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ABSTRACT Simultaneous Localization and Mapping (SLAM) has been widely applied in computer vision
and robotics. For the dynamic environments which are very common in the real word, traditional visual
SLAMsystem faces significant drop in localization andmapping accuracy due to the static world assumption.
Recently, the semantic visual SLAM systems towards dynamic scenes have gradually attracted more and
more attentions, which use the semantic information of images to help remove dynamic feature points.
Existing semantic visual SLAM systems commonly detect the dynamic feature points by the semantic prior,
geometry constraint or the combine of them, then map points corresponding to dynamic feature points are
removed. In the visual SLAM framework, pose calculation is essentially around the 3D map points, so the
essence of improving the accuracy of visual SLAM system is to build a more accurate and reliable map.
These existing semantic visual SLAM systems are actually adopting an indirect way to acquire reliable map
points, and several drawbacks exist. In this paper, we present SDF-SLAM: Semantic Depth Filter SLAM,
a visual semantic SLAM system towards dynamic environments, which utilizes the technology of depth filter
to directly judge whether a 3D map point is dynamic or not. First, the semantic information is integrated
into the original pure geometry SLAM system by the semantic optical flow method to perform reliable
map initialization. Second, design the semantic depth filter that satisfies the Gaussian Uniform mixture
distribution to describe the inverse depth of each map point. Third, updating the inverse depth of 3D map
point in a Bayesian estimation framework, and dividing the 3D map point into active one or inactive one.
Last, only the active map points are utilized to achieve robust camera pose tracking. Experiments on TUM
dataset demonstrate that our approach outperforms original ORB-SLAM2 and other state-of-the-art semantic
SLAM systems.

INDEX TERMS Dynamic scenes, depth filter, semantic segmentation, simultaneous localization and
mapping.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) constructs
a map of the surrounding world using the data collected by
the platform operating SLAM system, and simultaneously
locates itself within the map. The SLAM technology using
visual sensors is called visual SLAM. The research on visual
SLAM technology has been more than 30 years. Many excel-
lent visual SLAM systems have been developed, such as
MonoSLAM [1], PTAM [2], ORB-SLAM [3], ORB-SLAM2
[4], LSD-SLAM [5], SVO [6], DSO [7]. The current SLAM
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system usually assumes that the environment is static. In order
to make the visual SLAM system more practical, it is an
urgent problem to improve the accuracy of the visual SLAM
system in the dynamic scene.

In recent years, with the progress of deep learning algo-
rithm and the improvement of computing performance, clas-
sic image processing tasks (such as image classification,
target detection, semantic segmentation, etc.) can be well
completed by computer. Among them, image semantic seg-
mentation can get pixel level semantic classification results.
According to these classification results, we can know the
prior attributes of each pixel in the image. For example,
the pixels with the semantic category of building hardly
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produce movement and change, while the pixels with the
semantic category of human often produce movement and
appearance change. These semantic information can provide
the information of dynamic elements in the scene for SLAM.

The combination of traditional visual SLAM and semantic
segmentation based on deep learning can greatly improve
the robustness and accuracy of SLAM system in dynamic
environment. Semantic visual SLAM is a new research field,
but there is no mature and consistent scheme about how to
use semantic information.

A. RELATED WORK
Recently, the semantic visual SLAM for dynamic scenes has
gradually attracted more and more attentions, which uses
the semantic information of images to help remove dynamic
feature points. The semantic SLAM algorithms can bemainly
classified into three classes: the pure semantic SLAM which
solely adopts the semantic information, the semantic SLAM
which couples loosely the semantic information and geome-
try calculation, and the semantic SLAMwhich couples tightly
the sematic information and geometry calculation.

Approaches that solely depend on the semantic informa-
tion are straightforward. By applying the classic semantic
segmentation networks, such as YOLO [8], SSD [9], Seg-
Net [10], Mask-RCNN [11], PSPNet [12], and Deeplab [13],
the semantic labels of the extracted image features in visual
SLAM framework can be obtained. When the objects in the
image are recognized as movable objects, such as people, cat,
and car, the features located on these objects are thought as
dynamic features and will be directly removed [14]–[16] or
further processed through a selective tracking method in the
tracking thread of SLAM [17] to determine whether they are
retained or removed. The idea of using semantic information
to detect dynamic feature points is very simple and direct, but
it also has some limitations, mainly including two aspects:
first, the semantic dynamic feature points do not completely
coincide with the actual dynamic ones; second, the semantic
segmentation results have errors especially in the boundary
region of objects.

