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ABSTRACT In the gastrointestinal biopsy, online tracking and relocation of the region-of-interest are
essential to early diagnosis and surgical intervention of colorectal cancer. However, it is challenging for
the examiner to track and retarget the optical biopsy site due to interfering factors, e.g. violent rotation of the
lens, illumination variation, shape deformation, and target long-time-lost. Previous worksmay not effectively
handle the mentioned challenges due to the complexity of gastrointestinal environment and the limitation
of data. In this work, we construct an online tracking and relocation framework based on the concept of
detection and tracking, which is dramatically adapted to the inherent characteristics of the gastrointestinal
biopsy image. To effectively distinguish the target area from the gastrointestinal biopsy, we designed a new
rotated invariant Haar-like statistical descriptor which is robust for rotating and illumination changes. The
descriptor is based on the sector-ring difference under the circular sampling area. A simplified statistical
random forest discriminator based on confidence statistics is proposed to complete the preliminary screening
of the potential tracking target. In order to further estimate the location of the target, a supervised support
vector machine is introduced to rank the candidate target regions. Based on proposals of Siamese network
and the random forest, a location refinement fusion has been proposed to determine the location and the
confidence of the tracking area. Extensive experiments on various gastrointestinal videos, which consists of
open source and self-collected data, demonstrate that the proposed framework is superior to the mainstreams
methods in accuracy and robustness.

INDEX TERMS Relocation, online tracking, Haar-like feature, random forest, Siamese network.

I. INTRODUCTION
Screening for colorectal cancer is conducive to early
detection, diagnosis, and treatment of colorectal cancer. It is
the key to preventing colorectal cancer and reducing the
cumulativemortality of colorectal cancer. Themain screening
methods for colorectal cancer include endoscopic exami-
nation, fecal occult blood detection, and CT colonography.
With the development of technologies such as optical
coherence tomography (OCT) [1] and narrowband imaging
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(NBI) [2], the non-invasive optics-based visual examination
has replaced conventional biopsy. When it comes to inter-
nal gastrointestinal surgery, medical endoscopy is the most
common assistant instrument. However, because of the lack
of obvious anatomical features, sparse features, and many
similar areas, the gastrointestinal video in vivo is not friendly
to examiners. Not only is the gastrointestinal tissue is prone to
deformation but because of the patient peristalsis and doctor’s
operation, rapid movement, illumination changes, long-term
out of FOV of target and motion blurring all commonly
occurring, there are several challenges presented even for
the experienced examiner. Therefore, there is an urgent need
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for accurate and robust tracking and relocation system which
is semi-automated. By combining this system with manual
selection of regions of interest (ROI), or other recognition
models of potential gastrointestinal lesions, the gastrointesti-
nal examiner is able to reduce the false detection rate, shorten
the examination time, and relieve the pain of the examinee.
In addition, the automatic tracking and relocation system is
also significant for the development of routinization and pop-
ularization of gastrointestinal biopsy. At present, the problem
of tracking and relocating gastrointestinal biopsy area is gen-
erally solved by a universal tracking algorithm. For instance,
Nader Mahmoud et al. proposed using ORB-SLAM to track
the region of interest in gastrointestinal surgery scenes [3].
An extended monocular SLAM method was proposed by
Oscar G. Grasa et al. to process images from hand-held
standard monocular endoscopes to calculate the motion of
endoscopes in real time [4]. Bingxiong Lin et al. proposed
a parallel tracking mapping (PTAM) framework for stereo
tracking in minimally invasive surgery (MIS) [5]. In order
to guarantee long-term tracking performance in the gastroin-
testinal video, we need a robust descriptor to relocate the tar-
get area. Generalized descriptors such as LBP [6], SIFT [7],
SURF [8], ORB [9], mean projection transform, dual-tree
complex wavelets, and Haar-like descriptor [10] are common
feature extraction methods. However, there exist challenges
like sparse features caused by the poor image quality, light
changes, tissue deformation, target disappearance, severe
rotation, and occlusion in the gastrointestinal environment,
which affects the above-mentioned feature extraction
methods’ performance.

High-dimensional convolution features enable the precise
positioning of tracking regions, but their descriptive regions
are often too small to exclude similar areas. The low-
dimensional artificial features provide more shape context
information to distinguish similar regions, but the accuracy
of localization is not high. Therefore, we propose an endo-
scope visual field tracking and relocation framework that
combines artificial statistical features with high-dimensional
depth features. The framework includes a new robust statisti-
cal descriptor, a simplified random forest discriminator based
on confidence statistics, a candidate region ranking and filter-
ing component based on ranking support vector machine, and
a location refinement component based on Siamese network
and probability fusion. As this framework is designed to
handle the strong rotation and long-time retargeting in the
gastrointestinal biopsy, we name it rotation-invariant relo-
catable tracker (RIRT). We evaluate the RIRT on several
gastrointestinal videos in vivo. The results show that the RIRT
is superior to state-of-the-art methods in both accuracy and
robustness while guaranteeing real-time computation.

The main contributions of this work are summarized
as follows. We design a new robust Haar-like descriptor
called RIBHD to handle the severe rotation and illumination
changes that often occur in the gastrointestinal biopsy. Based
on RIHBD, a simplified random forest discriminator based on
confidence statistics is constructed to realize the preliminary

screening of tracking areas efficiently. The proposed fea-
tures contain sufficient shape context information, so a large
number of similar regions are distinguished in the preliminary
screening.

The tracking issue is treated as the detection issue in
Siamese network, which means there is no need to update
the template online. The response graph obtained by cross-
correlation operation achieves target detection and boundary
box regression, which significantly improves the real-time
performance of the algorithm. To further improves the robust-
ness of RIRI framework, we propose a probabilistic fusion
method, which fuses the probabilities obtained from the dis-
criminant results of random forest, support vector machine,
and the classification branch of Siamese networks.

The proposed RIRT absorbs the advantages of the sta-
tistical features and high-dimensional self-learning features.
It further improves the accuracy and robustness of tracking
and retargeting while granting real-time computing. By eval-
uating the proposed RIBHD on different scenarios such
as NBI, white light, heterogeneous, and extensive rotation,
the results show that the RIBHD outperforms than Haar-like
statistical descriptor based on rectangular region difference.
We evaluate the proposed RIRT and other mainstream track-
ers like DaSiamRPN, ECO, TLD on extensive endoscopic
video sequence. It shows that the proposed RIRT outper-
forms in f-measurement, EAO, average overlap rate, etc. It is
worth noting that we also evaluate the RIRT on challenging
retargeting dataset. The results show that the proposed RIRT
performs better than other retargeting available trackers.

The rest of this paper is organized as follows.
Section 2 compares and analyses the descriptors and system
framework related to gastrointestinal biopsy area tracking.
Section 3 proposes a RIRT tracking and relocation
framework, which combines manual statistical features and
deep high-dimensional features. A new Haar-like statistical
feature descriptor based on circular sampling region and
the sector-ring difference is designed. A weak discriminator
is also proposed to allow for preliminary selection of the
ROI. After that, we propose a location refinement com-
ponent based on Siamese network and probability fusion.
Section 4 evaluation evaluates the performance of the new
rotation invariant descriptor and the RIRT through different
types of gastrointestinal videos. Section 5 draws a conclusion.

