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ABSTRACT In the aftermath of a large-scale emergency, Unmanned Aerial Vehicles (UAVs) can play
a key role as mobile communication systems supporting rescue operations on the ground. At the same
time, the deployment of autonomous UAV swarms still poses severe challenges in terms of distributed
mobility, swarm connectivity and mesh networking. To this purpose, we propose ELAPSE (aErial LocAl
Positioning System for Emergency), a novel, distributed framework for aerial mesh deployment that
supports discovery and multi-hop connectivity among rescue personnel and emergency requesters.ELAPSE
integrates components of swarmmobility, positioning and Quality-of-Service (QoS) support, while targeting
UAV devices at different levels of hardware complexity. Three contributions are provided in this study. First,
we present a novel, bio-inspired swarm mobility algorithm which natively addresses QoS-based aerial mesh
connectivity, coverage of the ground nodes and UAV collision avoidance through the abstraction of virtual
springs. Second, we investigates its implementation when geo-location capabilities are not available: to this
aim, we propose local-based and cooperative-based techniques through which each UAV can estimate the
position of its neighbours, and hence correctly adjust its direction and speed. Third, we analyze the feasibility
of the ELAPSE framework through a twofold evaluation: i.e. a large-scale OMNeT++ simulation showing
the effectiveness of the distributed mesh formation and localization techniques, and a small-case ground
robotic testbed demonstrating the impact of QoS mechanisms on the system operations.

INDEX TERMS Unmanned aerial vehicles (UAVs), disaster recovery, multi-hop communication, swarm
mobility, localization, simulation.

I. INTRODUCTION
Unmanned aerial Vehicles (UAVs) are expected to play
a key role in next generation mobile systems, thanks to
the their integrated and advanced capabilities of percep-
tion, autonomous mobility and wireless communications.
At present, the UAV market is estimated at USD 19.3 billion
in 2019 and 45.6 by 2025,1 with more than 2 million devices
shipped in US in 2020 [1]. Most of the existing use-cases
is related to the Internet of Things (IoT) and involves the
usage of a single UAV as mobile sensor or as mobile sink,
i.e the UAV produces sensing measurements or gather them
from wireless ground sensors. The creation and distributed
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management of aerial mesh and ad hoc networks (FANETs)
composed of UAV swarms represent the next research chal-
lenge [2]; novel applications enabled by the distributed coor-
dination among UAVs include aerial video-surveillance and
wireless coverage of remote or hostile environments. In this
paper, we investigate the usage of UAV swarms for the cover-
age of a disaster, infrastructure-less area, by enabling multi-
hop connectivity among isolated, ground devices.

A. MOTIVATIONS
In the aftermath of a calamity, existing Internet providers
might often be unavailable due to infrastructural dam-
ages or due to excessive traffic loads. Consequently, the usage
of UAVs as mobile base stations has been proposed in order
to provide emergency services and support opportunistic
communications among survivors and rescue teams. Two
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complementary research issues have been addressed so far.
On the one hand, the performance of Air to Ground (AtG) and
multi-hop Air-to-Air (AtA) links has been assessed through
small-case testbeds, by considering the impact of FANET-
specific parameters like the 3D mobility, the antenna models,
and the UAV speed [3]. On the other hand, several studies
have investigated topology creation and management of UAV
swarms for the dynamic wireless coverage of a target area [4],
[5]. This latter can be considered a multi-objective optimiza-
tion problem involving at least three main issues [6]: (i) con-
nectivity, i.e. the need of preserving the wireless links among
the UAVs under dynamic channel conditions and autonomous
mobility; (ii) coverage, i.e. the need of maximizing the num-
ber of ground devices connected to the aerial mesh and (iii)
collision avoidance, i.e. the need of ensuring a safe distance
among the UAVs. Given the dynamic nature of the environ-
ment, and excluding few preliminary works on UAV-based
Software Defined Networks (SDNs) [7], most of the stud-
ies on multi-UAV coverage focuses on distributed, nature-
inspired approach, which takes into account the three flocking
components (i.e. separation, aggregation and aligment) [6].
Computational swarm intelligence mechanisms, like the PSO
and genetic algorithms, have been investigated among others
by [8]–[10] while [11], [28] have proposed the application
of well-known robotic mobility models on FANETs. At the
same time, few works have taken into account the Quality of
Service (QoS) of wireless links between the ground nodes and
theUAVs, that is a key requirement for applications with strict
requirements (e.g. multimedia communications). Similarly,
another challenge is constituted by the localization: the GPS
sensor is generally assumed on board of the UAVs while
few studies consider the case of poor GPS coverage or the
impact of noisy localization data on the swarm creation and
management [4], [13].

