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ABSTRACT It is estimated that over 235,000 Canadians experience homelessness at some point each
year. With the emergence of smart cities, it would be beneficial to leverage the processing power of deep
learning to assist in the planning and testing of different policies to address this issue. When examining
a population of homeless individuals, one can view them as being distributed, at any one point in time,
among several possible states: for example, the street or an emergency shelter. Our work aims to provide
a means of simulating across these states, including no longer homeless, over time. The probability that
an individual will transition from one state to another is called a transition probability. Thus, by creating
a matrix of transition probabilities between all of the states, we have a transition probability matrix. If we
simply approached this problem by using a mathematical model such as a Markov decision process, we run
into the issue of how to accurately adjust the probabilities to produce realistic results. Ideally, we would
have a model that can reasonably modify them based on real-life data. To do this, we introduce two modified
deep learning algorithms; modified deep q-learning (MDQL) andmodified neural fitted q-iteration (MNFQ).
These algorithms dynamically produce a set of transition probability matrices for each week of the year.
We discuss the modifications we made to these algorithms to adapt to the homelessness problem and create
our simulation. After training our model on high resolution, weekly data, we will show that when running
it on a low resolution data set that spans 3 years, our model is able to achieve a relative percent difference
from the final population of 12.5%. The end result is a model that can be further improved over time with
real world data to provide realistic results.

INDEX TERMS Simulation, machine learning, homelessness, policy making, planning.

I. INTRODUCTION
A. THE PROBLEM OF HOMELESSNESS
Homelessness is a source of growing concern across Canada
as well as in most developed countries [1], with numbers
increasing in most Canadian cities [2]–[7] and internation-
ally [8]–[10]. It is estimated that on any given night, about
567,715 people are homeless in the United States [8], and
35,000 in Canada [11]. Homelessness is associated with
worse physical and mental health [12], [13], increased mor-
tality [14], greater criminal behavior and victimization [15],
and high health and criminal-justice-related costs [16].
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The causes of the rise in homelessness are not completely
understood but certainly include rising income inequal-
ity [17] together with rising rents in many areas [18]- lead-
ing to a growing shortage of affordable housing. At an
individual level, many factors predispose a person towards
homelessness, including low educational attainment, job-
lessness or low income, poverty, mental illness, and sub-
stance abuse [19], [20]. In between these macro- and
micro-level factors are institutional arrangements such as
lack of adequate supports for people who were previ-
ously homeless or who are at risk of homelessness who
leave the youth protection system, prisons, and hospi-
tals [19]. These factors interact with each other in a complex
manner [19].
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In recognition of the complexity of the phenomenon,
numerous policies and programs, operating at different levels,
have been put in place to address homelessness. These have
included increasing the availability of affordable housing
(whether through building new affordable housing units or
providing low-income individuals with rent supplements);
helping individuals who have become homeless regain per-
manent housing, through a variety of more or less inten-
sive and short- or long-term supports, notably Housing First,
which offers individuals a combination of a rent subsidy and
the long-term support of a mobile clinical team [21], [22];
and an array of primary, secondary and tertiary prevention
measures [23]. The complexity of the phenomenon, together
with the wide range of possible remedial and preventive
measures, means that addressing homelessness effectively is
challenging, and experts disagree on many aspects of the
policies that should be pursued in a given city or geographical
area.

B. COMPUTER SIMULATION MODELING TO HELP
ADDRESS HOMELESSNESS
Computer simulation modeling offers a possible decision
support tool to address homelessness. This approach has often
been used to try to gain deeper insight into complex problems
of many kinds [24]L̇imited attempts in this direction have
been made until now with regards to homelessness, how-
ever. These attempts can be classified, to date, into 4 groups:
(a) economic models calibrated to individual cities [25];
(b) entirely mathematical models that do not incorporate
any city- or area-specific empirical data; (c) mathematical
models based on a survey of empirical results found in the
literature [20]; (d) statistical models that relate the number
of homeless individuals in an area to a number of other
area-specific variables. Among these, only the first has the
potential to simulate the effects of alternative specific policies
on the number and composition of homeless individuals in
an area. The one study of this type that we have identified
is, however, entirely focused on the housing market and the
effects of alternative housing subsidy mechanisms; It does
not take into account programs to help homeless individuals
access housing, such as Housing First; nor does it distin-
guish among the different states that homeless people can
find themselves in, such who experienced a one-time, brief
episode in a homeless shelter, or someone who has been
alternating for years between sleeping in street locations and
in shelters. This was the main objective of our project.

C. RESEARCH CHALLENGES
Constructing such a fine-grained model poses two main chal-
lenges: how to structure the model, and where to get the data
to calibrate it. We chose to structure it as a Markov model,
with a cycle length of one week, in which individuals can
be located in any one of 8 states: street location, shelter,
transitional housing, substance abuse treatment center, hos-
pital, prison, not homeless (but previously so), or deceased.
Individuals transition from one state to the next on the basis

of a set of transition probabilities. The capacity of shelters
and transitional housing in a city, by age group (25 and under
or over 25) and gender, is input into the system, and occu-
pancy of these resources cannot exceed 100%. (The other
types of institutions mostly serve non-homeless individuals
and their capacities can thus, for our purposes, be considered
unconstrained.)

To derive the transition probabilities, we used data from the
Montreal site of a large Canadian study, the At Home/Chez
Soi trial (refs). This site followed 463 initially homeless
individuals over up to two years, reconstructing their day-
by-day housing trajectories. Thus it provides data at a res-
olution sufficient to enable simulation of each individual in a
cohort separately. This is necessary given our desire to incor-
porate shelter and transitional housing capacity constraints.
Recruitment for this study took place, however, between 2009
and 2011, and the sample was not designed to be represen-
tative of the homeless population as a whole. Furthermore,
the service system in Montreal has evolved since the early
2010s, notably with the progressive addition of Housing First
programs with a combined capacity of several hundred.