II. RELATED WORK
There are challenging characteristics of gastrointestinal
biopsies, such as a lack of sufficient anatomical features,
extensive similar areas, sparse features, and low contrast,
inherently. Besides, during the optical biopsy, the potential
lesion area isn’t labeled, which make it possible for it to
be misjudged by examiner. Because changes in illumination,
occlusion, target disappearance, rapid movement, and violent
rotation often occur in the gastrointestinal biopsy, the dif-
ficulty of tracking and location further increased. For these
reasons, a robust framework for the online gastrointestinal
tissue tracking and relocation is proposed.
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A. THE EXISTING ROTATED-INVARIANT
HAAR-LIKE DESCRIPTOR
Based on the advantages of the area difference operator, such
as better anti-illumination performance, convenient and effi-
cient implementation, we designed a new rotation invariant
Haar-like operator called RIBHD to resolve the mentioned
challenges. The first application of target detection based on
Haar-like descriptor is proposed by Paul Viola et al. [10].
The features were extracted by Haar-like feature and the
cascaded week classifiers trained by AdaBoost, which reduce
the missed detection rate and false detection rate while
guaranteeing real-time computation. Barczak et al. pro-
posed an efficient rotational detector based on Haar-like
feature [11]. They acquired the original feature from the
classifier by conversion algorithm and calculated two features
to find the approximate equivalent value of any angle to
realize the detector. In order to handle the rotating target
detection, Shaoyi Du et al. constructed a discriminator
based on Haar-like feature of 26.565 degrees of rotation,
which achieved good results on CMU-MIT dataset [12].
Barczak et al. proposed a detection framework based on
mobile terminals and sensors [13]. This framework proposed
a Haar-like descriptor with rotation invariance at both feature
level and classifier level, which efficiently realized the detec-
tion of rotating targets. Sadiq et al. proposed a newmethod to
detect objects by rotating the Viola-Jones detector at different
angles [14]. On this basis, the algorithm is extended to a vari-
ety of Haar-like features bymeans of rotation and asymmetry.
Tests on Umist and CMU-PIE datasets show that the algo-
rithm is successful at detecting a target in common scenes
under different scales, locations, directions, and illumination
conditions [15]. These Haar-like descriptor propulsors handle
the rotation of target under the 2D plane. However, the above-
mentioned Haar-like descriptor realizes rotated target detec-
tion by rotating rectangular sampling area and equivalent
substitution. They cannot adapt to the round field of vision,
lack of obvious anatomical features and severe rotation in
the gastrointestinal examination. Therefore, we propose a
new Haar-like descriptor based on circular sampling area and
sector-ring difference. The descriptor effectively adapts to
the circular field of vision and the anatomical structure of
intestinal tissue, and can better handle the severe rotation and
illumination changes during the gastrointestinal biopsy.

B. AN OVERVIEW OF THE EXISTING STATISTICAL METHOD
Because of poor imaging quality, blurred motion, and high
light of local tissue in gastrointestinal biopsy images, it is
challenging to extract the target information from traditional
descriptors based on the point and angle feature. Therefore,
we use the joint weak classifier based on the descriptor of the
region feature statistics mentioned above to make a statistical
decision to preliminarily select the region of interest. In the
aspect of sample discriminator based on a statistical decision,
Zhang et al. proposed an object detection method based on
local binary pattern (LBP) histogram feature [16]. To deal

with the target drift and occlusion, Babenko et al. propose an
online multi-instance learning tracking method (MIL) [17].
This method constructs a training set decision-maker by con-
structing a bag of positive samples and a bag of negative
samples. In order to resolve the segmentation image patches
depending too much on template matching, Dinh et al. pro-
posed the CXT based on dense sampling [18]. Ye et al.
proposed a feature statistical analysis method based on region
difference Haar-like descriptor to preliminary screen the
candidate tracking regions [19]. On this basis, Ye et al.
proposed a new differential statistical model in 2017 to
achieve real-time retargeting in gastrointestinal biopsy exam-
ination [20]. However, when constructing the classifier based
on statistical features, the descriptor does not have rotation
invariance inherently. Therefore, a large number of positive
samples are enhanced by the affine transformation, so that
the detector achieves the desired results. We designed a new
descriptor with a natural rotation invariant property, which
reduces unnecessary data enhancement. Based on this new
descriptor, we propose a statistical strategy based on confi-
dence weighted positive and negative samples to handle the
sample imbalance.

C. AN OVERVIEW OF THE CONVENTIONAL
TRACKING METHOD
Since there are soft tissue deformations, illumination
changes, long time out of field-of-view(FOV), scale shifts and
occlusion during the gastrointestinal biopsy of the digestive
tract [20], [21], higher accuracy and robustness for track-
ing and repositioning ROI have been put forward. Univer-
sal tracking and repositioning frameworks are encountering
significant challenges in intestinal gastrointestinal scenarios.
It is challenging for conventional generative methods to deal
with target tracking and relocation under the gastrointestinal
environment. For the Kalman filter [22] and Mean-shift [23],
the Kalman filter fails when facing the occlusion of the
target, while the fast motion and scale change make the
Mean-shift useless for tracking the target. For discriminant
generation methods like MIL [17] and structured SVM [24],
multi-instance learning is sensitive to training samples, while
structured SVM can’t deal with the fast motion of gastroin-
testinal tissue. Even methods based on correlation filter, such
as the kernelized correlation filter (KCF) [25] and scaled cor-
relation filter (DSST) [26], which attracts many researchers
for their proficient real-time services and accuracy, still fail to
cope with endoscope fast motion, occlusion, target deforma-
tion and target loss because they only search near the tracking
area. Even the discriminant correlation filter CSR-DCF [27]
with confidence fails to track because of the local highlight
in the gastrointestinal video.

For long-time tracking or tracking with shape change of the
target, detection and tracking method should be introduced
to handle the deformation and partial occlusion of the target.
At the same time, the model is updated continuously through
online learning mechanism, which makes the tracking effect
more robust and reliable. Table 1 shows the mainstream
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TABLE 1. Summary of mainstream trackers for comparison.

trackers for comparison. TLD [28] proposed by Kalal et al.
and OTR [19] proposed by Ye et al. are representative meth-
ods. In the gastrointestinal video, the robustness and track-
ing success rate of TLD is unsatisfactory, which is mainly
caused by server tissue deformation. OTR makes up for the
shortcomings of TLD in feature exaction, but its descriptor
does not have the natural rotation invariance. To overcome
the above weakness, we propose a statistical descriptor that
deals with the rotation of ROI, illumination changes, and a
large number of similar areas in FOV.