In view of the limitation of pure semantic visual SLAM
which solely adopts the semantic information, some recent
semantic SLAMworks towards the dynamic scene couple the
semantic information and geometry calculation. The seman-
tic visual SLAM systems which couple loosely the semantic
information and geometry calculation are proposed. For DS-
SLAM [18], it used SegNet [10] to obtain the semantic labels
of feature points in a separate thread. For example, if a feature
point is classified as potentially movable, such as ‘human’,
then epipolar geometric constraint is used to further detect
its dynamics by checking the moving consistency. If the
detection result with geometric constraint is dynamic, then
all feature points with semantic category of ‘human’ will be
considered dynamic, and then be removed. The essence of
this method is to take the intersect of the results of semantic
prior and geometric constraint: only the feature points which
are both dynamic in semantics and geometry are considered

as dynamic feature points. For DynaSLAM proposed by
Bescos et al. [19], it used Mask-RCNN [11] to obtain seman-
tic segmentation results and then judged the dynamic charac-
teristics of feature points. Meanwhile, it detected the dynamic
characteristics of feature points according to multi-view
geometry consistency. Then it took the union of the two
detection results. For a feature point, as long as either of the
two detection results is dynamic, the feature point is con-
sidered to be dynamic and removed. For the PSPNet-SLAM
proposed by Han and Xi [20], it combined the PSPNet [12]
and optical flow to detect and eliminate dynamic feature
points. The optical flow is firstly used to judge and cull
the dynamic point, and then dynamic characteristics of the
remaining feature points are detected by judgingwhether they
fall within the semantic dynamic object which is obtained
by the PSPNet semantic segmentation. For the method pro-
posed by Zhao et al. [21], it firstly used the Mask-RCNN
and edge refinement to obtain the contour of potentially
dynamic object, and then the optical flow is implemented
to further detect the state of potentially dynamic object by
checking the consistency of potentially dynamic object and
background areas. In general, the ‘loosely coupled’ scheme
takes either intersection or union of the two detection results
from the semantic information and the geometry calculation.
These two parts are implemented independently and perform
independent functions respectively. There is no interaction
between them, which may lead to the insufficient use of
semantic information and geometry calculation.

To further utilize the semantic information and geometric
constraint, the semantic visual SLAM which tightly couples
the semantic information and geometry calculation is pro-
posed to detect the dynamic feature points. For SOF-SLAM
proposed by Cui and Ma [22], it coupled the semantic infor-
mation and geometric information in a unified framework.
The SegNet was firstly used to get pixel-wise semantic seg-
mentation of each image and used to get a relatively reliable
fundamental matrix. Then the fundamental matrix is used to
further detect dynamic features through geometry constraint.
In this approach, fundamental matrix serves as the bridge that
links these two sources of information in a unified framework
and only one decision is made whether a feature is dynamic
or not. The hidden dynamic characteristic in semantic and
geometry information is further utilized to remove dynamic
feature more effectively.

B. MOTIVATION
The semantic visual SLAMalgorithmsmentioned above have
common problems: they detect the dynamic scenes by judg-
ing whether the feature points are dynamic or not from the 2D
image level and commonly use the information of adjacent
frames to eliminate the dynamic points.

There are two problems in doing so:
1) If the motion of dynamic elements in the scene is not

fast enough, or the frame rate of the image is very high,
the image feature points on the dynamic elements will
not show particularly obvious motion in the adjacent
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two frames. In this case, these dynamic feature points
are easily confused with the static ones.

2) The dynamic information in adjacent frames is lim-
ited. It is easy to be interfered by noise which may
arises from semantic segmentation error, fundamen-
tal matrix calculation, slow motion of objects, and
so on.

In order to solve the above problems, we use a probabilistic
framework to continuously accumulate image data inputs.
In this probabilistic framework, we maintain the probability
distribution of each map point’s inverse depth.

C. CONTRIBUTION AND OUTLINE
In this paper we propose a visual semantic SLAM sys-
tem toward dynamic environment, i.e. Semantic Depth Fil-
ter SLAM (SDF-SLAM), which is built on ORB-SLAM2.
We use the RGB-D version of ORB-SLAM2 which takes
both RGB image and depth map as input. This framework
aims at making the system more accurate in dynamic envi-
ronments. This work is the continuation of our previous
work [22], and it is superior than [22] by solving the problems
mentioned in section I.B. The proposed SDF-SLAM system
can highly reduce the influence of dynamic objects in the
environment through two modules we added to the original
ORB-SLAM2 framework, including the map initialization
module based on tightly coupling semantic information and
geometry information, and the camera pose tracking module
based on depth filter.