In order to calibrate the model, we had access to data from
Montréal’s March 24 2015 and April 24 2018 point-in-time
homelessness counts, which provide not only the number
of homeless individuals at those dates, but detailed data on
their locations and demographic characteristics. We wanted,
therefore, to base ourselves on the transition probabilities to
reproduce the evolution of the number and composition of
the homeless population from the first count to the second.
A method is needed for adjusting the transition probabilities
so that they fit the point-in-time data. As some individuals left
the system (due to death or exiting homelessness), others also
enter it, becoming homeless for the first time and, in some
cases, remaining homeless for the long term. This also needs
to be represented in the model. To this end, some data were
available from another survey of homeless individuals con-
ducted in Montreal five months after the first point-in-time
count. These data provided information, for individuals who
were homeless on August 24, 2015, on whether they were
homeless on March 24 2015, and if so, in what type of loca-
tion. Our basic approach was to use two modified q-learning
algorithms to adjust the transition probabilities so as to be
able to reproduce, as closely as possible, the 2018 count data
starting with those from 2015.

D. SUMMARY OF OUR ALGORITHMS AND
CONTRIBUTIONS
Our simulation model works with two, modified deep-
learning algorithms; the originals being deep q-learning [26]
and neural fitted q-iteration [27]. Originally, the algorithm
would start in an initial state, perform an action, and
observe the new state it transitioned to [26], to determine
a reward [28]. Instead, with our simulation, the action per-
formed is simply determiningwhich new state to transition to;
the algorithm is picking the new state based on the tran-
sition probability matrix. The reward for our algorithm is
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determined by what the current populations in the simulation
are and what the final populations should be (from the train-
ing data) after the simulation has ended.

For neural fitted q-iteration, the original algorithm worked
with deep q-learning by performing an offline update to
determine the best action to perform in the algorithm’s current
state. It is offline in a sense that all previous changes are
considered when doing it [27]. The main modification we
made here was that, instead of determining the best action,
the algorithm calculates an offset to modify the new q-values
by, based on previous changes. This offset helps lower or
increase the q-values, which are later interpreted as the tran-
sition probability matrices for each state transition pair. In a
sense, the result is the best action that the algorithm deter-
mines to ensure realistic transitions between states.

To summarize, we made the following modifications
to both the deep q-learning and neural fitted q-iteration
algorithms:

• Removed the ‘‘action’’ step
• Modified the purpose of the reward term
• Modified the neural fitted q-iteration to make it more
versatile for other applications

E. ORGANIZATION OF THE PAPER
In the next section, we will examine related work to our pro-
posed model. We will discuss recent papers on homelessness
issues, modelling approaches, and machine learning in social
sciences to show how our family of algorithms has been ben-
eficial in other implementations. In the subsequent section,
we will look at the methodology of our approach and describe
each modified algorithm in detail. Lastly, we will provide a
discussion of our results and propose future work to improve
our model. This section will also include results when our
model was applied to Montreal’s 2015 and 2018 homeless-
ness count data, using transition probabilities derived from
the Montreal site of the At Home/Chez Soi project [29], [30].

II. RELATED WORK
A. PREVIOUS EFFORTS TO MODEL THE PHENOMENON
OF HOMELESSNESS
As mentioned earlier, previous efforts to model the phe-
nomenon of homelessness can be classified into 4 groups:
(a) economic models calibrated to individual cities [25];
(b) entirely mathematical models that do not incorporate any
city- or area-specific empirical data; (c) mathematical models
based on a survey of empirical results found in the literature;
(d) statistical models that relate the number of homeless indi-
viduals in an area to a number of other area-specific variables.

Authors of [25] provide, to our knowledge, the only exam-
ple of the first group of efforts. We describe it in more detail
as it is the only one that in some ways approximates what
we are trying to do. The authors used a general equilibrium
model of the housing market to examine policies to reduce
homelessness, calibrated for four California cities. Theirs is
a model of the housing market, in which ‘‘dwelling units

filter through a quality hierarchy. . . and in which households
of various income levels choose among these discrete types.’’
Households may choose to opt out of the housing market
and thus become homeless. They are more likely to do so if
available housing is unaffordable to them. Thus, increases in
homelessness are driven by changes in rents. They concluded
that ‘‘a very large fraction of homelessness can be eliminated
through increased reliance upon well-known housing subsidy
policies’’, in particular, rent subsidies [25].

Authors of [31], [32] provide examples of the second type
of model. As these models do not incorporate any empir-
ical data, they are of limited value as a decision-support
tool for a particular city. Alone to our knowledge in the
third group, [20] applied a well-established technique called
fuzzy cognitive maps to analyze the impact of social factors
on homelessness. Their macro-level model, which was cal-
ibrated using information extracted from the literature, was
able to reasonably represent reality for a range of scenarios.
The direction and strengths of the relationships between con-
cepts included in the map approximated their action in reality.
Education emerged as having the greatest force in the model.
Again, however, the model remains general, and not useful as
a decision-support tool for a particular city [20].

Finally, the fourth group is comprised, again, of a single
effort. [33] led the development of the ‘‘Homelessness analyt-
ics initiative’’ (http://homelessnessanalytics.org/). This web
site compiles a large amount of data on homeless counts in
the many US areas where these are now regularly carried
out, and social (e.g., crime) and health (e.g., county-level
life expectancy) indicators as well as other contextual factors
(e.g., fair market rents). The web site also provides access
to a set of forecasting models. These models are based on
regression analyses of homeless counts against social indi-
cators and other predictor variables. However, once again,
these statistical models, being based on commonly available
social and economic indicators, are of limited usefulness in
estimating the effects and costs of alternative policies in a
particular city or area.