B. CONTRIBUTIONS
In this paper, we consider a generic emergency scenario
composed of isolated, mobile ground nodes (MGNs) belong-
ing to two different categories -rescue personnel (RP) and
help requesters (HR)-, and we investigate the deployment
of distributed aerial mesh networks aimed to provide wire-
less coverage of the target area and multi-hop connectivity
between RP andHR nodes. To this aim, we proposeELAPSE
(aErial LocAl Positioning System for Emergency), a dis-
tributed UAV swarm architecture that addresses mobility-
related (e.g. aerial connectivity), task-related (e.g. ground
coverage) and networking-related functionalities. Differently
from the literature, the ELAPSE framework takes into
account the QoS on the AtA and AtG links both during
the network formation and maintenance, in order to dynam-
ically meet the application requirements of the RPs and the
HRs. In addition, the ELAPSE framework does not rely
on geo-localization capabilities of the aerial/ground devices;
hence, it can deployed on mini-drones (not provided with
the GPS sensor) or it can support aerial mesh formation
and mobility on environments not covered by the GPS (e.g.

indoor scenarios). More in details, three main contributions
are described in this paper:

• We extend the QoS-aware UAV swarm mobility model
in [28] for disaster environments: the distributed algo-
rithm aims to maximize the number of connected
MGNs, while guaranteeing the quality of the AtA and
AtG links. In addition, it ensures mesh connectivity and
collision avoidance among the UAVs.

• We investigate the implementation of the proposed
swarm mobility algorithm on scenarios where geo-
location capabilities are not available: to this aim,
two distributed neighbour localization schemes are pre-
sented, one based on local sensor data processing (e.g.
IMU and Wi-Fi RSSI values) and the other on coop-
erative mechanisms. The operations of the proposed
algorithms are further enhanced by means of error filters
and computational swarm intelligence techniques.

• We validate the proposed solutions through a twofold
evaluation. We consider large-scale OMNeT++ sim-
ulations of the ELAPSE framework, and measure its
performance in terms of localization accuracy, and cov-
erage under varying node density conditions. In addi-
tion, we validate the effectiveness of the QoS-aware
mechanism on a small ground robotic test-bed.

The rest of the paper is structured as follows. Section II
reviews the existing studies on UAV mobility algorithms
and coverage techniques. Section III introduces the system
model and formulates the optimization problem. Section IV
describes the swarm mobility model based on the virtual
spring abstraction. Section V discusses the GPS-free, dis-
tributed positioning techniques that allow the implementation
of the mobility model. Section VI shows the performance of
the ELAPSE framework on simulated and real-world scenar-
ios. Finally, Section VII draws the conclusions and discusses
the future works.

II. RELATED WORKS
The optimal placement of autonomous nodes for the coverage
of a target area can be considered a challenging yet well
investigated research area since the first works on mobile
sensor networks [14]. The Voronoi diagrams represents a
straightforward approach to address the coverage problem
with stationary nodes [15]: in [16], the authors use Voronoi
diagrams to discover the coverage holes and then propose
three movement-assisted protocols aimed to move sensors
from densely deployed areas to sparsely deployed ones. The
framework has been further improved in [17] by introduc-
ing the Laguerre geometry: the authors demonstrate that the
algorithm is convergent, i.e. it produces stable allocations
under variable sensor densities. Other approaches leverage
adaptive, nature-inspired solutions to cope with the presence
of obstacles and time-varying communication conditions: this
is the case of the Virtual Force Algorithm (VFA) proposed
in [18], and of the Potential Fields Algorithm (PFA) in [19].
In both cases, sensors are modeled as virtual particles subject
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FIGURE 1. The scenario considered in this study and the deployed framework.