Our contribution can be summarized as follows:
1) Utilize the technology of depth filter to directly judge

whether a 3D map point is dynamic or not, while
the existing semantic visual SLAM systems com-
monly detect the dynamic features points from the
2D image level. More reliable dynamic information is
obtained.

2) Build a reliable initial map based on the semantic opti-
cal flow. The semantic information is integrated into the
original pure geometry SLAM system in order to make
the depth filter work more normally.

3) Adopt the probability framework to maintain the map.
For a map point, all the image data related to it con-
tribute its dynamic judgment. More abundant informa-
tion about the dynamic characteristics of map points
can be obtained, which lead to better robustness to
noise and single outlier observation.

The rest of the paper is structured as follows: the pro-
posed SDF-SLAM is described in Section 2. First, the system
overview is presented. Second, the necessity of a semantic
information aided map initialization module is discussed and
how to initialize map is also presented. Third, the procedure
of how to use depth filter in the framework of SLAM is
demonstrated. Section 3 evaluates the accuracy of our system
on TUM RGB-D dataset and compares our system with
the state-of-the-art semantic visual SLAM systems toward
dynamic environments. Finally, a summary is provided in
Section 4.

II. SEMANTIC DEPTH FILTER SLAM
In this section, the proposed SDF-SLAM system will be
clarified in detail. In the proposed system, there are two
important modules that work together to make the whole
system operate robustly in dynamic scenes, including themap
initialization module based on semantic optical flow and the
robust tracking module based on semantic depth filter. In the
following part of this chapter, we will first give an overview
about the whole system. Then the two modules mentioned
above will be demonstrated separately.

A. SYSTEM OVERVIEW
The overall architecture of the proposed SDF-SLAM is
shown in Fig.1. The whole SDF-SLAM system is built upon
ORB-SLAM2. The local mapping and loop closing threads
are the same as ORB-SLAM2.

In the visual SLAM framework, pose calculation is essen-
tially around the 3D map points in this map, so the essence
of improving the accuracy of visual SLAM system is to build
a more accurate and reliable map. Therefore, the proposed
SDF-SLAM firstly initializes a more reliable map with the
semantic optical flow. A separate semantic segmentation
thread is added to provide semantic label for map point and
helps to build a reliable initial map. Then, updating the map
with the depth filter which is designed and integrated into
the tracking thread to generate reliable map points, and the
dynamic 3D map points are removed more reasonably and
effectively. The updated 3D map where the dynamic map
points are removed is used by the tracking thread, and more
robust camera pose calculation is performed towards dynamic
environments.

In our approach, the map initialization based on the seman-
tic optical flow and the map update based on the depth filter
are the two most important modules, so they will be stated in
detail.

B. SEMANTIC OPTICAL FLOW BASED MAP
INITIALIZATION IN DYNAMIC SCENE
In SLAM system, the map is the reconstruction of surround-
ing environment based on the acquired sensor data. When the
platform that operates the SLAM system moves around and
sensor data about new surroundings are acquired, the cur-
rent camera pose within the map and the map itself will
expand with the newly acquired sensor data. Therefore, when
the system just starts to run, a map initialization module is
needed to build an initial map, then subsequent calculation
will be around this map. As the initial map is the origin of
all subsequent calculation, the quality of initial map is of
vital importance to the system accuracy. In dynamic scene
the initial map is easy to be disturbed by dynamic objects,
so we propose to initialize the map with the semantic optical
flow method proposed in our previous work [22].

The procedure of map initialization is shown in Fig.2.
First, once current input image frame is chosen to initialize
the map, SegNet [10] is used to get semantic segmentation
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FIGURE 1. Overall-architecture for SDF-SLAM. The local mapping and loop closing threads are the same as ORB-SLAM2. A separate
semantic segmentation thread is added to provide semantic label for map point and helps to build a reliable initial map. Depth filter is
designed and integrated into the tracking thread to generate reliable map points where the dynamic map points are removed. Then,
estimate camera pose solely depending on the reliable map points.