B. MATHEMATICAL MODELLING
A mathematical modeling presented by Zhang, T., Xie,
S., and Rose, O. at the Winter Simulation Conference
in 2018 where the main issue they addressed was that pre-
vious attempts at automating batching in job shops were
falling short of their goals in real-life environments. The
batching, here, is done when several jobs are processed
simultaneously [34]. The approach was due to the fact that
the typical job was too complex in nature and not fit for a
stochastic environment; that is, the jobs lacked a linear pattern
that could be easily modelled. Practitioners also preferred
real-time batching where the scheduling was considered as
more of a decision-making problem. To solve this problem,
the paper introduces a sequential decision-making process
using Markov decision processes.

Another mathematical model by Batata, O., Augusto,
V., and Xie, X. focused on optimizing care resources by
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predicting the burnout in a caregiver to admit them to respite
services before hospitalization is needed [35]. The main issue
was that previous attempts fell short when it came to actu-
ally predict the number of patients needing to be admitted.
Respite care is a new service that aims to help decrease the
burnout risk in caregivers. When this is not taken care of in
time, the caretaker eventually needs hospitalization, which is
costly. This paper talks about the need to be able to predict
burnout in a caregiver and admit them to respite services
before hospitalization is needed.

Authors of [35] attempted to use the addition of machine
learning as well as Markov chain transition matrices to create
a dynamic burnout model with two states for the caregivers:
emergency and normal. By having the ability to see what a
caregiver’s next state will be, the system could efficiently
decide whether or not they should be admitted into respite ser-
vices. From their experiments, Batata et al’s model performed
best using a neural network; the objective was tominimize the
number of hospitalized individuals. One major shortcoming
of this work, however, was that the Markov chain was strictly
built using only burnout data without considering attributes
specific to the caregiver and their patient.

C. MACHINE LEARNING AND SIMULATION
Authors of [28] introduced a new approach using machine
learning and simulation to optimize the dose calculation for
radiotherapy. This approach involved two steps: an agent-
based simulation of vascular tumor growth and a q-learning
algorithm to optimize the radiation dosages. The optimal
outcome when combining these two steps is to achieve a
cure for tumor with minimal side effects. The researchers
noted that many studies had been done in the area of radio-
therapy simulation, and optimization but not in optimizing
radiotherapy based on simulation. Due to a lack of real data,
the agent-based simulations noted before were ran to help the
generation of synthetic data needed for the optimization. The
outputs allow interfering in the simulations to examine differ-
ent scenarios. Since this area has not been researched much,
it is hard to note any shortcomings. Two points of consider-
ation: there was no real-life experiment, and this approach
uses a process they called inverse planning. This process is
aided by a computer to test (simulate) different treatment
plans before any physical experimentation is done [28].

An important theme amongst recent papers in this area
involved q-learning. More precisely, neural fitted q iteration
(NFQ) [27]. The main issue that this algorithm addressed
was an issue that arose with multi-layer perceptrons when
training them. During the training process, when modifying
a parameter change in one area of the network, the algorithm
has the potential to influence other values later on in the
network. The approach inadvertently destroys the effort done
so far in other regions and leads to long learning times or,
worst case, not learning at all. In order to solve this limitation,
when updating the q-value functions, the algorithm offers
previous knowledge explicitly as well by storing all previous
experiences in terms of state-action transitions in memory.

To implement their approach, the algorithm uses what’s
called an off-line update rule. In other words, the algorithm
considers an entire set of transition experiences- contrary to
traditional q-learning, which uses an on-line update rule. This
strategy gives the advantage of applying advanced supervised
learning methods to the network. For example, [27] uses
Rprop, which is very efficient and very insensitive to the
learning parameters. NFQ falls under the fitted q iteration
family of algorithms; it is a memory-based method used
to train q-value functions based on multi-layer perceptrons.
By exploiting generalization, the algorithm is able to achieve
a high level of data efficient learning. The paper provides
three real-life scenarios that are quite diverse in specifica-
tions. This shows that the algorithm is applicable to a wide
variety of tasks and can work well with real-life scenarios.

III. METHODOLOGY
A. DATA SOURCE
We are currently working with data from the At Home/Chez
Soi project [29], [30] to train our algorithm. Researchers gath-
ered the data of individuals who entered and exited different
states (street, shelter, etc.) at different points in time over
a year. Interviewers tracked these movements using retro-
spective questionnaires administered every 3 months. This
method of data collection makes it possible to generate tran-
sition matrices on a week-to-week basis. Since each person
will be simulated individually, we can accommodate the exact
information of data available to us. The individuals can each
be considered a data point for the algorithm.

B. DATA PRE PROCESSING
Transition probabilities were estimated from data collected
at the Montreal site of the At Home/Chez Soi project [36].
This was a large (n = 2,148) randomized controlled trial
of Housing First for homeless individuals with mental ill-
ness, compared to usual services, conducted in five Canadian
cities: Vancouver, Winnipeg, Toronto, Montreal, and Monc-
ton. Housing First offers individuals experiencing homeless-
ness immediate access to a choice of subsidized, rental market
apartments, together with the support of a mobile team of
mental health and other professionals [30]. Study participants
were all people with mental illness, who had been homeless
for varying lengths of time and who expressed an interest
in being housed. They were recruited between October 9,
2009 and May 31, 2011. They were interviewed at 3-month
intervals for up to 2 years. A questionnaire was used to
reconstruct places they had been each night since the previous
interview [37].

