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ABSTRACT The imbalanced classification problem has become greatest issue in many fields, especially in
fraud detection. In fraud detection, the transaction datasets available for training are extremely imbalanced,
with fraudulent transaction logs considerably less represented. Meanwhile, the feature information of the
fraud samples with better classification capabilities cannot be mined directly by feature learning methods
due to too few fraud samples. These significantly reduce the effectiveness of fraud detection models. In this
paper, we proposed a Dual Autoencoders Generative Adversarial Network, which can balance the majority
and minority classes and learn feature representations of normal and fraudulent transactions to improve the
accuracy of the fraud detection. The new model firstly trains a Generative Adversarial Networks to output
sufficient mimicked fraudulent transactions for autoencoder training. Then, two autoencoders are trained on
the normal and fraud dataset, respectively. The samples are encoded by two autoencoders to obtain two sets
of features, which are combined to form the dual autoencoding features. Finally, the model detects fraudulent
transactions by a Neural Network trained on the augmented training set. Experimental results show that the
model outperforms a set of well-known classification methods in experiments, especially the sensitivity and
precision, which are effectively improved.

INDEX TERMS Fraud detection, imbalanced classification, generative adversarial networks, autoencoders.

I. INTRODUCTION
With the continuous increase of online transactions via credit
cards, more andmore fraudulent transactions are increasingly
produced, bringing great losses to banks, merchants, and
cardholders. To reduce losses without affecting the user’s
trading experience, the organizations need to develop a useful
fraud detection model that can detect fraudulent transactions
as much as possible and avoid the misjudgments of normal
transactions.

Fraud detection is usually seen as a binary classifica-
tion problem of identifying suspicious usage patterns from
transaction logs by using data mining and machine learning
methods [1]–[6]. In particular, due to the excellent model-
ing capabilities of artificial neural networks (ANN), ANN
methods have strong performances in various financial fraud
detection problems, including credit card fraud [7]–[9], tele-
com fraud [10], insurance fraud [11], etc.
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However, in the actual fraud detection dataset, the positive
and negative samples are very imbalanced, and the extremely
small number of fraudulent transaction records are available.
This extremely imbalanced data may cause the classifier to
produce biased results, because classifier may sacrifice the
accuracy of the minority samples and treat them as noise [12].
However, these minority samples are what we are interested
in and want to classify correctly.

In recent fraud detection researches, Generative Adver-
sarial Networks (GANs) and autoencoders are widely used
and have achieved considerable success. GANs can alleviate
the imbalanced-class problem because of their abilities to
approximate the actual data distribution and generate con-
vincing data for the minority class. Ugo Fiore trained a
GAN to output mimickedminority class examples to improve
the classifier’s effectiveness [13]. Autoencoders can improve
detection accuracy and avoid manual feature reconstruction
by projecting samples on the input space onto a feature space
with a better representation [14]. Panpan Zheng developed
one-class adversarial nets (OCAN) for fraud detection, which

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 91265

https://orcid.org/0000-0002-9054-0507
https://orcid.org/0000-0003-1061-0112
https://orcid.org/0000-0002-7851-2327


E. Wu et al.: Dual Autoencoders GAN for Imbalanced Classification Problem

adopts the autoencoder to learn the normal user representa-
tions and trains generative adversarial nets for distinguishing
normal users and malicious users [15]. However, most meth-
ods in the fraud detection, like OCAN, focus their efforts on
mining the feature information of normal samples and discard
fraud samples, because the fraud samples are too few to be
modeled by deep learning methods. There are few methods
to mine the feature information of fraud samples. However,
a small number of fraud samples also contain some important
feature information. If the feature information of fraud sam-
ples can be used efficiently, normal and fraud samples may
be better classified.

In order to make full use of the information of the samples
in the dataset and alleviate the imbalanced-class problem,
we proposed Dual Autoencoders Generative Adversarial Net-
work (DAEGAN). DAEGAN firstly trains a GAN to output
sufficient mimicked fraudulent transactions for autoencoder
training. Then, it trains two autoencoders to learn feature
representations on the normal and fraud dataset, respectively.
The samples are encoded by two autoencoders to obtain
two sets of features that are combined to form the dual
autoencoding features. Finally, the model detects fraudulent
transactions by a Neural Network trained on the augmented
training set, which is generated by another GAN.