D. AN OVERVIEW OF THE DEEP-LEARNING
TRACKING METHOD
With the continuous improvement in computing power and
the increase of effective data, the accuracy and robustness
of feature extraction methods based on depth learning have
been dramatically improved. The first application of deep
learning in the tracking field is DLT [29], whichwas proposed
by Naiyan et al. in 2013. It combines the idea of off-line
pre-training and online fine-tuning to overcome the lack
of data in the tracking process to achieve object tracking.
Objects of different classes are easily distinguished by
high-level CNN features, while the similar distractors in the
background can be distinguished by low-level CNN features.
Based on the above observation, L Wang et al. proposed
FCNT [30] which builds feature screening network and
two complementary heat-map prediction networks to prevent
tracker drift. However, FCNT is not robust to occlusion,
which is a very common phenomenon in gastrointestinal
biopsy. MDNet [31] is a multi-domain learning framework
based on CNN, which achieved the championship of VOT
2015 [32] by separating domain-independent information
from domain-specific information to improve performance.
TCNN [33] synthetically evaluates the target to be tracked
in the current frame by preserving the appearance model
of the target in several successful tracking frames through
CNN tree. It is robust to the change of the appearance of the
target, illumination and the disappearance of the target in a
short time. Martin et al. proposed ECO [34] in 2017, which
combines depth features with shallow features to achieve

high-quality tracking performance, but its real-time perfor-
mance still needs to be improved. In order to avoid the
incompleteness caused by artificial features, feature learning
is integrated into the process of modeling. These frameworks
misbehave due to the changes of illumination and soft tissue
deformation in the endoscopic environment, and its time
costing to adjust the parameters of the network.

Because of the excellent performance in accuracy and
real-time, tracking methods based on Siamese networks,
such as SiameseFC [35], SiamMask [36], SiamRPN [37]
and SiamRPN++ [38], have attracted extensive attention
of researchers. To alleviate the probability obtained by a
response graph is unreliable when the target disappears,
Zhu et al. proposedDaSiamRPN [39]. However, during track-
ing and retargeting of the gastrointestinal ROI, it is possible
for the above-mentioned models to fail due to the inadapt-
ability of pre-learning models. The Siamese network-based
trackers search the most similar region in the adjacent region
of the former frame, which might not be the ground truth
because of the rapid motion and displacement occlusion.
At the same time, there are plenty of similar areas in the
gastrointestinal images. The Siamese network-based trackers
find the maximum response area in the response map by
generating multiple anchors. The correlation detection in the
feature domain ignores the context information of the target
region, which make the trackers usually find a similar region
rather than the ground truth. To resolve the tracking fails
caused by fast motion in the 2D plane, Jianren Wang et al.
proposed a tracking method which combines motion estima-
tion with the Siamese network [40]. Because of the uncer-
tainty of motion and local highlight in gastrointestinal biopsy,
it is hard for motion estimation methods such as optical flow
method [41] to achieve convincing results. Therefore, a sim-
plified random forest discriminator for the global screening
of candidate regions is proposed. By extracting more shape
context information with the RIBHD, some of these similar
regions are distinguished. Based on the candidate regions,
the target is positioned accurately by cross-correlation oper-
ation in high-dimensional features extracted from Siamese
networks.
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FIGURE 1. Online tracking and retargeting system based on RIBHD statistical discrimination and Siamese network probability fusion.

III. METHODS
In order to track and relocate under the complicated endo-
scopic environment, we propose the following methods.
A new statistical descriptor called RIBHD is first designed
for preliminary screening of candidate regions. Then, we con-
struct a confidence-based statistic random forest to screen
candidate target regions in the whole image preliminarily.
In order to find the image patches close to the target, a ranking
support vector machine is introduced. Based on proposals
of Siamese network and random forest, a fusion framework
is proposed to locate the tracking area and its confidence
accurately. The pipeline of the proposed approach is shown
in Figure 1.

A. A NEW ROTATE INVARIANT BINARY
HAAR-LIKE DESCRIPTOR
Although the conventional Haar-like descriptor guarantees
real-time computation, it does not have the natural rotation
invariance feature. In our work, a new rotation invariant
binary Haar-like descriptor called RIBHD is proposed to
extract features in the endoscopic environment. Its advan-
tages are as follows. Haar-like feature extraction is realized
by the gray-scale difference of candidate pixel regions and
binary coding, which is conducive to ensuring real-time
performance. Besides, rather than pixel-level difference,
the proposed Haar-like region descriptor is based on regional
differences, which is ready to handle the illumination change.
Within our new rotation invariant Haar-like descriptor, it is
easier to handle the rotation of the vision which often occurs
during the endoscopic examination.

The conventional Haar-like feature is extracted by differ-
entiating the gray values of small rectangular windows in
horizontal or vertical directions. Although it is robust for
changes in illumination, it still has obvious deficiencies in
rotation invariance. Thus, the affine transformation is applied
to realize the rotation invariance. However, on the one hand,
the affine transformation (mainly rotation enhancement) of
the original image will increase processing time. On the other
hand, expanding the rotating angle of training samples is
unreachable to cover the actual angle of endoscope random

rotation, which influences the accuracy of the tracker.
Although other researchers have proposed rotation invariant
Haar-like descriptors [11]–[15], most of these works utilize
the equivalent substitution to guarantee rotation invariance,
which makes it hard to accurate positioning in the
gastrointestinal environment.

Thus, we design a new rotation invariant binary descriptor
(RIBHD). The proposed RIBHD not only handle the changes
of illumination but also depict the features of image patches
that are segmented from the circular view of endoscopy.
Based on the idea of gray centroid method and local match-
ing, the proposed RIBHD guarantees the robustness of
image translation and rotation. The construction procedure
of RIBHD from sample template construction, encoding,
rotation invariance implementation, and fast computation is
shown below.

1) SAMPLING TEMPLATE CONSTRUCTION
AND CODING DESIGN
Conventional rectangular Haar-like descriptors have poor
robustness to lens rotation and tissue deformation in endo-
scopic scenes. Thus, we propose a sampling template based
on sector-ring sampling area, as shown in Fig.2(a). We regard
a single sector-ring region as an atomic sector-ring and use
S to represent it. S is a quaternion vector [r0, r1, θ0, θ1],
in which r0 and r1 represent the inner and outer diameters
of the sector-ring respectively, while θ0 and θ1 represent the
starting and ending angles of the sector-ring relative to the
horizontal right directions, respectively. It is worth noting
that the sector is also a special sector-ring, which the inner
diameter of the sector-ring is 0. The sampling area consisting
of four atomic sector-rings adjacent to each other, which is
denoted by A, namely A = {S1, S2, S3, S4|Si is adjacent to
each other}. By randomly selecting several non-overlapping
sector-ring sampling areas, the sector-ring sampling template
is obtained.We define the sector-ring sampling template as T ,
where T = {A1,A2, · · · ,Ak |1 ≤ k}, and k is the number of
the randomly selected sector-ring sampling area.