C. MACHINE LEARNING BASED ALGORITHMS
At a basic level, we can model the simulation using a Markov
decision process with a transitional probability matrix. This
matrix is calculated by looking at the number of individuals
who go from one state to another, then calculating the proba-
bility that this will occur based on the total population in that
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initial state. An example set of transition probabilities can be
seen in Figure 2. Using such a model would essentially be
a simplified, mathematical representation of reinforcement
learning [34]- a common approach when training machine
learning models.

By using a mathematical model, we would need to monitor
the outputs and see if any changes are needed for the model.
This process can become cumbersome when working with
large datasets, such as a population of people, as the values
would, initially, need to be updated constantly to produce
accurate results. To address this problem, we will create
a machine learning model that, although requiring a small
amount of reinforcement learning, will mostly be unsuper-
vised when training on real-life data. The small amount of
reinforcement learning here is from the value of an offset and
if it is minimizing from previous iterations. An example visu-
alization of these probabilities and how theymay change from
one time period to the next can be seen in Figure 1, which
shows the values of a basic set of transition probabilities
from one time period to the next. The arrows in this diagram
represent the transition from one state to another, with their
probability noted as the p value. We demonstrate our model
on data from the At Home/Chez Soi project [29], [30] to show
how it learns and modifies the transition probability matrices
over time.

FIGURE 1. A simplified example set of transition probabilities between
states and how they may change in a machine learning model. Note that
this is not showing all possible transitions. [38].

Furthermore, we shouldn’t assume that a single transi-
tional probability matrix will work when simulating on a
higher resolution scale such as week-to-week. To address this
assumption, our model will, instead, generate a probability
matrix for each week of the year. Although the goal of our
model when training is to accurately predict the known final
populations, we are also wanting to use it to predict realistic
results for future populations where the end population is
unknown.

1) HOMELESSNESS SIMULATION
Over time, homeless individuals can transition between many
different states of homelessness. For our simulation, these
states include street, shelter, hidden homeless, not home-
less (but previously were), transitional housing, hospital,

FIGURE 2. An example of a simplified set of transition probabilities [38].

FIGURE 3. The change in Montréal men’s shelters over time.

rehabilitation (drug/alcohol), and prison.1 The probability
that an individual in an initial state si will transition to a new
state sn can be defined as follows in Equation 1:

P(sn|si) =
N (si, sn)
N (si)

(1)

where N (si, sn) is the number of people transitioning from si
to sn and N (si) is the number of individuals in si. An indi-
vidual can transition from their initial state to their initial
state (no change) or from one state to another state (by the
end of week), for instance, street to shelter. Therefore, for
the states defined before, we would have 72 probabilities
(a matrix of 8 initial states and 9 new states) for each state-
to-state transition–excluding death to another state. However,
from just analyzing the data alone, we would only take into
account the change in populations. Other outside factors can
also affect this probability. Consider the following graphs
where we analyzed the cumulative population of six males
(Figure 3) and seven female (Figure 4) shelter populations
in Montréal,2 respectively, over the course of a year as well
as the temperature (Figure 5)3 over that time period. Here,
we can clearly see an impact on the shelter population of
temperature. This is an example of how simply calculating

1Adapted from the At Home/Chez Soi project [29], [30]
2Data provided by the city of Montréal
3Data retrieved from https://montreal.weatherstats.ca/metrics/ tempera-

ture.html
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FIGURE 4. The change in Montréal women’s shelters over time.

FIGURE 5. Montréal’s temperature over time from mid 2018 to mid 2019.

the transition probability matrices for two points in time will
not suffice to create an accurate simulation. We propose a
model where the transition matrix probabilities are dynam-
ically updated based on the current state of the system and
what the end result should be when training.

2) NEURAL NETWORKS
To introduce our deep learning algorithms properly, we will
first provide a brief introduction to the concept of neu-
ral networks. This framework for machine learning, more
commonly referred to as artificial neural networks (ANNs),
is an attempt to mimic our own cerebral cortex closely [39].
Figure 6 is visual representation of a basic neural network.

Each circle in Figure 6 represents a neuron in the network;
while each line represents a connection between the neurons.
The blue neurons represent the input layer; the red neurons

FIGURE 6. A basic neural network.

represent the hidden layer, and the green neurons represent
the output layer. There can bemore than one hidden layer, and
the output layer does not necessarily need to have the same
number of neurons as the input layer; Figure 6 is just a basic
representation. Each connection has a parameter known as the
weight of the connection, and each hidden neuron, as well as
output neuron, has a parameter known as its bias [39]. When
values are presented to the input layer, each neuron has its
own input value that is passed along each of its connections
to the hidden layer. This value is affected by the weight of
the connection it is travelling down. The output of the hidden
neuron is affected by all of these values travelling to it, as well
as its own bias. These outputs, in Figure 6 for example, would
then be passed to the output layer, where the same process
would occur to get the final output values. In order to train the
network to produce accurate outputs, the difference between
the output of the network and what the output should be
are first calculated. Then, the network will typically adjust
weights by propagating error terms back–a well-known back
propagation method [39].

3) MDQ-LEARNING
The base algorithm we are modifying for our purposes is
called q-learning. It is a form of reinforcement learningwhere
the model (or agent) is trying to determine an optimal action
to perform while in a certain state [40]. The way it learns is
by receiving a reward, positive or negative, for performing
said action based on how optimal it is for an overarching
goal. Consider a simple example known as the cart-pole
problem [27]. The environment is initialized with a cart that
can move left or right and an upright pole attached to it that is
slightly offset such that it will fall over if the cart is notmoved.
The goal of the agent is to keep the pole as upright as possible.
If it falls past a certain threshold (such as 15 degrees from the
center for example) the agent fails, and the environment is
re-initialized. The rewards given in this problem are based on
howwell the agent corrects the falling of the pole, that is, how
close the pole stays to 0 degrees from the center [27].