The advantages of DAEGAN for fraud detection are as fol-
lows. Firstly, DAEGAN can generate a collection of credible
fraud samples, which can balance the majority and minority
classes in the dataset. Secondly, DAEGAN mines the feature
information of fraud samples based on the augmented fraud
dataset. This improves the effectiveness of classifications.
Thirdly, because the category information of a sample is
unknown before classification, it cannot determine which
encoder should encode a sample. DAEGAN innovatively uses
dual feature features to combine the information learned by
two autoencoders. So that more information can be used for
classification. A careful experimental evaluation showed that
the DAEGAN outperforms a set of well-known classification
methods, especially the sensitivity and precision, which are
effectively improved. While our framework is presented here
in the context of credit card fraud detection, it should remark
that it is quite general, and it can readily be extended to other
application domains of the imbalanced dataset.

The rest of the paper is organized in the following sec-
tions. Related studies are described in Section II. A brief
summary of GANs and autoencoder is provided in Section III.
Section IV presents the proposed DAEGAN method for
improving the accuracy of fraud detection. Section V presents
the computational experiments, and Section VI concludes
with a discussion.

II. RELATED WORK
With more and more transactions data warehouses are avail-
able, fraud detection techniques have been developed in
recent years. The main problem of credit card fraud detec-
tion is the imbalanced classification problem in the dataset.
He and Garcia [12] mentioned that the extremely imbalanced

data might cause the classifier to produce biased results and
reduce the effectiveness of binary classifiers. Undersampling
and oversampling are two significant methods of adjust-
ing the imbalance in datasets [16]. Notably, the Synthetic
Minority Oversampling Technique (SMOTE) [17], an over-
sampling technique, has received much attention because it
can generate synthetic examples by interpolating between
samples of the same class. SMOTE has given rise to several
variants, such as Border SMOTE [18], DBSMOTE [19].
At present, with the great achievements of GANs in image
generation [20]–[22] and image classification [23], [24],
many studies have begun to use GANs in fraud detection
to alleviate the imbalanced classification problem. GANs
have shown satisfactory performance in generating credible
samples [9], [13], [15].

In addition to balancing the majority and the minor-
ity classes by resampling, some researches proposed some
semi-supervised methods based on autoencoders in anomaly
detections [25]–[27]. They trained deep autoencoders on the
data samples with no anomalies and detected anomalous
events according to the reconstruction errors of anomalous
and normal samples. The autoencoders can learn better rep-
resentations of samples to improve classification effective-
ness [14]. Ng et al. [28] proposed the Dual Autoencoding
Features (DAF) to relieve the imbalance issue in a pattern
classification problem. The OCAN also adopted the autoen-
coder to learn the normal user representations for better clas-
sification [15].

However, due to the small amount of fraud data, there
are few methods to use feature learning models to mine the
feature information of fraud samples. In this paper, we pro-
posed a framework that combines GAN and autoencoders
for improving the effectiveness of fraud detection classifi-
cation. It can mine the feature information of fraud samples
and alleviate imbalanced pattern classification problems by
generating sufficient credible fraud samples. Meanwhile, our
model uses the dual autoencoding features learned from two
autoencoders to train a classifier for better performance.

III. PRELIMINARY
A. GENERATIVE ADVERSARIAL NETWORKS
GAN is a framework for the estimation of generative models
through an adversarial process, which is firstly proposed by
Goodfellow et al. [29]. GAN is based on the idea of the
game theory, in which a generator G and a discriminator
D are trained simultaneously and trying to outsmart each
other. The generator G continuously generates fake samples
similar to the original data, and the discriminator D estimates
the probability that the samples come from the training data
rather than G.
The generator builds a mapping from a prior noise dis-

