurred. As the number of lens samples
increases, anti-aliasing effects occur, resulting in amore natu-
ral blur (Fig. 7 (a)-(c)). However, the frames per second (fps)
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FIGURE 8. Renderings of aneurysm data set (256× 256× 256 voxels) generated by progressive DOF volume ray-casting while varying the parameter ρ.
The bottom row shows a close-up image of the yellow square region in the top row. The areas enclosed by the green and red borders in the second
row represent up to 2-pass renderings (8 samples total) and up to 3-pass renderings (16 samples total), respectively. As the value of ρ increases from
left to right, some areas rendered with 3-pass rendering change to 2-pass rendering. The red dot indicates the point in focus. In each image, gradients
were computed on the fly.

FIGURE 9. Renderings of bonsai data set (256× 256× 256 voxels) generated by (a) distributed ray tracing with pinhole camera, (b) distributed ray
tracing with DOF [3], (c) slice-based DOF volume rendering [6] with the COC angle α = 88◦ and 2× 2 samples taken during the incremental filtering,
and (d) progressive DOF volume ray-casting with the aperture size A = 0.03. The focus in the images, except for (a), is on the bottom of the tree trunk
and the depth of field is similar. In each image, gradients were computed on the fly.

drops inversely proportional to the number of lens samples.
As shown in Fig. 7 (c) and (d), our DOF ray-casting using
progressive lens sampling (Fig. 7 (d)) exhibits image quality
similar to the renderingwith 16 lens samples (Fig. 7 (c)) while
providing over 2x faster rendering.

Fig. 8 shows the change in image quality and frame rate
as the constant ρ in (6) changes. The yellow square in each
image in the first row contains pixels whose maximum ren-
der pass varies greatly. In the second row images, the area
enclosed by the red border represents the pixels rendered in
up to three passes using themaximumnumber of lens samples
(16 samples). The area enclosed by the green border contains
the pixels rendered in up to two passes (8 samples). If ρ is 1.0

(Fig. 8 (a)), pixels whose COC size is larger than the pixel size
are rendered in up to three passes. ρ = 2.0 (Fig. 8 (c)) means
that three passes are performed on pixels whose COC size is
larger than twice the pixel size, and two passes are performed
on pixels whose COC size is larger than the pixel size and less
than twice the pixel size. As the value of ρ increases from left
to right, some areas rendered with 3-pass rendering change to
2-pass rendering. The frame rate slightly increases with vary-
ing ρ, but the difference in image quality is unnoticeable. This
is due to the fact that the number of lens samples is determined
relative to the volume boundary as shown in Fig. 5, whereas
the voxels affecting the result image are concentrated near the
center of the volume. Therefore, we fixed the ρ to a specific
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FIGURE 10. Renderings of aneurysm data set (256× 256× 256 voxels) generated by (a) distributed ray tracing with pinhole camera, (b) distributed ray
tracing with DOF [3], (c) slice-based DOF volume rendering [6] with the COC angle α = 70◦ and 2× 2 samples taken during the incremental filtering,
and (d) progressive DOF volume ray-casting with the aperture size A = 0.025. The focus in the images, except for (a), is on the thickest blood vessel at
the top right of the images and the depth of field is similar. In each image, gradients were computed on the fly.

FIGURE 11. Renderings of colon CT data set (512× 512× 672 voxels). (a) Slice-based volume rendering with pinhole camera. (b), (c), and
(d) Slice-based DOF volume rendering [6] with various COC angles α. (e) Volume ray-casting with pinhole camera. (f), (g), and (h) Progressive DOF
volume ray-casting using various sizes of the lens aperture A. The DOF images, except for (a) and (e), have the same focal distance zf = 0.185, and
have a similar depth of field in the same column. The red dot indicates the point in focus. In each image, gradients were computed on the fly.

value of 1.4 because it does not noticeably affect the resulting
image.

Fig. 9 shows the results when each DOF rendering method
has the same depth-of-field for the bonsai data set. Fig. 9 (b)
created by DRT [3] is considered as ground truth. Unlike
Fig. 9 (a) that focuses on all distances, the leaves close to
the camera appear blurry because the tree trunk is in focus.
As shown in Fig. 9 (d), the proposed method provides as
natural DOF blurring in out-of-focus leaves as DRT DOF
(Fig. 9 (b)) with about 9x faster rendering speed. In contrast,

in Fig. 9 (c) generated by slice-based DOF volume render-
ing [6], most of the out-of-focus leaves are over-blurred.
As authors mentioned in their paper [6], this is due to the
incremental filtering in which the first slice continuously
blurred during the slice traversal. The bonsai data set contains
many transparent voxels (green leaves), which reduces the
effect of ERT in ray-casting method, so the rendering speed
improvement of our proposed progressive method (Fig. 9 (d))
is not noticeable compared to the slice-based method [6]
(Fig. 9 (c)).
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FIGURE 12. Renderings of bronchus CT data set (512× 512× 768 voxels). (a) Slice-based volume rendering with pinhole camera. (b), (c), and
(d) Slice-based DOF volume rendering [6] with various focal distances zf . (e) Volume ray-casting with pinhole camera. (f), (g), and (h) Progressive DOF
volume ray-casting with various focal distances zf . The images in each column have the same focal distance zf and a similar depth of field. The red
dot indicates the point in focus. In each image, gradients were computed on the fly.