In deep q-learning, the algorithm aims to learn an opti-
mal rule or policy for a Markov decision process. It does
not require a model to process the data; it simply takes
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a starting state, performs an action, and observes the new
state reached. The learning here also comes from a reward
given for reaching the new state, which the algorithm aims
to maximize. When implementing this approach in a neural
network, it could be defined as the distance from the desired
output that it wants to reach.

This algorithm uses a target network and a prediction
network to determine the loss of the system where the out-
put of the prediction is trying to converge with the target.
Every c number of epochs, the architecture of the target
network is updated with that of the prediction network being
trained during this process. In order to maximize the reward,
the algorithm modifies its q-values, which are used when
deciding which action to perform as noted before. Given a
sufficient amount of time, the algorithm can get close to
converging on the desired output [26], [28], [40].

We will be interpreting the q-values as transition probabil-
ities for each state-to-state transition. One of our algorithm’s
main difference from deep q-learning is that it only uses
one neural network; loss will be calculated by looking at
the previous output to see how it is converging. Another
difference is how we will process the state transitions. Unlike
deep q-learning, our data does not necessarily have an action
that leads to a new state; it is a direct transition.

In order to simulate each member of the population accu-
rately, we will introduce a sub-epoch that occurs on every
epoch in the algorithm. This sub-epochwill run eachmember,
through the network, with their state and action, producing an
ideal q-value for them individually. To get the reward for this
new q-value, consider the following in Equation 2:

Rs(si, sn) = 1−
Qe(si, sn)

Q(si, sn)+ Qe(si, sn)
(2)

whereQe(si, sn) is the calculated q-value at the current epoch
and Q(si, sn) is the q-value for that state-action pair as of the
previous epoch.
In deep q-learning, the goal is to maximize this reward.

Since our goal is, instead, to produce the best q-value for this
transition, we can see an obvious problem with this formula.
If the network needs to lower the value of a probability,
it will be difficult with this reward formula as it only pro-
duces positive values. This topic will be addressed in the
MNFQ-Learning section.

We will introduce a simple approach in determining the
new states in a population commonly known as a roulette
wheel. Consider the following in Equation 3:

Q(si, sn) >
2∑
j=1

Q(si, snj ) >
x∑
j=1

Q(si, snj ) (3)

where x is the total number of new states. This defi-
nition assumes that the q-values have been normalized
between 0 and 1. To select the new state, we can simply
generate a random number between 0 and 1 then see where it
falls in the range (denoted by the > symbols).

For example, if you had three probabilities 0.25, 0.35, and
0.4, the wheel would look like the following in Equation 4:

Wheel = 0.25 > 0.60 > 1.00 (4)

Then, the model would generate a random number, for
example 0.55. Next, the model would identify if it falls
between 0 and 0.25. If it does not, it would go to the next
range which is 0.25 and 0.60; which would be a match.
So, the selected action would be action 2.

Once all of the sub-epochs have ran, we can calculate the
new q-values for the algorithm. Consider the following in
Equation 5:

Q′(si, sn) = Q(si, sn)+ [1−

∑N
j=1 Rj(si, sn)

N
]η (5)

where Q′(si, sn) is the new q-value, Q(si, sn) is the previous
q-value; N is the size of the population; Rj is the reward
for each member of the population in that transitioned from
state si to state sn, and η is the learning rate. This equation
essentially takes the average of the rewards from the maxi-
mum reward, multiplied by the learning rate, as the value to
update the q-value by. After all of the updates have occurred,
we will then normalize the results to ensure they still fall in
between 0 and 1.

The last consideration is how the network is trained. Con-
sider the following in Equation 6 for the error:

Eout =

∑x
j=1[Q

′
j(si, sn)−

∑N
k=1 Qek (si,sn)

N ]

x
(6)

where x is the number of q-values in the table and Qek is
the outputted q-value for each member of the population that
transitioned from state si to state sn. We are calculating the
average difference between each new q-value and the aver-
age q-value that the population outputted. This error will
then be applied to the output neuron of the network so that
back-propagation can be performed.

In deep q-learning, the goal is for the prediction network
and target network to converge. Since our implementation
only uses one network, we will simply look at how the
q-values are converging from one epoch to the next. Consider
the following definition in Equation 7:

Loss =

∑x
j=1[

∑y
k=1[Q

′(sij ,ank )−Q(sij ,ank )]
2

y ]

x
(7)

Here, we are getting the average of the average of the
differences between the new q-values and the old q-values
squared where x is the number of states and y is the number
of actions.

To input into the states to the network, we simply create an
array of them and assign their index in the array as their value
to the network. Therefore, the network takes two inputs: the
index of the state of the person and the index of the state to
which they are transitioning. The output is an optimal q-value
based on the current state of the model for the current member
of the population. Our proposed model has a network with
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four hidden layers having 4, 8, 16, and 24 nodes respectively.
We do give the option of modifying the size and count of
the hidden layers here, but this is our suggestion from testing
the model. For example, if we had the states street, shelter,
and hospital, street would be recognized as state 0, shelter as
state 1, and hospital as state 2 to this neural network. As for
an initial transition matrix, we suggest manually analyzing
the input data first and calculating a matrix to speed up the
algorithm’s training. These probabilities can be calculated
using Equation 1 in the homelessness simulation section.

4) MNFQ-LEARNING
In neural fitted q-learning (NFQ), the main concept is to
update the q-values in deep q-learning using an off-line
approach where all previous experiences are considered [27].
These experiences are defined as the original state, action
taken, and the resulting state. The reasoning for this approach
is because when a q-value is updated it could, inadvertently,
affect somewhere else in the table and require an update there
as well.