tribution pz on a noise variable z to a data space G (z). G
generates fake samples and learns a generative distribution
pG over the data X to match the real data distribution Pdata.
The generator G struggles to cheat the discriminator D by
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generating synthesized instances that appear to be as realistic
as possible, in order to increase the error rate of its adversary.
Thus, the objective function of G is defined as:

min
G

EZ∼Pz [log(1− D (G(z)) )] (1)

where D(·) outputs the probability that · is from the real data
rather than the generated fake data. Minimizing Equation (1)
is achieved if the discriminator is fooled by generated data
G (z) and predicts a high probability that G (z) is real data.
The goal of the discriminatorD is to continuously improve

classification effectiveness for distinguishing whether an
input is a real data x or fake data generated by a continuously
improving generator. Hence, the objective function of D is
defined as:

max
D

EX∼Pdata
[
logD (x)

]
+EZ∼Pz

[
log (1− D (G(z)))

]
(2)

Overall, this cat-and-mouse game where both competitors
improve their ability until an equilibrium is reached can be
formalized as a minimax game:

min
C

max
D

EX∼Pdata
[
logD (x)

]
+EZ∼Pz

[
log (1−D (G(z)))

]
(3)

Training GAN is known not to be an easy task [30]. If the
discriminator turns out to be significantly more effective
than its generative counterpart, the entire GAN would not be
correctly trained. If the discriminator turns out to be tooweak,
the generated fake data can fool the discriminator easily,
and the generator will not be improved in the next round of
training. Both components compete to prevail on the other
one so that they strongly depend on each other for effective
training. In the presence of a severe unbalancing where a
component fails against the other, the whole GAN fails.

Arjovsky et al. [31] made the theoretical steps towards
fully understanding why the generator faces the problem of
gradient disappearance, and the collapse mode phenomenon
exists in the original GAN proposed by Ian Goodfellow.
He introduced the Wasserstein distance into the GAN.
Because it has superior smoothing characteristics compared
with KL divergence and JS divergence, it can theoretically
solve the problem of gradients vanishing. WGAN not only
solves the problem of unstable training, but also provides a
reliable indicator of the training process, and this indicator is
indeed highly related to the quality of the generated samples.
The indicator is the loss function on training WGAN:

L = EX∼Pdata [fw(x)]− EZ∼Pz [fw(G(z))] (4)

where fw(·) is a 1-Lipschitz continuous function, parame-
terized by w, that the discriminator model needs to learn.
Accordingly, the loss functions of the generator and discrim-
inator are (5) and (6).

LG = −EZ∼Pz [fw(G(z))] (5)

LD = EZ∼Pz [fw(G(z))]− EX∼Pdata [fw(x)] (6)

Equation (4) is the inverse of Equation (6) and can indicate
the training process. The smaller the value, the smaller the

Wasserstein distance between the real and generated distri-
butions, and the better the GAN is trained.

B. AUTOENCODER
Autoencoder [32] is an unsupervised learning process that
aims to transform inputs into outputs with the least possible
amount of distortion. It plays a vital role in deep architectures
for transfer learning and semi-supervised anomaly detections.
Autoencoder contains an encoder and decoder.

y = fθ (x) (7)

x ′ = gθ ′ (y) (8)

Equation (7) and (8) are the calculation formulas for the
encoder and decoder, respectively. Where f and g are affine
mappings, and θ and θ ′ are vectors of weight and bias param-
eters of the encoder and the decoder, respectively. The goal of
training autoencoder is to minimize the reconstruction error:

argmin
θθ ′

Ex∼X [L(x, gθ ′ (fθ (x)))] (9)

Typical choices for L(x, x ′) include the squared error
‖x − x ′‖2 for real-valued vectors and the negative log-
likelihood

∑|x|
i=1 (xilogx

′
i+(1−xi)log(1−x

′
i )) for vectors of

bits or bit probabilities (Bernoullis).