Fig. 10 shows the results of each DOF rendering method
for the aneurysm data set. Due to the data characteristics that
the voxels of interest are mapped to almost one color, it is
difficult to recognize the anteroposterior relationship between
complex vessels. However, DOF images (Fig. 10 (b)-(d)) cre-
ated with focus on the thickest blood vessel at the top right
of the screen enhance depth perception compared to the
image using pinhole cameras (Fig. 10 (a)). In Fig. 10 (c)
generated by the slice-based method [6], there are prob-
lems that the blood vessel at the bottom of the screen is
excessively blurred and the thin blood vessel in the center
of the screen seems to focus. On the other hand, in the
Fig. 10 (d) created by the proposed method, the blood vessels
are properly blurred with distance. Our progressive DOF
method produces as realistic DOF effects as DRT DOF
(Fig. 10 (b)) with considerably faster (about 10x) rendering
speed.

Fig. 11 is the best case demonstrating the advantages of
the proposed method, where the long tube shape of the colon
shows DOF effects well. The focal distance is the same for
all images except the pinhole images, and the focus is on
the protruding portion between the small pouches and the
haustra in the center of the screen. In the first row, the DOF
images (Fig. 11 (b)-(d)) were created using the slice-based
DOF method [6] with incremental filtering of different COC

angle α. In the second row, the DOF images (Fig. 11 (f)-(h))
were created using the proposed method with a thin lens
of which aperture size A was adjusted to have the same
depth-of-field as in the slice-based DOF image in the first
row of the same column. In the images of the proposed
method, the white implant and the lining of colon are blurred
gradually as they move away from focus. And, as the lens
aperture increases from (f) to (h) in Fig. 11, blurring in out-
of-focus areas naturally increases. In contrast, in the images
of the slice-based DOFmethod, the out-of-focus areas appear
to be somewhat discontinuously blurred as the COC angle
increases from (b) to (d) in Fig. 11. The camera in Fig. 11
is placed inside the volume to virtually navigate the inte-
rior of the colon, delivering the virtual colonoscopy images.
Because this virtual endoscope creates an image that fills the
entire screen, rays at each pixel are rapidly saturated in the
ray-casting technique. On the other hand, in the slice-based
rendering, a lot of slices are still required to be incrementally
filtered for the rendering of enlarged small region, resulting
in significantly reduced rendering speed. Regarding the ren-
dering speed, the progressive DOF method is up to 6x faster
than the slice-based DOF method [6].

Fig. 12 shows images of a bronchoscope, another exam-
ple of a virtual endoscope. The images in the first row
(Fig. 12 (a)-(d)) were rendered by the slice-based method
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using pinhole camera and Schott [6]’s incremental filtering.
The focal distance is shortened from (b) to (d) in Fig. 12:
the focus in (b) is on the end of the left primary bronchus,
and the focus in (d) is near the camera where two primary
bronchi begin to branch off. When trying to set the depth-
of-field to a short range, the slice-based DOF method [6]
tended to cause excessive blurring in out-of-focus areas.
In the second row, the images (Fig. 12 (e)-(h)) were rendered
by volume ray-casing using pinhole camera and our progres-
sive lens sampling. The focal distance of each image is the
same as in the slice-based DOF image in the corresponding
column. Comparing corresponding image pairs of the same
depth-of-field, the proposed method produces an image that
improves depth perception approximately 7 to 9x faster than
the slice-based DOF method [6]. In Fig. 12 (h), aliasing
appears slightly in the region near the end of the left primary
bronchus, which is caused by the lack of samples at a distance
farther than the focal distance. This is because, as mentioned
in Section IV-B, the algorithm was designed with a focus on
the rapid change of the COC size in front of the focal plane.
Increasing the number of lens samples used in the first render
pass can solve this problem; however, this would slow down
the rendering speed.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose an effective depth-of-field ren-
dering method in direct volume rendering. The proposed
method integrates the thin lens model into GPU-based vol-
ume ray-casting to generate DOF effects. It extends the
volume ray-casting pipeline by adding some processes that
simulate rays passing through the thin lens and calculate the
volume-rendering integrals. For acceleration, we apply ERT,
which is basically used in the volume ray-casting, to our DOF
ray-casting. Also, we suggest a 3-pass rendering using pro-
gressive lens sampling for an additional acceleration. As the
ray’s starting point is closer to the camera, each pixel value
is updated with more lens samples during the three render
passes. The proposed method provided DOF effects of better
quality than the existing DOF volume rendering [6], and in
some cases, showed a frame rate up to 9x higher.

As demonstrated in experimental results, the proposed
method allows a real-time rendering in most cases. Especially
when the camera position moves inside the volume, the DOF
effects greatly help to identify the context of complex struc-
tures at fairly high frame rates, without any excessive blur
of the out-of-focus regions. In addition, the proposed method
allows natural control over the blurring of out-of-focus areas
and thus it can be used to visualize medical images where the
context around the region of interest is very important. Fur-
thermore, unlike Schott’s method [6], which can focus only
within the volume, the proposed method has the advantage
that the focus position can be placed anywhere.

In the future, we are planning to exploit various accelera-
tion techniques such as deferred rendering and empty space
skipping. These techniques could be used to improve our
three-pass rendering using progressive lens sampling because

they can find the voxels closest to the camera faster. Also,
as all rays in our DOF ray-casting are independent, we are
considering to implement our method on modern graphics
cards that support much faster ray casting.
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