Since the model is using an off-line approach (all previous
experiences are considered instead of just the current expe-
rience), it will determine the best course of action for the
current q-value being updated in an attempt to avoid this. This
approach results in fast training times with a minimal amount
of input [27], [34]. For the homelessness problem, however,
using the modified deep q-learning algorithm (MDQL) we
defined, the action is simply the new state. Therefore, the pur-
pose of this algorithm will, instead, be to assist MDQL in
updating the q-values on each epoch to a reasonable value.

In order to determine an accurate q-value (or transition
probability for our purposes) for the next epoch, this algo-
rithm will calculate an offset to add onto the calculated
q-value from MDQL. Consider the following in Equation 8:

Q′(si, sn) = Q(si, sn)+ [1−

∑N
j=1 Rj(si, sn)

N
]η

+δQ(si, sn)η (8)

This is the same equation as the new q-value in the MDQL
algorithm but with the offset, δQ(s, a), that MNFQL will
calculate. The probability (or q-value) is accurate based on
whether or not it is realistic for the training data.

The way this offset will be calculated for each Q(si, sn)
is by considering all of the previous q-values outputted by
the MDQL algorithm for that state-action pair, the current
population in the new state, the known end population for new
state, and the weeks left in the simulation. To increase accu-
racy with the q-values, we will use a separate neural network
for each state-new state pair. Each network is individually
trained with the data for its respective state-new state pair,
before training the primary MDQL algorithm as a result. For
example, if this problem was applied to the probability set
in Figure 2, the result would be 5× 6 = 30 networks.
Each network will take the following inputs: each q-value

previously calculated for that pair individually, the popula-
tion in the new state, weeks left in the simulation, and the

current q-value. The output of the network will be the end
population for the new state. The q-value that gives the lowest
error will be defined as α, and the output error from that will
be used for back propagation in the network. This error, E,
is simply the difference between what the network outputs
and the known end population. For the offset, consider the
following in Equation 9:

δQ(s, a) =
α∑x

j=1 Q(si, sn)
(
−E
Nsn

) (9)

where Nsn is the known end population size for the new state.
Since the network is taking the total population in the new
state, we need to times by the best q-value divided by the sum
of all states with this new state (the summation would exclude
the state-new state pair that α is a part of and add α on instead)
to get an estimated percentage that this state transition will
contribute to the final population. This equation will then
give us the relative, percent difference in the end population,
multiplied by this.

For the rewards in MDQL, we propose the following mod-
ification to the formula as shown in Equation 10:

Rs(si, sn) = σQ(si, sn) (10)

where σQ(si, sn) is the immediate value from δQ(s, a). This
uses the same formula for δQ(s, a), but α (previously the
q-value that gives the lowest error) is, instead, the q-value
calculated for the current individual. If the error from this is
less than 20%, back propagation is performed on the state,
new state network.

IV. AN EXAMPLE
Consider a set of ten (10) individuals that can only be in
one of three of the following homelessness states: shelter,
street, and hospital. These individuals are divided up as shown
in Figure 7.

FIGURE 7. An example homeless population.

For each of the states, the algorithm ‘‘sees’’ the following:
shelter as 0, street as 1, and hospital as 2. Therefore, for the
population in figure 7, the algorithm would ‘‘see’’ it as an
array as follows: {0, 0, 0, 0, 0, 1, 1, 1, 2, 2}.

A. INITIALIZATION
Consider the population in the previous section and, for the
sake of simplicity, say that a year has 4 weeks (or quarters).
This example will have two (2) years of data as shown
in Figure 8.

The algorithm would ‘‘see’’ the data in Figure 8 as
follows:
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FIGURE 8. An example dataset.

YearOne= {0, 0, 0, 0, 0, 1, 1, 1, 2, 2}, {0, 0, 0, 0, 1, 1, 1, 1,
2, 2}, {0, 0, 0, 0, 1, 1, 2, 2, 2, 2}, {0, 0, 0, 1, 1, 1, 1, 1, 2, 2}

YearTwo= {0, 0, 0, 0, 0, 0, 1, 1, 1, 2}, {0, 0, 0, 0, 0, 1, 1, 1,
1, 2}, {0, 0, 0, 0, 0, 1, 2, 2, 2, 2}, {0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2}

Since the algorithm is presented with three (3) states (shel-
ter, street, and hospital) and four (4) quarters in a year, it will
initialize the transitional probabilities for each quarter (4 sets
in total) as shown in Figure 9 (these were randomly generated
with the highest probability given to stay in the same state).

FIGURE 9. An example transition probability matrix.

The next step of the initialization is to create one (1)
neural network for MDQ-Learning (used to simulate) and
P (number of probabilities) individual neural networks for
MNFQ-Learning (used to train the model).

B. TRAINING: INITIAL LOOP
The algorithm starts by cycling through the data for each
week of each year. Let’s follow the first week of year one:

Input population = {0, 0, 0, 0, 0, 1, 1, 1, 2, 2}
This population is passed to the MDQ-Learning algorithm

to simulate each person individually. We will follow the first
person who is in the shelter state; consider an example tran-
sitional probability matrix for this week of the year (week 1)
in Figure 10.

FIGURE 10. Week 1’s Transition Probability Matrix.

Since the individual we are following is in the shelter state,
we are only concerned with the probabilities that they will

transition to other states from their initial state. Therefore,
transitioning to the shelter has a 72% probability of occurring,
street a 22% probability, and hospital a 6% probability. With
that in mind, the new state for this individual is determined
using a weighted roulette wheel based on these probabilities
as shown in Figure 11.