IV. DUAL AUTOENCODERS GAN
DAEGAN contains three phases during training. As shown
in the above side of Figure 1, the first phase is to train a
WGAN to generate fraud data, which are then merged with
training data into an augmented training set. BecauseWGAN
has better training stability and provides a reliable indicator
of the training process, we adopt WGAN as an important
part of DAEGAN. The first WGAN contains the generator
GI and the discriminator DI . The GI and DI are optimized
with loss functions Equation (5) and (6), respectively. The
trained GI is fed with random noise z and generates certain
fake fraud samples g_f with the same dimensions as the real
fraud samples:

g_f = GI (z) (10)

The generated fraud samples g_f will be merged with real
fraud samples r_f into an augmented fraud training set x_f :

x_f = g_f ∪r_f (11)

The fraud training set x_f will be used to train the autoen-
coder of the fraud data AE_f . It will help the autoencoder
to learn good representations of the fraud data and avoid
underfitting caused by too few fraud samples in the data set.

The second phase is to train two autoencoders to learn the
representations of the normal and fraud samples, as shown
in the upper right part of Figure 1. Because the number of
fraud samples data is too small, many methods use one-class
classification, which firstly uses only one autoencoder to
learn the representations of the normal samples, and then
identifies abnormal samples by the size of the reconstructed
error. Although such methods are a very effective strategy in
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FIGURE 1. The architecture of the DAEGAN.

the absence of minority class, when there are still some fraud
samples, it is helpful to distinguish normal and fraud samples
by mining the feature information of fraud samples as much
as possible. Therefore, in order to solve the problem that the
autoencoder cannot completely fit the fraud samples data,
we propose to train the autoencoder AE_f on the augmented
fraud training set x_f , which contains the real fraud samples
and fake fraud samples generated by the first WGAN:

AE_f = argmin
θθ ′

Ex_f∼X_f [
∥∥x_f , gAE_f (fAE_f (x_f ))∥∥2]

(12)

Also, we train the autoencoder AE_b to learn the represen-
tations of the normal samples on the real normal training set
x_b:

AE_b = argmin
θθ ′

Ex_b∼X_b[
∥∥x_b, gAE_b(fAE_b(x_b))∥∥2]

(13)

where fAE_b and gAE_b are the encoder and decoder of AE_b,
fAE_f and gAE_f are the encoder and decoder of AE_f .
Autoencoder is an unsupervised learning algorithm, so the
inputs and outputs of AE_f and AE_b are the raw features
of users in their respective categories.

Figure 2 illustrates that the augmented data set can
help the autoencoder AE_f improve the ability to fit data.

Since there are too few samples in the actual fraud data
set, the neural networks like autoencoder will underfit.
As Figure 2 (a) shows, the training and testing errors are
large, and such an autoencoder cannot be used to learn rep-
resentations of fraud samples. The generator GI of the first
WGAN can generate the fake fraud samples that have a simi-
lar distribution of real fraud samples in feature space. A suffi-
cient amount of fake fraud samples can complement the fraud
data set so that the autoencoder can fit the dataset well and
learn the representations of fraud samples. As Figure 2 (b)
shows, the errors of both the training set and the test set are
reduced after training the AE_f on the augmented training
set.

When AE_b and AE_f have been obtained, the representa-
tions of the normal samples and fraud samples will be com-
puted by the encoders of the AE_b and AE_f , respectively:

h_b = fAE_b(x_b) (14)

h_f = fAE_f (x_f ) (15)

where h_b is the representation of the data encoded by the
AE_b, and h_f is the representation of the data encoded by the
AE_f . The representations of the normal samples and fraud
samples are more separable in the continuous feature space
because the autoencoders project samples on the input space
onto a feature space with a better representation.
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FIGURE 2. The training and testing error of AE_f trained on actual fraud
data set and augmented fraud data set.

However, during the training process, we cannot bring
the category information into the training data, which will
cause data leakage. So, we cannot determine whether AE_b
or AE_f should encode a sample. To obtain as much data
information as possible, we encode the sample by AE_b and
AE_f to achieve the h_b and h_f . Then, we concatenate them
together as the final representation h_all of this sample:

h_all=

h_f 11 . . . h_f 1n h_b11 . . . h_b1n
...

. . .
...

...
. . .