In order to obtain a randomly selected and non-overlapping
sector-ring sampling area, we need to determine two
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FIGURE 2. Construction of sector-ring sampling template. (a) represents
the adopted equal area difference method. (b) represents the
equal-spacing difference method. (c) represents the atomic sector-ring
coding method.

parameters: concentric circle equal fraction a and sector equal
fraction b. As the area difference increases, the sampling area
of the inner ring is too small while the sampling area of the
outer ring is too large, which is not conducive to feature
extraction. Thus, we construct a concentric circle with the
same area (Fig.2(a)) instead of a concentric circle with the
same area difference (Fig.2(b)). The basis of determining
parameters a and b is to make the area of the sampling area as
small as possible to ensure the performance of feature extrac-
tion while taking the computational efficiency into account.
After dividing the area, we numbered the pictures from the
inside to the outside in anticlockwise direction. As the unique
identifier (r,w) of the partitioned patches, it is in the order of
increasing r and w, as shown in Fig.2(c). The yellow part is
r = 1, the orange part is r = 2, the blue part is r = 3, and
the yellow area 1th’s identifier is (1, 1). By analogy, we get
the unique identifier of each atomic sector ring in the sample
candidate region. The sampling template T is constructed by
randomly selecting k groups of non-repetitive and adjacent
identifiers.

It is worth noting that when constructing templates to
extract Haar-like features from target regions, their relative
independence should be guaranteed. Therefore, when select-
ing the set of sampling regions, we control that any identifier
of four partitioned regions only appears in a set of sam-
pling identification sets. Because the sampling templates are
randomly selected, which is beneficial to reducing the vari-
ance of the model, the random forest achieves advantageous
generalization results and anti-over-fitting ability without
additional sampling template selection.

In order to obtain a binary Haar-like similar feature
descriptor, the sum of gray values of the upper and lower parts
of the pixels is differentiated, and the sum of gray values of
the left and right parts of the pixels is differentiated. The sum
of the pixel strengths of the upper left, upper right, lower left,
and lower right regions shown in Fig.2(a) are represented by
S1, S2, S3, and S4, respectively. The binary encoding method
is as

BCvertical(A) =

{
1, S1 + S3 − S2 − S4 ≥ 0
0, otherwise,

BChorizontal(A) =

{
1, S1 + S2 − S3 − S4 ≥ 0
0, otherwise,

BC(A) = 2× BCvertical(A)+ BChorizontal(A), (1)

where A is the select-ring sampling area, namely the area
consist of S1, S2, S3, and S4. If S1 + S3 − S2 − S4 ≥ 0 and
S1+S2−S3−S4 < 0, we obtain a binary code 10, which is the
value of BC(A). By defining the above differential encoding
regular, the RIBHD’s encoding formula for the current image
patch is defined as

RIBHD(S) =
k∑
i=1

BC(Ai)× 22i−1, (2)

where BC(Ai) represents two Haar-like codes and k is the
number of random generated non-overlapping sector-ring
sampling areas. It is worth mentioning that all operations
here are binary operations. For a sampling template with four
randomly selected sampling patches, k = 4, if the sequence
of codes is 10,00,11,01, the binary coding of the sampling
template on the image patches is 10001101. By converting
the coding into an integer, we introduce confidence weighting
to calculate the distribution of the feature encoding. More
details are depicted in Section 3.2.

2) IMPLEMENTATION OF ROTATION INVARIANCE
The circular sampling template does not have inherent rota-
tion invariance. Inspired by the implementation of rotation
invariance of ORB [9], which is an efficient algorithm pro-
posed by Ethan Rublee et al. to extract and describe the fea-
ture point, we transform the original image of three channels
into a grayscale image and calculate the grayscale centroid of
image patches as

ū =

∑
(u,v)∈�

u · f (u, v)∑
(u,v)∈�

f (u, v)
, (3)

v =

∑
(u,v)∈�

v · f (u, v)∑
(u,v)∈�

f (u, v)
, (4)

where f (u, v) is the gray value of the pixel with (u, v) coordi-
nate,� is the set of target regions, that is, the set of each pixel
contained in the current image patch after downsampling,
and (u, v) is the gray centroid coordinate. By connecting
the center of the image patch with the gray centroid (u, v)
as the spindle, we rotate the image patch to the horizontal
direction, as shown in Fig.3. For any image patch used to
train the random forest, we need to do this before extract-
ing Haar-like features. Based on the idea of local rotation

FIGURE 3. Rotating spindle to realize rotation invariance.
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angle matching, the rotation invariance of the descriptor is
guaranteed.

It is worth mentioning that one of the inherent charac-
teristics of the endoscopic video is that as the motion of
objects and the position of external light source changes,
there exists more noise in the endoscopic image than in the
image of a common scene. More noise means that there exists
a deviation between the calculated gray centroid and the
real gray centroid, which affects the robust sampling mode
proposed. In order to handle and combat this phenomenon,
common image filtering methods such as median filtering
based on spatial domain, total variational image denoising,
etc are used. We then denoise the images by Gauss filter.
After that, we downsample the image patches to alleviate
the inaccuracy of noised gray centroid calculation in the
endoscope environment.

3) FAST COMPUTING IMPLEMENTATION
The conventional Haar-like descriptor calculates the sum of
gray values of any rectangular area in the original image in
constant time by the integral graph. However, in the proposed
RIBHD, it is hard to apply the polar coordinate integration
statistics method to calculate the sum of regional gray values,
because the coordinate system of the frames differs. Thus,
we firstly reduce the size of all the scanned image patches
to a quarter of the original size. Accordingly, the size of the
pre-determined sampling template is also reduced to a quarter
of the original size. Then the gray center of gravity within
the image patch is computed by multi-threading method and,
and its spindle is rotated to the right horizontal direction.
Next, we define the sampling template as a convolution core.
At the same time, we stitch all N patches rotated into a
2r*2r*n tensor, where r is the radius of the reduced patches.
By calling the bit-wise and reduce operation, the features
of each image patches extracted by RIBHD under different
sampling templates are obtained simultaneously. We apply
the Numba [42] framework during all the previous work,
which ensures the real-time performance of the framework.

B. ONLINE SIMPLIFIED RANDOM FOREST
CONSTRUCTION BASED ON CONFIDENCE
STATISTICS
The target is unpredictable in the endoscopic view due to
rapid motion and regions of interest (ROI) disappearance
and reappearance. At the same time, there are challenges
such as unbalanced positive and negative samples for training
and multiple similar regions. Thus, we propose a confidence
statistics Haar-like random forest discriminator (CSHRF)
to select the locations of ROI preliminarily. We apply the
RIBHD to extract the features of image patches under differ-
ent scales, and then feed the feature vectors to the simplified
random forest for weak discrimination. In the learning stage
of CSHRF, a confidence weighting strategy is introduced,
which cope with the imbalances in positive and negative
sample sets. By evaluating the image patches selected from
the random forest, the results show that the performance of

the CSHRF is better than OTR’s binary Haar-like random
forest.