FIGURE 11. A sample, weighted roulette wheel.

The wheel is ‘‘spun’’ (a random number is generated) to
determine which state to transition this individual to. The new
state is recorded (for the individual we are following, street),
and input into the MDQ neural network with the previous
state (for the individual we are following, shelter) to get a
recommended transition probability for the individual. This
output will be defined asQe(si, sn), where si is the initial state,
sn is the new state, and Qe is the output. Consider Figure 12
which shows a sample MDQ network.

FIGURE 12. An example MDQ network.

Next, with the MNFQ neural network for the current indi-
vidual’s transition (in this case, the shelter→ street network),
it takes the following inputs:

(1) The transition probability calculated for the current
individual, normalized with the current value (from
Figure 12, 0.48)

(2) The current population in this new state (in this case,
after the transition, there’s now 4)

(3) The weeks/epochs left to the next population (in this
case, the next set of available data is 1 quarter away)

The goal is to see the output’s error from the end population
(start of next week) in this new state (for street, 4). This error
will be referred to as E .
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The error is used to determine an immediate reward for
choosing this transition for this individual with the previously
described formula:

δQ(s, a) =
α∑x

i=1 Q(si, sn)
(
−E
Nsn

) (11)

where α is the calculated transition probability (from the
previous output, 0.48),Nsn is the end population (for street, 4),
and the summation is of all the transition probabilities for
each state→ street probability. Since the goal of the network
is to output the total population in the new state, we calcu-
late the current individual’s calculated transition probability
divided by the sum of all transitional probabilities to this new
state (state→ street) to get an estimated percentage that the
current state transition (shelter→ street) will contribute to the
overall, relative percent error of the final population (in this
example, street population). The goal of the algorithm is to
minimize this value.

This ‘‘reward’’ as well as the calculated transition prob-
ability is recorded for each individual. If the error from
before, E , is less than 20%, theMNFQ neural network (in this
case, the shelter→ street network) is trained by performing
back-propagation. Once all individuals have been processed,
the algorithm uses eachMNFQnetwork to determine an offset
to add to each transition probability in order to better fit the
data.

Consider the same equation described for the ‘‘reward’’
value previously but this time, however, α is instead the
calculated transition probability, from each individual, that
gives the lowest error for this transition. The rest of the
equation variables are identical. This value is then used in the
previously described equation:

Q′(si, sn) = Q(si, sn)+ [1−

∑N
j=1 Rj(si, sn)

N
]η (12)

where Q′(si, sn) is the new transition probability, Q(si, sn) is
the previous transition probability, N is the size of the popu-
lation in the new state sn, Rj is the ‘‘reward’’ for each member
of the population in that transitioned from state si to state sn,
and η is the learning rate. Once all transition probabilities for
the current week have been updated accordingly, each row is
normalized such that it adds up to one (1). An example of this
can be seen in Figure 13.

FIGURE 13. A sample transition probability normalization after a training
epoch has finished.

V. PERFORMANCE EVALUATION
As discussed in our research challenges, we are faced with a
lack of data. Using the At Home/Chez Soi project [29], [30]

we created a data set that showed the state for each individual
in Montréal at 117 different time-points (or weeks). It should
not be assumed that every individual had a state recorded for
every time-point; however, this issue did not introduce any
complications as our model trains on a week-to-week basis.
We first trained our model with this data to produce transition
probability matrices for each week of the year. This process
required us experimenting with the number of epochs and
learning rate to determine the best combination for an optimal
output. The three learning rates we tested with were 0.1, 0.01,
and 0.001. After numerous rounds of testing, the lowest rela-
tive percent differences from the final population we achieved
were 12.9%, 12.5%, and 66.5% respectively.

FIGURE 14. Figures for a learning rate of 0.01.

Consider Figure 14 that shows the total processing time
for our maximum run of 450 epochs at a learning rate of 0.01.
It should be noted that for the other two learning rates, the pro-
cessing time was very similar to this graph. We can see that
the time increases exponentially as the epochs are increased.
It should be noted that the model is currently using the CPU
as the hardware accelerator.4 Once the model was trained,

4The time results in this graphwere from an Intel Core i7-7700K processor
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it produced 52 unique transition probability matrices for each
week of the year.

Next, we tested themodel with 2015 to 2018 homeless state
counts from the city of Montréal. Since our model transitions
the population on each epoch, we consider one epoch to
be equal to one week. Therefore, we ran the populations
in 2015 through the trained model for 156 epochs. Consider
Figures 14 and 15 that show the relative percent difference of
the final output for this learning rate, after 50, 150, 250, 350,
and 450 epochs.

FIGURE 15. Figures for our relative percent difference with learning rates
0.001 and 0.1.

It shows that the relative percent difference of our model
followed an almost sinusoidal form. This observation is inter-
esting as lower epochs may be suffice to produce an accurate
output. In this instance, at 50 epochs, our model had an
relative percent difference of 31.39%. Consider figure 16,
which shows the best results for each learning rate’s best run.
At a learning rate of 0.1, we can see that the not homeless
and transition housing states were very closely predicted. For
the other states, however, we do have some differences that

FIGURE 16. Figures for our results with each learning rate.

FIGURE 17. A simple transition probability matrix.

need to be improved.Wewill discuss implementing aMarkov
model in the future works section to compensate for this.

To evaluate our model further, we created an experiment
to generate synthetic data based on an input transition proba-
bility set. This step was implemented because of lack of real
data available to us at this current time. Consider the simple
transition probability matrix for three states in Figure 17.