FIGURE 2. Map Initialization based on tightly coupling semantic and
geometry information.

result, which is implemented in caffe framework and trained
on PASCAL VOC dataset [23]. Twenty classes are obtained,
including airplane, bicycle, bird, boat, bottle, bus, car, cat,
chair, cow, dining table, dog, horse, motor bike, person,
potted plant, sheep, sofa, train, and monitor. Based on the
semantic results, the prior knowledge of each pixel can be
roughly classified as static, dynamic, and potentially dynamic
according to the human common sense.

Second, calculate the optical flow of current image frame
and previous adjacent image frame to acquire feature point
correspondences. Then the correspondences of both dynamic
and potentially dynamic feature points are removed with the
semantic segmentation prior. Only the semantic static feature
points are used to calculate the relatively reliable fundamental
matrix F with the 8-points algorithm [24].

Third, with the calculated F, the epipolar line constraint is
used to further judge the motion characteristics of all feature
points in current image frame. If the feature point in current
frame is static, its corresponding feature in last frame should
resides closely to the epipolar line. We choose 1 pixel as the
distance threshold, if the feature point in current frame whose
corresponding feature in last frame is more than one pixel
away from the epipolar line, it is considered as dynamic.

Fourth, construct a reliable initial map. Through the above
three steps, we make good use of semantic information and
geometry information to retain static feature points in current
image frame. As we take RGB-D image as input data, when
depth data of these feature points is added, they turn into 3D
points and form the initial map. These 3D map points are
almost all on the static background, which makes the static
world assumption satisfied in dynamic scenes.

C. INVERSE DEPTH FILTER BASED MAP UPDATE IN
DYNAMIC SCENE
After a reliable initial map is acquired, the SLAM system
is able to start locating the camera within the map and
expanding the map simultaneously. As for the image coming
immediately after the map initialization procedure, the cor-
responding camera pose calculation is reliable as the initial
map has been specially processed toward dynamic scene.
However, these subsequent map expansion procedure will
still be disturbed by the dynamic objects in the environment.
If dynamic map points are added, the map will be polluted
and not reliable anymore for further camera pose calculation.
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A very straightforward idea to solve this problem is to adopt
a more cautious strategy to expand the map.

In order to keep the updated map reliable for camera pose
calculation, we firstly define two kinds of map points: acti-
vated map points and inactive map points. Map points which
are confirmed static and reliable are determined as active, and
the other map points are determined as inactive. Only active
map points are involved in the calculation of camera pose.
Therefore the key is to adopt a proper method to determine
the active or inactive state of newly added map points.

In the following part, we will firstly introduce the tech-
nology of inverse depth filter. Then how to utilize inverse
depth filter to detect dynamic map points is clarified. At last,
we will demonstrate how to integrate inverse depth filter
into the framework of ORB-SLAM2 to achieve proper map
points management and achieve robust camera pose tracking
in dynamic environment.

1) INVERSE DEPTH FILTER INTRODUCTION
Depth filter is proposed byVogiatzis et al. in their video based
real-time multi-view stereo system [25]. Depth filter adopts a
probabilistic depth estimation scheme that updates posterior
depth distributions with every new image frame in the video
sequence. In order to deal with large scene depth, Forster et al.
[6] replace the depth in depth filter with the inverse depth and
implement inverse depth filter. Inverse depth filter is based
on the assumption that the inverse depth of a map point in
the corresponding image follows Gaussian Uniform mixture
distribution:

p (x|Z , π)=πN
(
x|Z , τ 2

)
+(1− π )U (x|Zmin,Zmax) (1)

x is the measurement of the inverse depth of a map point,
which is modeled as a random variable. Z is the true inverse
depth of the map point, and is the value to be estimated. π
is the probability that x is a good measurement that follows
Gaussian distribution N

(
x|Z , τ 2

)
with the real inverse depth

Z as the mean and τ 2 as the variance. 1−π is the probability
that x is an outlier measurement that follows Uniform distri-
bution U (x|Zmin,Zmax) in the interval [Zmin,Zmax]. Accord-
ing to (1), the distribution of measurement x is determined
by two parameters: the true inverse depth Z and good mea-
surement probability π , which is obvious in the expression
p (x|Z , π). Based on the model described by (1), if a series of
independent inverse depth measurements of a map point are
given, they can be regarded as samples of random variable x
and be used to estimate parameters Z and π .
Inverse depth filter takes depth measurement uncertainty

into account and adopts a probabilistic to fuse multiple mea-
surements, which leads to a more noise-robust and reliable
inverse depth estimation result.