In order to obtain patch samples for training the random
forest, a sliding fixed-size window scan the endoscopic view
field under different scale levels. We mark the scanned image
patches as {(x, y),R}, in which (x, y) denote the center of the
image patch, and R is the radius of the circular sampling area.
The conventional method of creating the training samples
for the random forest is to set a threshold to divide positive
and negative samples according to overlap rate. In order
to alleviate the impact of small training samples and class
imbalance in the training forest, we determine the confidence
of positive and negative samples as

CP =


1, 0.8 <= olr(pa) <= 1
0.8, 0.6 <= olr(pa) < 0.8
0.6, 0.4 <= olr(pa) < 0.6,

CN =


0.5, 0 <= olr(pa) < 0.1
0.4, 0.1 <= olr(pa) < 0.2
0.3, 0.2 <= olr(pa) < 0.3
0, 0.3 <= olr(pa) < 0.4,

olr(pa) =
S(pa) ∩ S(gt)
S(pa) ∪ S(gt)

, (5)

where olr represents overlap rate, pa represents the image
patch scanned by the sliding window, and gt represents the
ground truth of the current frame. Cp and Cn is representing
the confidence of a positive sample and the negative sample,
respectively. For instance, if the overlap rate between image
patch pa1 and the ground truth is 75%, it is a positive sample
with confidence Cp = 0.8. If the overlap rate between
image patch pa2 and the ground truth is 35%, it is a negative
sample with confidence Cp = 0.2. In order to alleviate the
deterioration of prediction accuracy caused by concept drift,
we set the threshold of overlap rate of positive samples to
0.4 and that of negative samples to 0.3. Samples with overlap
rates between 0.3 and 0.4 are not included in the statistics.
For example, if the overlap rate of an image patch is 0.35, its
confidence is 0.

By increasing the weight of positive sample confidence
scores which alleviates the imbalance between positive and
negative samples, the CSHRF is more accurate and robust.
It is worth noting that we constructed a FIFO queue to par-
tially update negative samples in the endoscopic sequence,
which further improves the efficiency of the random forest.
Meanwhile, the queue assigns the random forest memory
effect to handle the relocation.

According to the construction method of sampling tem-
plate described in Section 3.1, we randomly generateM group
sampling template T to extract features from each training
sample. It is worth mentioning that each randomly generated
sampling template contains k sets of non-overlapping sam-
pling regions. In other words, each sampling template con-
tains 4k atomic sector-rings. We choose the atomic sampling
number not less than one-fourth of the total number of atomic
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FIGURE 4. Confidence-based random forest based on binary Haar-like statistical descriptor.

sector-rings to ensure the effectiveness of feature extraction.
The confidence histograms of positive and negative samples
are obtained by the sample template T randomly generated
through M groups, and the confidence histograms of 2M
samples with values ranging from 0 to 22k−1 are constructed.
These histograms show the distribution of confidence of pos-
itive and negative samples sampled by RIBHD. For a positive
sample p, the confidence Cp of the positive sample is counted
to M confidence histograms. In order to evaluate the prob-
ability that the candidate image patches in the next frame
belong to the tracking region, we synthesize M confidence
histograms to calculate the posterior probability of each can-
didate image patch. The formulaic probability calculation
method is as

P(pai|dm) =

∑
Cp∑

Cp +
∑
Cn
,

P(pai|d) =
1
M

M∑
m=1

P(pai|dm), (6)

where
∑
Cp and

∑
Cn are the scores of positive sample con-

fidence histogram and negative sample confidence histogram
dm bits corresponding to sampling template m, respectively.
The posterior probability P(pai|dm) of the inquired image
patch is retrieved with the binary coding value dm of the
sampling template m. By averaging the probability withinM
sets of sampling templates, we get the probability of the
image patch belonging to the tracking area. It should be noted
that when

∑
Cp=

∑
Cn=0, we assign P(pai|dm) to 0 directly

to avoid the denominator being zero.
The construction of a simplified random forest based on

confidence statistics is described above. By defining the
sampling template shown in Fig.2(a) and combining with
rotation processing based on gray centroid method (Fig.3),

a random forest classifier (Fig.4) based on RIBHD is
established. By using this random forest, the candidate ROI
of the next frame image is preliminarily screened to facilitate
the next step of location selection and fine discrimination.

C. ONLINE TRACKING AND RELOCATION
SYSTEM BASED ON RIBHD
The new descriptor and the simplified random forest enable
us to achieve the preliminary selection of global candidate
ROI while ensuring the real-time ability. In order to fur-
ther determine the location of target patches for tracking or
relocation, we propose an online tracking and relocation
system based on support vector machine candidate region
ranking and prediction probability fusion.

1) RANKING CANDIDATE REGIONS OF SUPPORT VECTOR
MACHINES BASED ON MEMORY EFFECT
RIBHD-based distribution statistics is a rough estimate of
the actual distribution but isn’t accurate enough to represent
the proximity of each candidate region of the ground truth.
Besides, the scene reappearance often occurs in the gastroin-
testinal biopsy. It is necessary to ensure memory effect in
the design of the tracking and relocation system. Therefore,
the ranking support vector machine (SVM) with a memory
effect is proposed to further rank the patches after the pre-
liminary discriminating. It has further improved the accuracy
of the tracking and relocation system by feeding the position
of the image patches in front of the sorting into the next
component.

Ranking learning has been widely exploited in the appli-
cation of information retrieval. In recent years, researchers
have applied ranking learning on video tracking. Ranking
SVM learns the ranking model by using eigenvectors and
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FIGURE 5. Construction of patch ranking samples based on memory
effect.

ordered classification as training data. Here, we divide the
feature vector set of the training set into a positive sam-
ple set SP =

{
xi : i = 1, . . . ,Np

}
and negative sample set

SN =
{
xj : j = 1, . . . ,Nn

}
, where Np and Nn represent the

number of positive samples and negative samples for training,
respectively. For any xi ∈ SP, xj ∈ SN , there are xi � xj,
namely xi ranks higher than xj. By sorting support vector
machines, we hope to learn a sorting function F(x) to satisfy
the conditions shown below.

F(x) = wT8(x)

xi � xj ⇔ F(xi) > F(xj) (7)

Among them,w represents the weight vector and8(x) rep-
resents the implicit eigenfunction acting on the eigenvectorX .
In the training process, we need to minimize the sorting
error of the sorting support vector machine and maximize
the sorting interval, which is transformed into the following
quadratic programming problem-solving form.

min
w,η
‖w‖2 + C

∑
ij

ηij

s.t. wT
(
8(xi)−8

(
xj
))
≥ 1− ηij, ηij ≥ 0

i = 1, . . . ,Np, j = 1, . . . ,Nn (8)

C is a trade-off parameter to balance interval and training
error. The feature of the image patch we selected is the
feature of RIBHD after binarization in the initial screening
differential stage.

Since there exists challenges like the change of light
source, the re-entry of the tracking object in the process of
endoscopy tracking and retargeting. If we only use the image
of the previous frame as a training sample to sort the candidate
image patches selected by the random forest in the next
frame, it is difficult to achieve the desired results. Therefore,
we set a memory effect time 1t . For the pictures in 1t time
interval, different learning rates are set to update the support
vector machine online, to achieve target selection under weak
supervision.

In the gastrointestinal biopsy, challenges such as rapid
visual field movement, occlusion, and tissue deformation
often arise. In recent years, the tracking algorithm based on
Siamese network has attracted enormous attention because of
its high accuracy and fast speed, but it has poor robustness to
relocation and motion blurring. Since the endoscopic scene

has the above features naturally, it isn’t available to achieve
convincing performance in our task. Therefore, we combine
the global location screening and memory-based sorting
method to obtain potential search areas in the global scope.