Our experiment assumes that this matrix is valid for all
52 weeks in the year. This probability matrix forces the
population to eventually transition to state S3 and be unable
to transition out of it. The weekly data generated from
our experiment follows the matrix perfectly. For example,
if 100 individuals are in S1, the next week will place 25 in
S1 and 75 in S2. To lengthen the time that the resulting
simulation will take to converge, our experiment initially
places more people in the state that is less likely to be reached.
For the transition probability table in Figure 17, with a total
population of 100, this resulted in S1 starting with 59 indi-
viduals, S2 with 33, and S3 with 8. From Figure 18, we can
see that this dataset (containing 52 weeks in total) converges
quite quickly. Furthermore, consider Figure 19 that shows the
state populations over each week.

With our model, a perfect result would be a graph that
looks like Figure 19 after having been trained with the syn-
thetic dataset then asked to simulate a starting population
equal to week 0 in Figure 18 for one year (52 weeks).
In Figures 20 and 21, our model was run for 75 epochs with
randomly initialized and provided transition probabilities
respectively. These figures also include the loss over epochs
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FIGURE 18. A simple dataset generated from Figure 17 probabilities.

FIGURE 19. A graph of the state populations over weeks from the dataset
shown in Figure 18.

as well to show how the probability set converged as the
model was trained (i.e.. a lower loss means a smaller differ-
ence between transition matrices from the previous epoch).

To compare the results with our previous testing, the model
was ran again but with the transition probability provided to
it; consider Figure 21. The resulting graph is very close to
Figure 19 but has an interesting curve in the loss over epochs,
which could be attributed to the fact that the model knew the
exact transition probabilities (the loss dropped significantly
at the start) and started to overfit the model as seen with the
lack of curves and sharp lines in Figure 19.

VI. DISCUSSION AND FUTURE WORKS
As we have shown, our model is able to learn very quickly
with a relatively small amount of data to produce accurate
results. Although the test data was very low resolution, we are
confident in our simulation as it learned from real data and
was able to produce a simulation that ended with a low error
to our desired results. One of the aspects we can improve here
is our overall processing time. Although using CPU as the
hardware accelerator was shown to be considerably quick,

FIGURE 20. A model using a learning rate of 0.01 and trained for only
75 epochs.

processing with a GPU would only speed up the algorithm
even more.

One may argue that reinforcement learning may be too
complex for this problem. This method is applicable where
there’s the need to learn simultaneously (1) the dynamics of
the system, and (2) a control policy suitable for achieving
some externally-imposed goals. Because the purpose of this
research is to provide policy makers and planners with a
means of predicting the future populations of each homeless-
ness state, we feel that it is necessarily complex. It can be
argued that the algorithm could indeed be used to achieve
externally imposed goals based on how it is used. For exam-
ple, a planner may add or remove shelters based on the output,
which the algorithm will then adapt to in order to provide
realistic outputs based on the real-word data on which it was
trained.

Therefore, we disagree that using a simpler, modelling
strategy (such as a MLP classification network using
multi-class cross-entropy loss) would be better for this prob-
lem. Although the initial training could be considered as such,
the end result is a model that will predict the population distri-
butions over time. This could, again, be argued as classifying
individuals into different population groups as a function of
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FIGURE 21. The same model as Figure 20 but with the transition
probabilities provided to it.

time but a problem arises when determining a proper function
of the current state and any desired auxiliary information.
By using our deep learning methods as proposed in the paper,
the algorithm is, instead, learning this function on its own
and removing that complexity which would be difficult to
accurately create otherwise.

Another aspect to improve on with our model is the process
of transitioning individuals to new states. For the shelter
state, for example, an individual wouldn’t be able to transi-
tion to it if the city they are in has no availability in their
shelters. To implement this feature we would look at adding
a Markov decision process to replace the roulette wheel
approach. By using real data from shelters in the city the
user is targeting, we would get realistic populations in this
example state.

As noted previously, our MDQ network takes the index
of an individual’s current state, as well as the individual’s
new state. An interesting approach would be to convert these
indices to onehot encoding instead as they may be considered
as being ranked or ordered otherwise. Consider the example
shown previously where Shelter was 0, Street was 1, and
Hospital was 2. For this example, these would be converted
to 100, 010, and 001 respectively. From our testing with the
synthetic dataset described previously, the differences were

FIGURE 22. A model using a learning rate of 0.1 and trained for
100 epochs.

quite subtle. However, to see how it would affect extreme
cases, consider a model that has a high learning rate (0.1)
and trains for 100 epochs. As shown in Figure 22, the differ-
ences are not substantial but one can see that without onehot
encoding, the result is indeed closer to the exact result shown
in Figure 19.

VII. CONCLUSION
By creating a model to simulate a population of homeless
individuals accurately, we can provide policy makers and
planners with a means of predicting the future populations of
each homelessness state. If we simply used a mathematical
model, it would be a difficult task to create as we would
constantly need to revise the model manually to produce
realistic results for each transition probability.

Instead, we propose a model that leverages the process-
ing power of deep learning to achieve this result. With this
model, we can input known homelessness data and have the
probabilities revised dynamically to produce more accurate
results. Our two algorithms, modified deep q-learning and
modified neural fitted q-learning, work together to achieve
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the same effect and input the resulting probabilities into a
Markov decision process to transition the population between
states.

The main challenge of our research was the lack of high
resolution homelessness data, which is important as our
model needs to train on and produce realistic results. One
way we accommodated this consideration was by simulating
each member of the population individually. From our per-
formance analysis, we were able to see our approach produce
an accurate model with a relative percent difference of 12.5%
on a low resolution data set that was entirely different from
our training data set. Furthermore, with a synthetic dataset,
we applied our algorithm to a higher quality source and
confirmed that it indeed produces accurate results.
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