2) DYNAMIC MAP POINTS DETECTION
BASED ON DEPTH FILTER
Inspired by the idea of inverse depth filter, we extend the
assumption of inverse depth’s Gaussian Uniformmixture dis-
tribution to the SLAM application in dynamic environment.

Although the model described by (1) is originally proposed
to merge inverse depth measurements acquired in different
baseline, it is also very suitable to detect dynamic map points
in feature based SLAM system.

In ORB-SLAM2, ORB features are used to perform stereo
matching procedure, which is very accurate compared with
stereo matching algorithm based on photometric consistency.
In dynamic environment, if the matching results are accu-
rate enough between multiple views, which means there are
almost no outlier measurements, the estimated π will be
close to 1 when using (1) to merge multiple measurements
of inverse depth. However, situation is different in dynamic
environment. Even though matching results are accurate,
multiple measurements aren’t consistent if the map point is
moving, which will lead to a low estimation value of π .
Low value of π means the corresponding map point tends to
produce bad measurement, but the measurement is actually
right. Therefore, it is more reasonable to define π as the
probability of map point being dynamic when we use the idea
of inverse depth filter to detect dynamic map points. Then
we can use the newly defined π to reinterpret (1): π is the
probability that x is a measurement produced by a static map
point that follows Gaussian distribution N

(
x|Z , τ 2

)
with the

real inverse depth Z as the mean and τ 2 as the variance. 1−π
is the probability that x is a measurement from a dynamic
map point that follows Uniform distribution U (x|Zmin,Zmax)

in the interval (Zmin,Zmax). As for a map point, a series of
measurements of its inverse depth can bemerged to get amore
reliable estimation of Z , as well as the estimation of π which
indicates its probability of being dynamic. The details are as
follows:
x1, x2, · · · , xn are a series of measurements of the inverse

depth of a map point, they are independent of each other and
all follow the distribution described by (1), now we want to
estimate the parameters Z and π . This problem can be solved
through maximum posterior approach:

argmax
Z ,π

p (Z , π |x1, . . . , xn) (2)

According to Bayes formula, p (Z , π |x1, . . . , xn) can be
expanded as follows:

p (Z , π |x1, . . . , xn) =
p (Z , π, x1, . . . , xn)
p (x1, . . . , xn)

=
p(Z , π)p (x1, . . . , xn|Z , π)

p (x1, . . . , xn)
∝ p(Z , π)p (x1, . . . , xn|Z , π) (3)

As themeasurements are independent of each other, (3) can
be further written as:

p (Z , π |x1, . . . , xn)

∝ p(Z , π)p (x1, . . . , xn|Z , π)

= p(Z , π)p (x1|Z , π) p (x2|Z , π) . . . p (xn|Z , π) (4)

The range of Z is set to (Zmin,Zmax) and the range of
π is set to (0, 1). In the absence of a more reliable prior
knowledge, it can be considered that p(Z , π) follows a
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two-dimensional uniform distribution [25]. Suppose that we
samplem points in (Zmin,Zmax) and sample n points in (0, 1),
then the distribution of p(Z , π) can be approximated as:

p(Z , π) = p(Z )p(π ) =
1
m
·
1
n

(5)

Substitute (5) into (4):

p (Z , π |x1, . . . , xn)

∝
1
mn

p (x1|Z , π) p (x2|Z , π) . . . p (xn|Z , π) (6)

With (6), the maximum posterior estimation problem
described by (2) can be transformed into a maximum like-
lihood estimation problem:

argmax
Z ,π

p (x1|Z , π) p (x2|Z , π) . . . p (xn|Z , π) (7)

However in SLAM system, the measurements are obtained
in the form of video. If every time a new measurement is
obtained, a new maximum likelihood estimation problem is
calculated according to (7), many items are actually calcu-
lated repeatedly. Therefore, it is more reasonable to change
formula (4) to recursive form:

p (Z , π |x1, . . . , xn) ∝ p (Z , π |x1, . . . , xn−1) p (xn|Z , π) (8)

p (Z , π |x1, . . . , xn−1) is the posterior in last moment,
p (xn|Z , π) is the likelihood of current inverse depthmeasure-
ment. If the distribution form is unknown, (8) is still hard to
be solved. The authors in [25] approximate the true posterior
with a Beta Gaussian distribution:

p (Z , π |x1, . . . , xn) ≈ q
(
Z , π |an, bn, µn, σ 2

n

)
(9)

where
(
an, bn, µn, σ 2

n

)
are the parameters of approximated

Beta Gaussian distribution at current moment. Substitute (9)
into (8):

q
(
Z , π |an, bn, µn, σ 2

n

)
× ∝ q

(
Z , π |an−1, bn−1, µn−1, σ 2

n−1

)
p (xn|Z , π) (10)