to virtual forces, which can be attractive (e.g. towards a
coverage hole) or repulsive (e.g. towards an obstacle). The
FANET scenario poses severe novel challenges compared to
ground autonomous networks, such as the limited autonomy
of theUAVs and the impact of 3Dmobility on communication
and coordination aspects [2]. The fundamentals of aerial
mesh communication are investigated in [20], wherein the
authors compute theoretical bounds for capacity, coverage
and connectivity of wireless nodes in 3D spaces. Given the
high number of parameters involved for the optimal topology
management in FANETs, swarm computational techniques
such as Genetic Algorithms (GA) and Particle Swarm Opti-
mization (PSO) have been largely adopted in the literature.
More in details, the study in [5] proposes the utilization
of UAVs as aerial mobile base stations during emergency
situations: GA techniques are used to compute the optimal
placement of the UAVs covering a set of Point of Interests
(POIs) while minimizing the number of the UAVs involved.
In [8] and [21] the authors investigate the persistent coverage
problem, i.e. how to increase the service time of an aerial
mesh exploiting the presence of charging stations on the
ground: the optimization problem is formulated by means
of distributed PSO techniques in [8] and of game theory
in [21]. UAV group mobility based on particle swarming is
investigated also in [6], [9] and [10]. The three components
of the flocking behaviour (i.e. separation, aggregation and
aligment) are modeled in [6]. In [9], a PSO-based topology
management algorithm is proposed in order to adjust the posi-
tion of UAV relays, so that the FANET is always connected
to Ground Control Stations (GCSs). Three PSO-based swarm
mobility algorithms are proposed in [10] for UAVs perform-
ing reconnaissance missions over targets in hostile environ-
ments. Other distributed bio-inspired techniques for swarm
creation and management are proposed -among others- by
[22] and [23]. Glowworm Swarm Optimization (GSO) is
used in [22] to cluster the UAVs on the basis of luciferin
levels and of their residual energy. The cluster-breathing
mechanism in [23] allows an UAV swarm to be connected,
by using the RSS wireless signal as metric for the steering
behaviour. Beside aerial coverage, the goal of our study is to
combine swarm mobility with distributed UAV localization
techniques: to this purpose, the most similar works are [4],

[13] and [11]. In [4], the PSO technique is used to estimate the
unknown positions of neighbour UAVs; the location values
are then used to group the UAVs into clusters, and to select
the Cluster Head (CH) nodes based on intra- and inter- cluster
distances. In the Boid-based flockingmodel proposed in [13],
the Wi-Fi RSS is used to estimate the distance among UAVs,
and the information is spread among nodes via a distributed
dissemination protocol. Finally, the study [11] proposes the
PSO-S algorithm which sequentially applies the popular PSO
and VFA techniques, and shows the benefits of the integrated
framework.

Compared to the works reviewed so far, our solution intro-
duces the following novelties:

• We extend the coverage problem by considering the
Quality of Service (QoS) of the communication links
among UAVs and among UAVs and ground nodes;

• We support swarm operations also in case the UAVs are
not provided with geo-location capabilities;

• We test the proposed solutions through large-scale sim-
ulations and a small-case testbed; for the latter, few
experimental validations of robotic swarm algorithms
have been proposed so far.

III. SYSTEM MODEL
A. SCENARIO DEFINITION
We consider the emergency scenario of sizeM ×M depicted
in Figure 1. Let U = {u1, u2, . . . uNU } be the set of the
available UAVs flying at a fixed altitude fa from the ground.
Similarly, let G = R ∪ H be the set of Mobile Ground
Nodes (MGNs), further divided into two sub-sets: rescue
personnel R = {r1, r2, . . . rNR} and help requesters H =
{h1, h2, . . . hNH }. The system evolves over ordered time T =
{t0, t1, . . . } having time slots of length equal to tslot seconds.
We denote with Epni,k the current absolute 3D (error-free) posi-
tion of node ni in the scenario at time tk , with ni ∈ N = U∪G.
Localization errors are introduced in Section V. Each help
requests hi ∈ H is provided with a mobile app, through which
it generates a data rate equal to D(hi) bps; the destination
of the flow originated by hi ∈ H is any rj ∈ R available
in the scenario. We abstract from the specific content of the
communication between hi and rj, which might include any
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emergency-related information e.g. current position, video,
audio, etc, that might support the rescue operations. The goal
of the ELAPSE framework is to enable the communication
between help requesters and rescue personnel via multi-hop
aerial links, by maximizing the number of data-flows which
are currently served. To this aim, the optimal placement of
the UAVs must be determined.