2) POSITION REFINEMENT COMPONENT BASED ON
SIAMESE REGION PROPOSAL NETWORK
The Siamese Region Proposal Network(SiamRPN) evolved
from the Fully-convolutional Siamese network(FCSiam).
SiamRPN applies off-line training convolution neural net-
work to search the location of the tracking area in the next
frame and obtain the location of the detection target boundary
box and the confidence of the target. SiamRPN extracts the
feature of a template image z(w × h × 3) and target area
image x through BN-AlexNet. After that, classification and
regression branches are obtained, respectively. In order to
obtain the response map, the cross-correlation operation
between the extracted template area and the similar branches
of the target area is carried out as

gθ (z, x) = fθ (z) ? fθ (x), (9)

where ? stands for correlation operation. Through cross-
correlation operation on the depth feature map, the classi-
fication branch and regression branch are obtained, and the
location and confidence of the tracking area are eventually
determined. However, when the tracking target disappears,
it is challenging for the Siamese network to locate the target
area near the last target search location. The disappearance
of the target is very common in endoscopy. Thus, we adopt
a Siamese network framework based on DaSiamRPN and
SiamRPNBIG. By expanding the search area from 255*255
to 271*271 and the number of channels from 256 to 512,
we alleviate the problem that it is challenging to search again
when the target disappears. The network structure is shown
in Figure 6.

FIGURE 6. Structure of DasiamRPN with SiamRPNBIG. The blue
represents the feature extraction based on Siamese network. The green
represents the classification branch. The orange represents the bounding
box regression branch.

3) PROBABILITY FUSION BASED ON
THE MODEL INTEGRATION
The strategy of training DaSiamRPN partly alleviate the
problem of unreliable confidence. However, due to the
inherent particularity of our gastrointestinal scenarios, their
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models trained with common datasets are often unreliable
in the process of online tracking and relocation. Therefore,
we propose a probabilistic fusion method based on model
integration to improve the reliability of confidence in tracking
and relocation. The proposed probabilistic fusion method
combines the confidence Cfinal of final region searched by
Siamese network and the random forest’s statistical result
Chrf of the final region.

Cfinal = λ1Chrf (pa)+ λ2Csiam(pa) (10)

Among them, pa represents the final region, Chrf repre-
sents the final confidence of pa through RIBHD while Csiam
represents the final probability obtained by Siamese network
screening near pa. λ1 and λ2 are super-parameters to control
the weight of each component. We set them to 0.4 and 0.6,
respectively. The formula for calculating Chrf is as

Chrf (pa) =
Spa
Smax

,

Smax = max {S1, . . . , Sj; j ∈ N + },

Sj =
eRPj

RN∑
l=1

eRPl
, (11)

where Spa represents the confidence of a specific image
patches output by softmax and Sj represents the probability
that each image patches filtered by the random forest are a
positive sample. RN denotes the candidate region number
and RPl denotes the specific confidence of the current region.
Through the abovemethods, we get more accurate confidence
in tracking results and improve the robustness of the whole
system.

IV. EXPERIMENTS
We designed three sets of experiments to evaluate the pro-
posed RIBHD statistical descriptors and RIRT in a large
number of clinical endoscopy video sequences. In the first
set of experiments, we compare the proposed RIBHD sta-
tistical descriptor with the statistical descriptor [19] in OTR
in different endoscopy scenarios to evaluate the detection
performance of the descriptor and its decision maker in
endoscopy scenarios. The second and third experiments were
designed to evaluate the tracker. In the second group of
experiments, we constructed five representative repositioning
test sequences to test the repositioning performance of the
proposed RIRT framework. In the third group, we collected
10,646 frames of clinical endoscopy data to evaluate the
tracking performance of RIRT and other state-of-the-art
trackers.

In terms of data sources, part of our data comes from the
video sequences we collected and labeled from hospitals,
and the other part comes from the data set constructed by
Ye et al. [19]. The whole data set has 10,646 frames with
640 × 480 resolution, and its rendering mode includes
white-light and NBI rendering. It is worth mentioning that in
order to describe more precisely the biopsy areas of interest

in endoscopy, we re-labeled the potential lesion areas in some
video sequences provided byYe et al. The above RIRT frame-
work runs on a self-built Ubuntu 16.04-based workstation,
including I7 7800X CPU, 16GB RAM, and Nvidia Titan
Xp GPU. In order to ensure the real-time performance of
the whole framework, we exploit CPU multithreading and
GPU CUDA to accelerate the algorithm. These algorithms
are all implemented on the Python 3.6 platform. Our current
implementation speed is 26 frames per second on average.

A. EVALUATION METRICS AND PARAMETER
CONFIGURATION
In order to evaluate the performance of the RIBHD-based
statistical decision-making random forest, we selected four
video sequences from the data set under white light, NBI,
severe rotation, and light source conversion scenarios.
Considering the size difference between the scanned image
patch and the ground truth, we define the normalized aver-
age overlap rate nao to evaluate the RIBHD-based CSHRF
discriminator. The nao is consist of the average overlap rate
olr and the average size of ground truth gts. Let TP denotes
the number of image patches obtained by CSHRF and olr(itp)
(Eq5.) represents the overlap rate between image patches and
ground truth, the average overlap rate olr is defined below.

olr= =

TP∑
itp=0

olr(itp)

TP
(12)

After that, we letw and h denote the width and height of the
real area of the image and idx denote the number of frames
in the video sequence, in order to get the definition of gts is
shown below.

gts =

n∑
idx=0

widx × hidx

n
(13)

By defining gts and olr , we get the normalized average
overlap rate nao. The pas represents the size of the scanned
image patch.

nao = olr ×
pas
gts

(14)

In order to evaluate the tracking performance of the pro-
posed RIRT framework, we select the average overlap rate
and location error as the core evaluation criteria. In addition,
we use the average overlapping expectation (EAO), precision,
recall, and F1-measure to evaluate the performance of each
tracker. For a video set tracked by a tracker tk , the precision
ptk and recall rtk are defined as follows.

ptk =
C(T ∩ G)
C(T )

(15)

rtk =
C(T ∩ G)
C(T )

(16)

T is the frameset calibrated by the tracker in the video
set, and G is the frameset containing the target area in the
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video set. In order to track the set of frames whose overlap
rate is more than 0.5,C(U ) represents the number of elements
in the set U . F-measure is a weighted harmonic average of
precision and recall rate. Here we consider that precision and
recall rate is equally important, so we define the form of
F1-measure Ftk as follows.

Ftk =
2 · ptk · rtk
ptk + rtk

(17)

It is worth noting that because many models do not
directly trade-off the tracking results according to confidence,
we uniformly set the confidence threshold to 0.6. If it is less
than the threshold, we consider that the current frame does not
change the tracking result, and if it is greater than or equal to
the threshold, it will be the final tracking result.

The proposed RIRT needs to initialize RIBHD, CSHRF,
and Ranking SVM in the first frame. In order to effectively
extract the features of the gastrointestinal environment,
RIBHD is constructed with ring equal fraction a = 6, sector
equal fraction b = 8, and the area of atomic sector-ring is
about 200 square pixels. The numerical experiments show
that the number of sampling areas k = 6 and the number of
decision trees M = 8 in constructing CSHRF. In the initial-
ization part of Ranking SVM, we use the first 80 samples to
initialize the weight w of the sorted support vector machine
according to its real overlap rate. In order to obtain image
patches for training the random forest, we use pyramid scan-
ning to obtain circular image patches. Then, we calculate
the overlap rate between the surrounding square and the
calibrated area to obtain positive and negative samples and
their confidence.