Then bymatching the first and second order moments for Z
and π between the left and right of (10), the recursive update
formula of

(
a, b, µ, σ 2

)
can be acquired. The details on the

derivation can be found in the original work [25].
Then q

(
Z , π |an, bn, µn, σ 2

n

)
can be used to calculate the

first moment for π , and this first moment can be approxi-
mated as the estimate of π :

π =
an

an + bn
(11)

q
(
Z , π |an, bn, µn, σ 2

n

)
can also be used to calculate the

first moment for Z , and this first moment can be approxi-
mated as the estimate of Z :

Z = µn (12)

Each time we get a new inverse depth measurement xn,
the inverse depth estimation value can be updated using (12).
In the meanwhile, the probability of the map point being

FIGURE 3. Map update and robust camera pose tracking.

dynamic can be updated according to (11). If the change value
of the estimation of Z is smaller than a predefined threshold,
it is considered to be convergent. When the estimation of Z
has converged: if π is higher than a predefined threshold,
we consider the corresponding map point being static, and it
will not be updated anymore. We admit there is small chance
that this map point may turn to be dynamic, but it can be han-
dled by the map point maintaince module of ORB-SLAM2,
so it is resource consuming and worthless to keep updating it;
Otherwise, it is considered as dynamic. If the estimation of Z
hasn’t converged, it means that more measurements are need
to determine the motion characteristics of the corresponding
map point.

3) MAP UPDATE AND rOBUST CAMERA POSE TRACKING
In this part, we will demonstrate how to integrate inverse
depth filter into the framework of ORB-SLAM2 to perform
map update and achieve robust camera pose tracking in
dynamic environment.

On the basis of the reliable initial map, as for the image
coming immediately after the map initialization procedure,
the corresponding camera pose calculation is accurate. How-
ever, these subsequent map expansion procedure in dynamic
environment can be properly handled by the inverse depth
filter described in previous part.

As is shown in Fig.3, active map points that can be seen
in current image frame are used by the tracking thread to
calculate camera pose. At the same time, there are new map
points created by local mapping thread. These newly created
points are all set to be inactive, which means that they will
not be immediately used to calculate camera pose, until they
are confirmed static by the inverse depth filter. Among these
inactive map points, there are some map points that can be
seen in current image frame, therefore new measurement
are avaliable to perform inverse depth filter. If the inverse
depth of a map point is not convergent, more measurements
are needed to confirm its motion characteristics, so it has
to wait for next update. When the inverse depth of a map
point converges and π is low (for example, lower than 0.5),
the map point is still considered as a dynamic point and will
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FIGURE 4. Comparison of output camera trajectories of our SDF-SLAM, ORB-SLAM2 and ground-truth for the five dynamic sequences.

be deleted. Only when the inverse depth of a map point con-
verges and π is high (for example, higher than 0.5), the map
point will be considered as a reliable static map point and is
activated. Now the active map points in the map is updated,
when next image comes, active map points which are reliable
are used to calculate corresponding camera pose and the map
update procedure is conducted in the same way.

In view of the above research principles, our approach is
suitable to the problem that the motion of the dynamic feature
points between two adjacent frames is not obvious: 1) the
new method considers all the image frames that can observe
the map points. Although the relative motion between two
adjacent frames is not obvious, the relative motion of the
dynamic elements shown by the two images with a long time
span is relatively obvious; 2) the new method adopts prob-
ability framework. This framework constantly accumulates
the new observation data, so even if the single movement
between adjacent frames is relatively small, whose impact on
the map point’s probability of being static is limited, but the
accumulation of these small effects will significantly reduce
its static probability, so as to detect dynamic map points.

III. EVALUATION
In this section, experiments are performed to verify the effec-
tiveness of SDF-SLAM towards the dynamic environments.
All the experiments were performed on a computer with Intel
i9 9940X CPU, TITAN RTX GPU, and 48GB memory. First,

we compare our SDF-SLAM with the baseline framework,
i.e. ORB-SLAM2, to verify the improvement of our system.
Second, we compare our system with other state-of-the-art
visual SLAM systems towards dynamic environment. The
possible results published in the original papers are adopted
directly.