We modeled the system as a complete graph G = {N ,E},
where N = U ∪ G is the set of nodes and E = {

〈
ni, nj

〉
, . . . }

is the set of edges. Let Ck (ni, nj) the capacity at time slot
tk of the wireless AtG/AtA link between nodes ni, nj ∈ N :
the value of Ck (ni, nj) depends on the wireless propagation
model that is introduced later in Section III-C. By construc-
tion, Ck (ni, nj) = 0, ∀ni, nj ∈ G, i.e. no direct commu-
nication between ground nodes is possible. We model the
communication network topology through the following state
variables:
• ek (ni, nj) indicates whether nodes ni, nj ∈ N are con-
nected by a wireless link at time slot tk , i.e. Ck (ni, nj) >
0: in such case, ek (ni, nj) = 1, ek (ni, nj) = 0 otherwise.

•
∗ek (ni, nj) indicates whether there exists a multi-hop con-
nection between nodes ni, nj ∈ N , i.e. ∃ pathki,j =
{n1, n2, . . . , n|pathki,j|} ⊆ N such that n1 = ni, n|pathki,j| =

nj, and ek (nq, nq+1) = 1, ∀q < |pathki,j|.
Similarly, we introduce the following state variable in order
to model the multi-hop connectivity through the aerial mesh:
• lk (ni, nj, hz) indicates whether the link between nodes
ni, nj ∈ N is used to convey the traffic flow from ni to
nj originated by the help requester hz ∈ H during time
slot tk : in such case, lk (ni, nj, hz) = 1, lk (ni, nj, hz) = 0
otherwise.

B. PROBLEM FORMULATION
Based on the definitions above, the research problem can be
formulated as follows:

find Epui,k ∀ui ∈ U (1)

lk (ni, nj, hz) ∀ni, nj ∈ N , hz ∈ H (2)

maximize
∑

ui∈U ,rj∈R,hz∈H

lk (ui, rj, hz) (3)

subject to the following constraints:∑
ui∈U ,rj∈R

ek (ui, rj) ≥ 1 (4)

∗ek (ui, uj) = 1 ∀ui, uj ∈ U (5)

distk (ui, uj) ≥ distmin ∀ui, uj ∈ U (6)∑
hz∈H

(
lk (ni, nj, hz) · D(hz)

)
≤ Ck (ni, nj) ∀ni, nj ∈ N (7)

lk (ui, uj, hz) ·
(
1−

∑
ni′∈N
ni′ 6=ui

(
lk (ni′ , ui, hz)

))
= 0

∀ui, uj ∈ U , hz ∈ H (8)∑
ni∈N

lk (ni, nj, hz) ≤ 1 ∀nj ∈ N ,∀hz ∈ H (9)

∑
nj∈N

lk (ni, nj, hz) ≤ 1 ∀ni ∈ N ,∀hz ∈ H (10)

∑
nj∈N ,hz∈H

lk (ri, nj, hz) = 0 ∀ri ∈ R (11)

∑
nj∈N

lk (hi, nj, hi) ≤ 1 ∀hi ∈ H (12)

∑
nj∈N

hz∈H ,hz 6=hi

lk (hi, nj, hz) = 0 ∀hi ∈ H (13)

where the constraints are assumed to be ∀tk ∈ T .
Here, constraint (4) states that the aerial mesh should

connect at least one rescue personnel; constraint (5) ensures
the aerial mesh connectivity, i.e. there must exist a multi-
hop path between each couple of UAVs; constraint (6) avoids
the collisions among the UAVs; constraint (7) ensures that
the throughput of each wireless link (AtA or AtG) cannot
exceed the current link capacity; constraint (8) ensures the
consistency of the data flow through the aerial mesh, i.e. if
an aerial link ui, uj carries data originated by hz ∈ H , then
there is an incoming data link on UAV ui (ui is routing data
for hz); constraints (9) and (10) guarantee that there is no
multipath in the mesh, namely each data flow can be sent and
received by only one node, respectively; constraint (11) states
that the rescue personnel is not transmitting data; constraints
(12) and (13) ensure that any data flow labeled with hi ∈ H
is generated only by hi.