...

h_f m1 . . . h_f m,n h_bm1 . . . h_bm,n


(16)

As shown in the below side of Figure 1, given the represen-
tations h_f _all and h_b_all of the fraud and normal samples,
the third phase of DAEGAN is to train another WGAN and
a neural network model that can distinguish the normal and
fraud samples. The generator of the second WGAN aims
to generate complementary representations of fraud samples
that are in the dimension of the representation h_all:

g_h_f = GII (z) (17)

where GII is the generator of the second WGAN. The
discriminator of the second WGAN aims to separate the
real and complementary fraud representations of samples.

Finally, g_h_f , h_f _all, and h_b_all will form an augmented
dataset for training a neural network. The neural network can
detect fraud samples which locate in separate regions from
normal samples. The neural network model uses a SoftMax
classifier, and the loss function of it is cross-entropy:

L
(
y, ŷ
)
= −

1
N

∑
n∈N

ynlogŷn (18)

where y is the true labels, and ŷ is the predicted labels.
The pseudo-code of training DAEGAN is shown in

Algorithm 1. Given a training set Mbenign and Mfraud , that
contain feature vectors of normal and fraud samples, we first
train a WGAN (Lines 2-6) to generate the complemen-
tary fraud samples g_f . Then, we merge g_f with real
fraud samples into an augmented training set M ′fraud to
train the autoencoder AE_f (Lines 10-14). We use the same
method to train another autoencoder AE_b on training set
Mbenign (Lines 15-19). After training the two autoencoders,
we encode each sample in the Mbenign and Mfraud to obtain
h_b and h_f . Then we concatenate them together as the
representation of the sample (Line 20-27). Finally, we train
another WGAN and neural network model at the same time
(Line 28-39). The WGAN aims to generate useful fraud sam-
ples representations to improve the classification of the NN
model, and the NNmodel aims to improve the ability to detect
fraud samples from normal samples. For simplicity, we write
the algorithm with a minibatch size of 1, i.e., iterating each
sample in the training set to train all the models. In practice,
we sample n samples in a minibatch, such as 128.
AlthoughDAEGAN’s training process is a bit complicated,

both the WGANs and autoencoders are trained for a neural
network model with excellent classification. After training,
the actual fraud detection is straightforward. As Figure 3
shows, a new transaction can be directly determined whether
to be fraud or normal by the NN model based on its represen-
tation encoded by the dual autoencoders.

FIGURE 3. The detection of a new transaction.

V. EXPERIMENTS
To assess the effectiveness of the proposed DAEGAN,
we conducted our validation on a credit card transaction
dataset [33], which contains transactionsmade by credit cards
in September 2013 by European cardholders. This dataset
presents transactions that occurred in two days, where we
have 492 frauds out of 284,807 transactions. The dataset is
highly unbalanced; the positive class (frauds) account for
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Algorithm 1: Training DAEGAN
Inputs: Training dataset Mbenign,Mfraud

1: initialize parameters in WGANs, autoencoders, and Neural
Network model;

2: for iteration = 1 to EpochWGAN do
3: for each mf in Mfraud do
4: optimize the discriminator DI and generator GI with

loss functions (5) and (6), respectively.
5:

end for
6:

end for
7: GI generates complementary fraud samples g_f
8: //merge g_f with r_f into a training set
9: M ′fraud = Mfraud ∪ g_f
10: for iteration = 1 to EpochAE_f do
11: foreach mf ′ in M ′fraud do
12: optimize the parameters in AE_f with loss

function (12)
13:

end for
14:

end for
15: for iteration = 1 to EpochAE_b do
16: foreach mb in Mbenign do
17: optimize the parameters in AE_b with loss

function (13)
18:

end for
19:

end for
20: Vbenign = ∅,Vfraud = ∅;
21: foreach m in Mfraud and Mbenign do
22: //compute the representation encoded by AE_b and AE_f
23: h_b = fAE_b(m); h_f = fAE_f (m)
24: concatenate h_b and h_f with function (16)