A. DATASET
We evaluate the accuracy of SDF-SLAM on the public
TUM RGB-D dataset [26] which is a novel benchmark
to evaluate the visual SLAM system. Five dynamic scene
video sequences, i.e., freiburg3_sitting_static (s_static),
freiburg3_walking_halfsphere (w_ halfsphere), freiburg3
_walking_rpy (w_rpy), freiburg3_walking_static (w_static),
and freiburg3_walking_xyz (w_xyz), are chosen. These
sequences are captured at 30Hz, and they contain
640 × 480.8-bit RGB images and 640 × 480.16-bit depth
images. Also, the ground-truth camera trajectory is obtained
by a high-accuracy motion-capture system with eight high-
speed tracking camera (100Hz).

These five chosen dynamic sequences were taken in the
‘desk’ scene, and two persons are walking or sitting. They are
applicable to verify the efficiency of our approach towards
dynamic environment. ‘s_static’ sequence represents the
scene of two persons are sitting at the desk and the camera
is kept in place manually. These two persons sit at the desk,
talk, and gesticulate a little bit. This sequence is intended to
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FIGURE 5. Comparison of relative accuracy improvement in dynamic environments between our system and other state-of-the-art semantic
SLAM systems.

evaluate the robustness of visual SLAM to slowly moving
dynamic objects. Therefore, ‘s_static’ can be seen as low
dynamic scene. The other four sequences describe the scenes
of two persons are walking through the office and the camera
moves along different directions. These four sequences can
be seen as high dynamic scenes. In detail, ‘w_halfsphere’
sequence means two persons are walking through an office
and the cameramoves on a small half sphere of approximately
one meter diamter. In ‘w_rpy’ sequence, the camera rotates
along the principal axes (roll-pitch-yaw) at the same position.
And in ‘w_xyz’ sequence, the camera moves along three
directions (xyz) while keeping the same orientation.

B. EXPERIMENTS AND ANALYSIS
First, we compare our SDF-SLAM with the baseline sys-
tem, i.e. ORB-SLAM2. The output camera trajectories of
our approach, ORB-SLAM2 and ground truth for the five
dynamic sequences are plotted and shown in Figure 4. In this

figure, we project the 3D trajectories into 2D plane to exhibit
the results more intuitively. As shown, our result exhibits
much higher similarity to ground truth than ORB-SLAM2.
To further evaluate qualitatively our approach, the qualita-
tive calculation results are listed in Table 1. The evalua-
tion metric is RMSE (Root Mean Squared Error) of ATE
(Absolute Trajectory Error). All the video sequences run
for five times to obtain the median, mean, minimum, and
maximum of RMSE results, which can reduce the impact
of system’s non-deterministic nature. As seen, for the five
dynamic video sequences, our approach owns lower RMSE
values regardless in the low dynamic environment or in the
high dynamic environment. The median, mean, minimum
and maximum RMSE are reduced obviously. In addition,
the relative accuracy improvement of our system against
the original ORB-SLAM2 is also calculated and shown in
Table 1. Compared with original ORB-SLAM2 system, our
approach can improve the accuracy greatly in all the five
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TABLE 1. Comparisons of RMSE [m] in dynamic sequences of TUM RGB-D dataset for ORB-SLAM2 and our approach.

TABLE 2. Comparisons of relative RMSE [m] reduction for our system against the state-of-the-art in dynamic sequences of TUM dataset.

dynamic sequences. Specifically, more than 40% improve-
ment is achieved for the low dynamic sequence. For the high
dynamic scenes, the improvements are more obvious and
more than 90% improvement is obtained. The results indicate
that our approach can further remove the disturb of dynamic
objects and thus degrades the pose error during optimization.