C. CHANNEL MODEL
We assume a generic path loss model on the AtA/AtG links,
defined as follows:

PL(d) = 10 · αLT · log10(d)+ κLT (14)

where d is the node distance, αLT is a decay model depending
on the Link Type (AtA or AtG) and κ is a constant value
related again to the frequency and to the Link Type in use.
In this work we do not focus in the specific characterization
of the AtA and AtG links. Instead, we used the generic log-
distance path loss model by using different αLT parameters.
Readers can refer to [26] for an in-depth modeling of the
AtG link. The values of the parameters used in the simulation
study are reported in Section VI-B. The maximum capacity
Ck (ni, nj) between node ni and nj placed at distance d can be
derived according to the well-known Shannon law:

Ck (ni, nj) = BW · log2

(
PT − PL(distk (ni, nj))

κknoise

)
(15)

where BW is the channel bandwidth, PT is the node transmit-
ting power (both values are assume constant for all nodes and
wireless links) and κknoise the current noise value. In this study,
we aim to monitor the per-link Quality of Service (QoS) by
means of the Link Budget (LB) metric. The latter is defined
as the residual capacity of link between ni (receiver) and nj
(transmitter) at time tk , and it is computed as follows:

LBk (ni, nj) = PRk (ni, nj)− RS(ni) (16)
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where PRk (ni, nj) is the received power at node ni and RS(ni)
is its receiving sensitivity that is specific of the wireless net-
work interface. The LB metric measures the communication
reliability and it indicates when the link is going to break.

IV. ELAPSE: SWARM MOBILITY ALGORITHM
The optimization problem presented in the previous
Section requires a global knowledge of the scenario, and
a fine-grained description of the system evolution at each
time-slot. Given the practical limitations posed by a cen-
tralized approach, we propose here a distributed, iterative
technique which continuously updates the UAV positions’
with the aim of addressing the following requirements at
the final deployment: (i) there is always at least one rescue
personnel connected to the aerial mesh; (ii) the number of
help requesters connected to the mesh is maximized; (iii) the
aerial mesh is connected (i.e. no UAV clusters are created) but
at the same time (iv) all the AtA and AtG links meet the QoS
requirements expressed through the requested LB values.

To these purposes, we refine the the virtual spring model
described in [27] and further extended in [21], [28] for
channel-aware QoS support. For a comprehensive review of
different deployment algorithms for UAVnetwork, reader can
refer to [29]. More specifically, we assume that, at each time
slot tk ∈ T , multiple virtual forces can act on each ui ∈ U ,
i.e. EFki,1,

EFki,2, . . . ,
EFki,Nf . Let

EF(i) be the sum of virtual forces
acting on ui, i.e.:

EF(i) =
Nf∑
j=0

EFi,j (17)

As depicted in Figure 1, we consider three virtual Forces
Types (FT), i.e.: (i) Mesh-to-Mesh (MtM) forces, acting
between two UAVs, (ii) Mesh-to-Helpers (MtH) forces, act-
ing between an UAV and a help requester on the ground and
(iii) Mesh-to-Rescuers (MtR), acting between and UAV and
a member of the rescue teams. The MtM forces guarantee the
internal connectivity of the aerial mesh, while the MtH/MtR
forces enable space exploration and connectivity toward the
ground nodes. Regardless of their type, all the virtual forces
aremodeled according to the well knownHooke’s law assum-
ing that the force is proportional to the spring deformation
[30]:

EF(Exu, x) = Exu ·
(
− k(FT ) · (x − l0)

)
(18)

where k(FT ) is the stiffness constant (assuming different
values according to the force type, i.e. MtM,MtH orMtR), Exu
denotes the spring unit-vector direction, x denotes the spring
actual length, l0 its natural length, and δ = (x − l0) defines
the spring displacement. Here we assume that k(MtM ) and
k(MtH ) are constant values, which must be statically con-
figured before the system deployment; Section VI reports
the values used in the experiments. Vice versa, the k(MtR)
value is dynamically set by each UAV ui according to the

FIGURE 2. The value LBk
req(ni ,nj ) of Equation (21) as a function of the

required link load (Equation (22)).