Vbenign+ = h_b_all,Vfraud+ = h_f _all
25:

end for
26: for iteration = 1 to EpochWGAN do
27: foreach νfraud in Vfraud do
28: optimize the discriminator DII and generator GII

with loss functions (5) and (6), respectively.
29:

end for
30: generate ghf with function (17)
31: V = ghf ∪ Vfraud ∪ Vbenign
32: for iteration = 1 to EpochNN do
33: foreach ν in V do
34: optimize the parameters in neural network

model with loss function (18).
35:

end for
36:

end for
37:

end for
38: return Well-trained WGANs, autoencoders, and a Neural

Network model

0.172% of all transactions. Due to a confidentiality request
by the institution releasing the data, the Credit-card data
contains numerical features, labeled V1 to V28, which are the
principal components resulting from Principal Components
Analysis (PCA) applied to the original features. The only
features which have not been transformed with PCA are
‘Time’, ‘Amount’, and ‘Class’. Before modeling the data,
we preprocessed the data and removed some abnormal points.
Then, we divided 80% of the majority and minority class data
into the training set and the remaining 20% of the data into the
validation set, as Figure 4 shows. In the experiments, because
the size of the fraud data set is too small, we used WGAN
to generate fake fraud data to supplement the fraud training
set. In order to avoid data leakage, we only use the fraud
training set, not all fraud data set to train the WGANs, and
the validation set is only used for testing the fraud detection
ability of the neural network model.

FIGURE 4. The data sets of the experiments.

Metrics used in the experiments include the recall, the pre-
cision, the F1, the Area Under the Curve (AUC), the Area
Under Precision-Recall Curve (AUPRC). TheAUC is defined
as the area under the ROC curve. The AUPRC is defined as
the area under the Precision-Recall Curve. Given the class
imbalance ratio, confusion matrix accuracy is not meaning
for unbalanced classification, and the AUPRC is recom-
mended to measure the accuracy of the model. It is worth to
remind that in applications such as credit card fraud detec-
tion, the cost of a false positive and a false negative are
not equal. An ideal fraud detection system should identify
precisely the fraudulent transactions and reduce the number
of false-positive that require control by human investigators.
Therefore, an excellent model should have good performance
in each of the above indicators to prove that the model has a
good accuracy of identifying fraud samples while avoiding
the misjudgments of normal samples.

A. DATA PREPROCESSING
Before modeling data, we preprocessed the data to make
it more suitable for modeling. We will only explain some
unique steps rather than some routine steps on preprocessing.

91270 VOLUME 8, 2020



E. Wu et al.: Dual Autoencoders GAN for Imbalanced Classification Problem

Firstly, we used the xgboost to calculate the feature impor-
tance of the dataset. As Figure 5 shows, V14, V4, and V10
are the three most important features, and we removed some
outliers which are not in the 20%-80% of them. The feature
‘Time’ is seconds from the first transaction in the dataset, and
we converted it to time of day in hours, as Figure 6 shows.
We further preprocessed the Credit-card dataset to rescale the
features in the interval [0,1]. The resulting dataset contained
457 fraudulent transactions out of 283009 transactions.

FIGURE 5. The feature importance of the data.

FIGURE 6. The distribution of the feature ‘Time’.

B. COMPARISON OF GAN AND WGAN
We compared WGAN with GAN to find which one is suit-
able for credit card fraud detection. In our experiments,
the WGAN and GAN have the same network structure. The
discriminators of GAN and WGAN all have three hidden
layers, which are 800, 400, 200 dimensions. The output layer
of the GAN’s discriminator is a sigmoid function which
outputs the probability that the sample is from the real data
rather than the generated fake data. The output layer of the
WGAN’s discriminator removes the sigmoid, and its output
is an approximate fitted Wasserstein distance. The generators
of GAN and WGAN all take the 50 dimensions of noise
as input, and also have three hidden layers, which are 200,

400, 800 dimensions. The output layers of the generators
have the same dimension as the input layers, which are 30 in
our experiments. The loss functions of GAN’s discriminator
and generator are Equation (1) and (2). The loss functions
of WGAN’s discriminator and generator are Equation (5)
and (6). We trained the GAN and WGAN on the same
training set with 5000 training epochs. After each iteration,
the WGAN discriminator parameters were updated, and then
their absolute values were truncated to no more than a fixed
constant. The optimization algorithm of WGAN does not use
the optimization algorithms based on momentum, such as
momentum and Adam, but uses RMSProp.