B. RIBHD BASED STATISTICAL RANDOM FOREST
In order to evaluate the proposed RIBHD, we constructed a
simplified random forest based on RIBHD and compared it
with the simplified random forest based on Haar-like used by
Ye et al. In the process of relocation based on the random
forest, we use the t frame to detect the location of the biopsy
area in the t+n frame image. For frame t , we use multi-scale
circular window scanning to generate about three thousand
image patches. After confidence strategy screening, training
samples are obtained. The random forest is trained by image
patches segmented from images, and the image patches seg-
mented from t + n frame are inputted into the random forest.

Each image patch input into the random forest will get a
confidence level. According to the confidence level of the
image patch, we rank it in descending order and take the
first tp image patches for evaluation. Here, the parameters
that have a major impact on the screening process include
the number of RIBHD sampling areas k and the number of
decision trees M (i.e., the number of sampling templates) of
CSHRF. The above parameters are selected in a wide range
to determine the approximate range of the above parameters.
After that, we find out the optimal interval of sampling area
number k should be between 3 and 7, and the optimal interval
of decision tree numberM should be between 4 and 12.

Next, we evaluate the proposed RIBHD in the num-
ber intervals of sampling areas, decision trees, and video
sequences containing NBI, white light, vigorous rotation, and
heterogeneous images. The criterion used here is nao (Eq.14).
When selecting the number of sampling patches k , we fix the
number of decision trees to 6. When choosing the number of
decision treesM , we fix the number of sampling patches to 4.
The evaluation results are shown in Table 2 and Table 3.

TABLE 2. Average overlapping under different number of sampling
patches k . We fix the number of decision trees to 6.

TABLE 3. Average overlapping under different numbers of trees M. We fix
the number of sampling patches to 4.

Through the above numerical experiments, the perfor-
mance of the proposed RIBHD based CSHRF performsmuch
better than that of the Haar-like descriptors proposed by
Ye et al., which is better than that of random ferns and other
descriptors. Eventually, it is determined that CSHRF gets
better performance when six sampling areas and ten deci-
sion trees are selected. In the absence of data enhancement,
the performance of the RIBHD-based random forest exceed
that of OTR using data enhancement.

In addition to the above parameters, we also evaluated the
effect of the number of pre-screened image patches selected

VOLUME 8, 2020 101877



H. Gong et al.: Online Tracking and Relocation Based on a New Rotation-Invariant Haar-Like Statistical Descriptor

TABLE 4. Detection rate under different number of pre-screened patches.

on the detection rate. The results are shown in Table 4.
It is worth noting that the detection rate here is the average
overlap rate of the real area in the first several image patches
selected in the initial screening process. As shown in Table 4,
the average overlap rate of RIRT frameworks is much higher
than that of OTR frameworks. As the number of candi-
date regions increases, the detection rate decreases gradually.
However, the RIRT framework we proposed is always sig-
nificantly better than the OTR framework. When the number
of pre-screened image patches is adjusted from 60 to 80,
the detection rate decreases significantly. Therefore, in order
to take account of both computational efficiency and detec-
tion efficiency, we set the number of pre-screened image
patches in RIRT to 60.

C. ONLINE RETARGETING AND TRACKING
The gastrointestinal tract is prone to tissue deformation;
endoscope lens rotation is prone to occur in the operation
process; and the inner wall of the digestive tract is smooth,
easy to produce specular reflection and high light characteris-
tics. Also, due to the narrow intestinal environment, tracking
targets are often not in the field of vision. These character-
istics make it a challenge to track and reposition the biopsy
tissue area online. At the level of quantitative analysis and
qualitative analysis, we compare the proposed RIRT method
with other mainstream trackers.

1) QUANTITATIVE ANALYSIS
All the evaluated methods and their evaluation results of
location error and overlap are shown in Figure 7, which
verifies that the performance of our tracker exceeds that of
the mainstream tracker. The location error refers to the linear
distance between the center of the tracking area and the center
of the real area. The overlap rate refers to the ratio of the
intersection and union of the tracking area and the real area.
From the figure, the proposed RIRT framework has better
tracking performance than DaSiamRPN in the endoscopic
scene through its relocation function based on rotation invari-
ant Haar-like descriptor. At the same time, because of the
sparse features in endoscope scene, local highlights are easy
to be generated. The tracking methods based on correlation
filtering (KCF, CSR-DCF), multi-instance learning (MIL),
and optical flow (Median Flow) make it difficult to achieve
ideal results.

We set the overlap threshold to 0.5 to evaluate the perfor-
mance of each tracker, and the results are shown in Table 5.
The evaluation indexes used here include expected aver-
age overlap (EAO), average location error, average overlap,

FIGURE 7. Plots of accuracy values regarding varying overlap and location
errors of trackers.

precision, recall, and F1-measure. EAO is the non-reset over-
lap expectation of each tracker on an image sequence, and it
is one of the most important indexes to evaluate the tracking
algorithm accuracy. Because some trackers only give the sam-
ple confidence, they do not deal with the target disappearance
alone. Therefore, we believe that if the confidence of tracking
results is less than 0.2, the current frame does not contain the
target. The values of each evaluation index obtained from the
whole endoscopy data set are shown in Table 5. It shows that
our RIRT framework performs well in EAO, average over-
lap rate, F1-measure, and other indicators, greatly exceeding
TLD, KCF, ECO, and other methods. By extracting shal-
low features with more context information from RIBHD,
the similar areas often encountered in endoscopy are distin-
guished. In terms of precision index, TLD surpasses other
states of the art methods, which may be due to the high
threshold set by TLD to make the tracking results as accurate
as possible, but at the same time, it dramatically affects its
recall rate. Therefore, the F1-measure of the TLD are inferior
to those of DaSiamRPN and the proposed RIRT.
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TABLE 5. Evaluation of tracking performance.

TABLE 6. Evaluation of relocation performance.

FIGURE 8. The precision-recall curves of DaSiamRPN and RIRT under
different overlap rates.

Under different overlap rates, we compared the accuracy
and recall rates of RIRT and DaSiamRPN. The results are
shown in Figure 8. In the PR curve obtained by adjusting
the threshold of overlap rate, the overlap rates of positive and
negative samples are set to 0.55, 0.45, and 0.35, respectively.
From the figure, the P-R curves of the proposed RIRT are
better than that of DaSiamRPN. The main reason is that the
features from the depth feature map aren’t always effective to
distinguish the target area from the background, while shal-
low features extracted by RIBHD could achieve it. We allevi-
ate the unreliable confidence from depth feature calculation
by probability fusion strategy.

FIGURE 9. The precision-recall curves over the relocation dataset using
overlap rates.