Equation below:

kMtRi =

{
KT if

∑
j∈NBi Cov

R(uj, tk ) = 1

k(MtH ) otherwise
(19)

Here, CovR(uj, tk ) returns the number of rescue personnel
connected to UAV uj at time-slot tk , while NBi denotes the
list on 1-hop neighbors of UAV ui. The stiffness value is set
to KT � k(MtH ) in case the UAV is the only node in its
neighborhood providing connectivity to a rescue personnel,
and hence it should avoid breaking the link. Vice versa,
the MtR virtual spring behaves like the MtH one. Like in
[28], we formulate the link displacement as a function of the
requested and current LB on the ni − nj link, i.e.:

δk (ni, nj) =
αLT

√
max(LBk (ni, nj),LBkreq(ni, nj))

min(LBk (ni, nj),LBkreq(ni, nj))
− 1 (20)

Here, δk (ni, nj) is the spring displacement, αLT is the prop-
agation decay exponent of Equation (14), again assuming
different values based on the AtA (MtM) or AtG (MtH and
MtR) links. Let LBkreq(ni, nj) be the requested link budget
on the link connecting node ni with node nj at time slot tk ;
LBkreq(ni, nj) represents the per-linkQoS requirement, and it is
computed based on maximum number of data-flows that can
be supported. This value can be derived from Equations (15)
and (16) as follows:

LBkreq(ni, nj) =
(
2LL

k (ni,nj)/BW − 1
)
· κknoise − RS(ni) (21)

Here, LLk (ni, nj) is the requested load on this specific link.
In order to fulfill the constraint defined in Equation (7), it is
defined as follows:

LLk (ni, nj) =
∑
hz∈H

(
lk (ni, nj, hz) · D(hz)

)
(22)

Figure 2 shows the trend of Equation (21) when varying
the requested link load LLk (ni, nj). As described before,
the Hooke’s law defines the attractive force as well as the
repulsive force. However, for the AtG links the UAVs do not
need to be repulsed from ground nodes and hence we activate
the MtH and MtR forces only if they are attractive.
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Every tdec intervals, each ui computes the resultant force
EF(i) on Equation 17, and moves in the direction indicated

by EF(i), with constant speed. In [28], we assumed that the
direction could be directly derived by assuming that the
UAVs are equipped with any geo-location system (like GPS,
GLONASS, Galileo, etc) and that the position information is
periodically exchanged among theUAVs. Here, we extend the
study by removing such assumption; vice-versa, we address
the case where each UAV andMGNs ni ∈ N is equipped only
with Inertial Measurement Unit (IMU) sensors to estimate
its actual velocity. Details on the how the UAV direction is
estimated are provided in the Section below.

V. ELAPSE: POSITIONING TECHNIQUE
In this study, we do not aim at estimating the absolute position
of the UAVs and the MGNs (e.g. geo-location), rather their
relative positions since only this information is relevant to
compute the direction of each virtual spring according to
Equation 17. To this aim, let Evni,k and Epni,k be the real velocity
and position of each node ni ∈ N at time slot tk , respectively.
Also, let Ep(ni,nj),k = Epnj,k − Epni,k be the real relative position
of node nj with respect of node ni and Ėp(ni,nj),k be its estimated
value computed by node ni. For ease of exposition, we use
the dot (˙) notation to refer to an estimated value, whichmight
differ from the real one.

While moving, each node ni ∈ N broadcasts one
HELLOni,k message every tbroadcast time slots, by including
the following information:〈

ni, Ėvni,k , Ėvni,k−
〉

(23)

Here Ėvni,k is the instantaneous velocity of node ni at time
tk , while Ėvni,k− is the average velocity of node ni between
time slot tk−tbroadcast and tk , defined by Ėvni (k − tbroadcast, k).
The function Ėvni (k, k

′) returns the estimated average velocity
of node ni within the interval [tk ..tk ′ ]. After receiving an
HELLOnj,k message from node uj, node ui determines the
Received Signal Strength (indicated as RSSnj,k in the follow-
ing) in order to estimate the distance from the sender node.
We skip details on this issue, well addressed in the literature;
interested readers can refer to [24] for a comprehensive sur-
vey on the topic. We just highlight that, for evaluation pur-
poses, we assume the presence of an additive white Gaussian
noise, i.e. ˙distk (ui, uj) = distk (ui, uj) + N (0, σd ), where σd
is a system variable denoting the distance estimation error,
whose impact on system operations has been evaluated in
Section VI.
The proposed relative localization algorithm involves three

blocks executed sequentially, as depicted in Figure 3:
• Neighbour estimator: this module is executed by each
node and it aims at estimating the relative position of its
neighbours. To this purpose, two different methods are
presented: a local algorithm (Section V-A) and a coop-
erative one (Section V-B). In both cases, the estimation
exploits the RSS values and payloads of the HELLOnj,k
messages exchanged among the ELAPSE nodes.