FIGURE 7. The losses of GAN and WGAN in training.

The losses of the discriminators and generators are shown
in Figure 7. During the training process, the losses of WGAN
are smaller than those of GAN. WGAN’s training process
is more stable than GAN’s, and its convergence speed is
faster than GAN. Also, we further checked for the quality
of the generated data using a neural network with three
hidden layers, which are also 800, 400, 200. The losses of
the NN model are shown in Figure 7(c). In order to further

VOLUME 8, 2020 91271



E. Wu et al.: Dual Autoencoders GAN for Imbalanced Classification Problem

compare the qualities of the data generated by WGAN with
GAN, we compared the performance of the DAEGAN using
WGAN with the DAEGAN using GAN in fraud detection.
The comparison results are shown in Table 1. DAEGAN
using WGAN is superior to DAEGAN using GAN in all
indicators. Therefore, the quality of the data generated by
WGAN is better, which can improve the performance of the
NN model classifier.

C. SUPERIORITY OF DUAL AUTOENCODERS
We compared dual autoencoders with only one autoencoder
to verify the advantages of introducing onemore autoencoder.
In our experiments, the autoencoders AE_b and AE_f have
different network structures. The autoencoder AE_b has three
hidden layers, which are 100, 50,100 dimensions, and the
autoencoder AE_f also has three hidden layers, which are
70, 50, 70 dimensions. The encoders of AE_b and AE_f
both have the output layer of 50 dimensions, which maps
input dimensions to high dimensions to improve data sepa-
rability. The autoencoder AE_b was trained on real normal
samples, and AE_f was trained on an augmented data set
which merged the real fraud samples with the fake fraud
samples generated by the WGAN. The fake fraud samples
generated by the WGAN can complement the training set of
AE_f to avoid underfitting. As Figure 2 shows, the fake fraud
samples generated by the WGAN play an important role in
reducing the losses of AE_f during training and preventing
AE_f from underfitting.

For amore intuitive comparison, we use the t-SNE tool [34]
(Maatten and Hinton 2008) to visualize the distributions
of the original data, the representations of data computed
by only AE_b, and the dual autoencoding features, which
combine the representations of data computed by AE_b and
AE_f . As shown in Figure 8, the dual autoencoding features
are more separable than the original data and the repre-
sentations of data computed by only AE_b. It is easier to
distinguish the fraud samples from normal samples based
on the features computed by dual autoencoders. We also
compared the experimental results of DAEGAN with the
AEGAN, which has the same network structure with DAE-
GAN but is missing AE_f . As Table 1, Figure 9 and 10 show,
the DAEGAN outperforms the AEGAN in all indicators.
It can be seen that by introducing AE_f , DAEGAN can make
full use of data to extract more information and improve the
classification.

D. COMPARISON WITH OTHER SEVERAL METHODS
Baselines: We compared DAEGAN with the following
widely usedmethods [35] for alleviating the imbalanced-class
problem:

• Undersampling reduces the disparity between classes by
undersampling the majority class in a training set [17],
randomly removing some instances of the majority
class.

• Oversampling is to oversample the minority class,
which often uses the Synthetic Minority Oversampling

FIGURE 8. 2D visualization of three types of data: the original data,
the representations of data computed by AE_b, and the representations
of data computed by AE_b and AE_f .

Technique (SMOTE) [18] to generate synthetic exam-
ples by interpolating between examples of the same
class.

In the undersampling method, we randomly selected sam-
ples of the majority class to make the ratio of positive and
negative samples be 1:1. Finally, we trained a neural network
model that has the same network structure with the NNmodel
in DAEGAN. As Table 1 shows, although the undersampling
method has a very high recall, the precision is very low,
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TABLE 1. Fraud detection results on recall, precision, F1, AUC, AUPRC.

FIGURE 9. ROC curves of DAEGAN and several other models.