Relocation is an inevitable problem in the gastrointestinal
biopsy. The relocation ability of the tracker is of consider-
able significance to alleviate patients’ pain and shorten the
examination time in clinical examination. In order to evalu-
ate the relocation performance of the trackers, we construct
five challenging repositioning video sequences to evaluate
the repositioning performance of each tracker in endoscopic
scenes. Each video sequence contains fifty-five frames, and
the first five frames are used to initialize the tracker. In the
next fifty frames, the target disappears and replays every
five frames, so it needs to be relocated five times. If the
overlap rate between the tracking area and the real area of
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FIGURE 10. Tracking and relocation display of trackers in endoscopic scene.

the relocation frame is higher than 0.35, we consider the
relocation successful. By comparing the number of success-
fully relocated frames with the total number of relocated
frames, the relocation rate is obtained. We set the tracking
confidence of each tracker to 0.65. If the tracking frame still
appears in the target disappearance frame, we believe that the
tracker has a false detection. By comparing the number of

false detection frames with the total number of frames that
the target disappears, the false detection rate is obtained.

Four relocatable trackers are evaluated in terms of relo-
cation rate, false detection rate and above criterion. The
results are shown in Table 6. The shallow features extracted
by RIBHD are used to discriminate and screen candidate
target regions, which makes the repositioning performance
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of the proposed RIRT greatly exceed that of the DaSiamRPN
tracker. It is worth noting that SiamMask, which has achieved
convincing results on various common tracking data sets, has
not achieved ideal results in this paper. We think that the
main reason is that the ROI of gastrointestinal biopsy often
does not have an obvious edge contour. At the same time,
the local highlight caused by a smooth intestinal tract leads
SiamMask to track the highlight, which further restricts its
tracking performance in the gastrointestinal biopsy.

We also draw the P-R curves of the relocatable trackers
by regarding the frame with overlap over 0.35 as positive
samples, which is shown in Figure 9. Because the TLD
and SiamMask fail to relocate the target on the challenging
relocation dataset, the results did not appear in the figure. The
RIBHD-based confidence-statistical random forest screens
candidate tracking regions globally, and resist fast motion
ambiguity, which makes our RIRT surpass DaSiamRPN in
precision and recall under the challenging relocation dataset.

2) QUALITATIVE ANALYSIS
a: ROBUSTNESS TO ROTATION
In order to deal with the rotation problem in the endoscopic
online tracking, we design a new rotation invariant
Haar-like descriptor. The random forest based on statistical
decision-making constructed by the descriptor effectively
rotates the biopsy area. Compared with the traditional way
of expanding positive samples by an affine transformation,
the proposed descriptor is more sensitively to perceive the
rotation angle of the lens. In sequence 2 and 3 of Figure 10,
the proposed RIRT is able to handle the significant rotation of
the visual field in gastrointestinal biopsy by using Haar-like
descriptors with rotation invariance.

b: ROBUSTNESS TO SCALE CHANGES
In terms of scale change, we scan the original video sequence
at different scales to ensure that the preliminary screening
results of random forest have the ability to cope with scale
change. Fine search component based on the Siamese net-
work is used to locate the tracking area more accurately.
We use the above methods to deal with the scale change in
the tracking process. In sequence 2 and 3 of Figure 10, our
tracking performance is better than that of other trackers such
as KCF, MIL, CSR-DCF.

c: ROBUSTNESS TO RETARGETING
(ROBUSTNESS TO SMALL FOV)
The tissue area of optical biopsy often enters and exits the
field of vision during the examination. When the camera
moves back to the same biopsy location, it needs to be reposi-
tioned, as shown in the figure below. Many trackers used for
comparison do not have the ability to judge the disappearance
of the tracking target, which leads to the inability to track the
correct tracking area after the biopsy area exceeds the field
of vision. Even when the target area returns to the field of
vision again, the tracker fails to recognize them, as shown

in video sequences 1, 3, 4 of Fig.10. Failure trackers include
KCF, TLD, MedianFlow, etc.

d: TISSUE DEFORMATION
Compared with robust medical images such as CT, Tissue
Deformation is a challenging problem in medical image
analysis, because of its natural organ characteristics, the gas-
trointestinal tract is easily affected by the movement and
peristalsis of patients or breathing during the examination
process. The robustness of the global deformation method
has been proved in vivo experiments by cross-correlation
operation of the depth characteristics of Siamese networks,
as shown in Fig.10 sequences 3 and 4.

e: ROBUSTNESS TO FALSE POSITIVES
In Fig.10’s video sequence 1, the search method based on
the Siamese network often gets false examples, such as
the location result of the Siamese network in 750 frames
and 803 frames, because of the characteristics of intense
motion and many similar regions in the endoscope scene. The
RIBHD in our RIRT framework contains more contextual
information, which makes it difficult to distinguish similar
areas through the network effectively.

f: SPECULAR HIGHLIGHTS
Because the endoscope camera is close to the surface of the
object in the navigation process, the specular highlight on the
image cannot be ignored. For example, sequence 3 and 4 in
Fig.10, exemplify how particularities can lead to biopsy site
occlusion. In our framework, HRF classification and shape
context take part of the biopsy site information (local area
comparison and key points) into account, so that it shows
excellent performance in the above video sequences.

V. CONCLUSION AND FUTURE WORKS
We propose an online tracking relocation framework, RIRT,
which is initially relocated by a new RIBHD descriptor and
a simplified random forest based on a statistical decision.
A refined component based on Siamese network and proba-
bility fusion is used to locate the region of interest accurately.
Unlike existing rotational descriptors, the RIBHD, based
on circular sector-ring differences, excellently adapts to the
characteristics of endoscopic images. Compared with the
traditional endoscope tracking framework, the proposed RIRI
framework combines the advantages of manual statistical
features and high-dimensional self-learning features. More
shape context information is obtained by artificial feature
extraction to exclude similar regions in endoscope video,
and preliminary selection of candidate tracking regions is
achieved. Responsibility is obtained by cross-correlation
operation of depth features to accurately determine the loca-
tion of tracking regions. In addition, we fuse the probability
of tracking position obtained by each component decision to
improve the robustness of the whole system. At the descriptor
level, the proposed descriptor and the descriptor in OTR
are evaluated under various endoscopic environments and
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parameters. The results show that the proposed descriptor
exceeds the descriptor in OTR. Besides, the proposed CSHRF
might also be helpful in recognition and tracking gait [43].
In terms of overall performance, we evaluate the proposed
RIRT with state-of-the-art methods. The results show that
our RIRT outperforms the current best methods in terms
of EAO, average overlap rate, and average location error.
Furthermore, on the self-constructed challenging relocation
dataset, we evaluated the relocation-capable trackers.
Through the screening of global candidate regions based
on RIBHD, our RIRT surpassed other relocation-capable
trackers.

The RIRT framework provides technical support for clin-
ical gastrointestinal biopsy doctors to shorten the operation
time and improve the accuracy of surgery. Because this
algorithm system can automatically locate the biopsy area
and reduce the requirement of the surgeon for clinical pro-
fessional skills, it is also important to popularize gastroin-
testinal biopsy screening. On this basis, future researchers
can combine the cascade system with other components,
such as a system that automatically identifies abnormalities
through gastrointestinal biopsy, to assist doctors in diagnostic
decision-making. In addition, in order to meet the needs of
patient review, long-term re-location algorithm is also a very
valuable research point.
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