Second, we compare our SDF-SLAM with other state-
of-the-art semantic SLAM systems which were proposed
in recent two years and towards the dynamic environment.
In specific, the DS-SLAM [18], DynaSLAM [19], Detect-
SLAM [14], the system proposed by Zhang et al. [15],
the system proposed by Zhao et al. [21],SOF-SLAM [22],
and PSPNet-SLAM [20] are adopted for comparisons. All
the above systems are built on ORB-SLAM2, and are tested
on the dynamic sequences from TUM dataset. The rela-
tive RMSE reduction (i.e. relative accuracy improvement)
of each system with respect to ORB-SLAM2 is calculated
as the evaluation metric just like former researchers did in
their works [20], [22]. The comparison results are shown in
Table 2. As seen, all these semantic visual SLAM systems
can further discard the moving objects and reach higher
precisions compared with the original ORB-SLAM2. For the
‘s_static’ sequence which owns limited dynamic objects and
the movement between frames is slight, the relative accuracy

improvement of our approach (49.16% RMSE reduction
against the ORB-SLAM2) is more obvious than the other
methods. That is because our method adopts the 3D map
to detect the dynamic object and considers all the image
frames that can observe the map points. Although the rel-
ative motion between two adjacent frames is not obvious,
the relative motion of the dynamic elements shown by the
two images with a long time span is relatively obvious.
In this case, the low dynamic objects in ‘s_static’ can be
further removed by our approach. Among the five dynamic
sequences, our approach has the highest accuracy improve-
ments in three sequences (s_static, w_rpy, and w_static), and
in the other two sequences (w_halfsphere, w_xyz) the differ-
ences between our method and PSPNet-SLAM that achieves
the best results for these two sequences are very small.
To further compare qualitatively our system with the state-
of-the-art semantic SLAM systems, the average accuracy
improvements of these systems in low dynamic sequence,
four high dynamic sequences, and all the five dynamic
sequences are also calculated and shown in Table 3.
As shown, only in the high dynamic sequences, our approach
is 0.01% relative accuracy reduction compared with the
SOF-SLAM which achieves the highest average accuracy
improvement in high dynamic sequences. In the five dynamic
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TABLE 3. Comparisons of average relative RMSE [m] reduction for our system against the state-of-the-art in dynamic sequences of TUM dataset.

FIGURE 6. Comparison of average relative accuracy improvement in dynamic environments between our system and other state-of-the-art
semantic SLAM systems.

sequences which contain both low and high dynamic scenes,
our approach gets the highest average accuracy improvement.
The reason why our algorithm achieves better performance
is that we detect the dynamic objects directly from the more
reliable 3D map which is updated with the depth filter.
For a map point, all the image data related to it contribute
its dynamic judgment. More abundant information about
the dynamic characteristics of map points can be obtained,
which lead to better robustness to noise and single outlier
observation.

Last, the accuracy superiorities of our approach against the
state-of-the-art semantic SLAM systems towards dynamic
scenes are shown in Fig.5 and Fig.6 more intuitively in the
form of bar chart.

IV. CONCLUSIONS AND DISCUSSIONS
We have presented a new semantic visual SLAM, i.e.
SDF-SLAM, towards the dynamic environment. It is built
on ORB-SLAM2, and detects the dynamic scene directly
from the 3D map points with the Bayesian filtering frame-
work. Two modules, namely the semantic map initialization
module with the semantic optical flow and the dynamic
map points detection module with inverse depth filter, are
introduced to the ORB-SLAM2 framework. Our system can
overcome the drawbacks of dynamic feature points detec-
tion from the 2D image level, and more reliable dynamic
characteristics of objects are detected. Experiments in public

TUM dataset demonstrate that our approach outperforms the
ORB-SLAM2 and other state-of-the-art semantic SLAM sys-
tems towards dynamic scenes. In low dynamic sequence, our
system can achieve 49.16% accuracy improvement against
the ORB-SLAM2, and this improvement is very obvious
compared with other state-of-the-art SLAM systems. In high
dynamic sequences, our approach obtains averagely 96.86%
accuracy improvement and is only 0.01% accuracy reduction
compared with the SOF-SLAM which achieves the highest
average accuracy improvements in the high dynamic scene.
When considering the low dynamic scene and high dynamic
scene synthetically, our algorithm obtains the highest average
accuracy improvement and more suitable to deal with the
SLAM problem in dynamic environment.

Our work can be further improved in the following aspects:
1) Degenerate situations, such as geometrical degenerate cor-
respondences (e.g. all the observed features lie on a plane or
lie on a ruled quadric) and degenerate camera motion (e.g.
pure rotation) haven’t been carefully handled; 2) More in-
depth and detailed research on the convergent properties of
the inverse depth of the map point is needed; 3) Our approach
adopts the classic ORB features of image in the whole SLAM
framework. With the development of deep learning for fea-
ture extraction, such as the MagicPoint [27] and GCN fea-
tures [28], in future we will try to replace the ORB features
with the deep-learning features to further improve the robust
of our system.
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