FIGURE 10. PRC curves of DAEGAN and several other models.

which means that a lot of normal samples are misidentified
as fraud samples. As Figure 10 shows, the AUPRC of the
undersampling method is also very low. In the oversampling
method, we used the SMOTE method to generate synthetic
samples which were merged with real samples into an aug-
mented dataset. Then, we also trained a neural networkmodel
on the new training dataset. As Table 1 shows, the results
of SMOTE method are all worse than DAEGAN’s. In sum-
mary, the method DAEGAN is superior to the undersampling
and oversampling in various indicators. DAEGAN performs
better than the commonly used methods for alleviating the
imbalanced-class problem.

We also compared the DAEGAN with other methods of
credit card fraud detection using GANs. The results of the
GAN trained by Ugo Fiore are shown in Table 2. After
comparison, we found that our proposed DAEGAN method

TABLE 2. Fraud detection results of the GAN trained by Ugo Fiore.

is better on various indicators. The recall of DAEGAN is
0.815, and it is better than the recall of Ugo Fiore’s method,
which is 0.73282. It means that the DEGAN can detect
more fraud samples than Ugo Fiore’s method. In terms of
precision, Ugo Fiore’s method is higher. However, due to the
small number of fraud samples, this degree of gap cannot
explain that compared with Ugo Fiore’s method, DAEGAN
misjudges excessive normal samples as fraud samples. In F-
measure, DAEGAN is 0.857, and the best score of Ugo
Fiore’s method is 0.82051. It shows that DAEGAN is a better
method than Ugo Fiore’s in the overall performance of the
model.

We also compared the DAEGAN with the WGAN.
We firstly trained the WGAN to generate fake fraud samples
to supplement the fraud data set and then used the NN model
trained on the augmented data set for fraud detection. The
results of the method only using WGAN show in Table 1.
The Figure 9 and 10 also show the AUC and PRC of the
method. We can observe that the results of the DAEGAN are
also better thanWGAN. It means the DAEGAN is better than
the methods which only use GANs to generate fraud samples
to improve the classification. The autoencoders play a crucial
role in improving the effect of classification based on GAN.

We compared the OCAN proposed by Panpan Zheng with
our method DAEGAN. The OCAN is a one-class classi-
fication which has an autoencoder and GAN. We adopted
700 genuine transactions as a training dataset and 120 fraud
and 71082 genuine transactions as a testing dataset, which
has the same distribution as the real data. As Table 1 shows,
the DAEGAN outperforms the OCAN.

Above all, DAEGAN has achieved the best performance
for fraud detection. In particular, the AUC of DAEGAN
is 0.958, and the AUPRC of DAEGAN is 0.805. DAE-
GAN also has higher recall and precision at the same
time, which are 0.815 and 0.903, respectively. It means that
DAEGAN improves the accuracy of fraud samples detec-
tion while avoiding the increasing misjudgments of normal
samples.
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VI. CONCLUSION
In this work, we proposed a new neural network model
DAEGAN to cope with imbalanced classification problem
in credit card fraud detection. DAEGAN adopts WGAN to
generate sufficient and credible fraudulent transactions for
balancing the minority and majority classes in the dataset.
Thanks to the complementary fraud transactions generated
by WGAN, the autoencoder of fraud transactions can mine
the feature informationwithout underfitting. The dual autoen-
coders in the DAEGAN can learn the representations of the
normal and fraud samples. The dual autoencoding features
combining learned feature sets yield better feature represen-
tations of samples so that the classifier can achieve better
performance. After training, the neural network classification
can detect fraudulent transactions in high sensitivity and
precision. We have conducted the theoretical and empirical
analysis to demonstrate that WGAN can generate more cred-
ible fake fraud samples than GAN, and dual autoencoders can
yield better feature representations of samples than only one
autoencoder. We conducted experiments over real credit card
dataset and showed the DAEGAN outperforms representa-
tive resampling-based methods and the state-of-the-art fraud
detection classification models. The proposed method can be
further extended to alleviate the imbalanced-class problems.
In our feature work, we plan to optimize the solution to make
the whole process lighter and more effective.
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