FIGURE 3. The building blocks of the proposed relative localization
algorithm.

• Error filter: this module applies proper filters on the
output of the previous step, in order to avoid large
variations among consecutive estimations (Section V-
C). To this purpose, a per-node estimation history is
adopted.

• Optimizer: this module is executed only in cooperative
mode and it further improves the position estimation
by taking into account additional information from each
neighbour node (Section V-D).

A. LOCAL NEIGHBOUR ESTIMATOR
We consider a local technique wherein each node ni estimates
the position of its neighbour nj by using the information con-
tained in the HELLOnj,k message. At each message reception,
node ni performs two, independent estimation of its distance
from nj, i.e.: (i) it derives the distance from the RSSnj,k
value and (ii) by considering the average nodes’ speed and
the temporal interval among consecutive message receptions.
By computing the intersection of the circumferences asso-
ciated to the estimated distances, and under the assumption
of 2D mobility (since all the UAVs are flying at the same
altitude), two different solutions for the nj position at time
tk are derived and inserted into a solution set P(ni,nj),k . After
having collected a threshold number of solutions, the Z-score
function is applied on P(ni,nj),k in order to remove the outliers;
finally, the centroid is returned as the estimated position
of nj. The process above is iterated by ni for all its active
neighbours. This latter is defined as the set of nodes from
which ni has received at least one HELLO message within a
timeout interval.

More formally, at each reception of the HELLOnj,k sent by
node nj, the node ni updates the RSS-based position estima-
tion Ėp(ni,nj),k for node nj. Then it stores such value in a local
list PKTi,jrcv along with the values contained in the HELLOnj,k
message, i.e.: pkti,jk =

〈
k,RSSnj,k , Ėvnj,k , Ėvnj,k− , Ėp(ni,nj),k

〉
.

Given the dynamic nature of the aerial mesh topology, we
consider dynamic update mechanisms of the data structures,
i.e. node ni will remove the PKTi,jrcv list in case no packet from
node nj has been received within a time threshold ttimeout.
We can hence define the active neighbours of node ni as:
NBi = {nj ∈ N | PKT

i,j
rcv 6= ∅}.

Algorithm 1 shows the pseudo-code the proposed tech-
nique. In the main loop (lines 6 - 16), the solution set P(ni,nj),k
is updated, by considering the HELLOnj,k̂ message received
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FIGURE 4. One-step position estimation.

FIGURE 5. Relative position estimation. The stars define the P(i,j ),k set.
The grey stars denote the points removed after the Z-score filter is
applied.

at time slot tk̂ , with k̂ ≤ k . We consider a coordinate system
rooted at ui at time slot tk , i.e. Ep(ni,ni),k = (0, 0). The process
of position estimation that is executed at each loop cycle is
described in Figure 4.

At line 8, the term Ėp(ni,ni),k̂ denotes the position estimation
of ni at time slot tk̂ . The distance covered by node nj from time
slot tk̂ to tk is derived at line 10, based on its average speed in
the time interval (the Ėvj variable at line 9). Knowing the origi-
nal position, and the distance covered, a second estimation of
the position of node nj at time tk (Ėpni→nj,k̂

) is derived in line
11 (the redUAV in Figure 4). Based on the positions produced

Algorithm 1 The LOCAL Estimation Algorithm

Input: PKTi,jrcv
1 Function Identity(nj, Ep1, Ep2):
2 return { Ep1, Ep2}
3 Function OnPacketRCV(HELLOnj,k):
4 P(ni,nj),k ← ∅; k ′← k;
5 Ėvj← (0, 0); Ep(ni,ni),k ← (0, 0);
6 forall the pkti,j

k̂
∈ PKT

i,j
rcv descending ordered by k̂

do
7 Ėsi(k̂, k)← Ėvni (k̂, k) · (k − k̂) · tslot
8 Ėp(ni,ni),k̂ ← Ep(ni,ni),k − Ėsi(k̂, k)

9 Ėvj←

(
Ėvj,k′− ·tslot·(k

′
−k̂)

)
+

(
Ėvj·(k−k ′)

)
k−k̂

10 Ėsj(k̂, k)← (k − k̂) · tslot · Ėvj
11 Ėpi→j,k̂ ← Ėp(ni,ni),k̂ + Ėsj(k̂, k)

12

〈
Ep′
(ni,nj),k̂

, Ep′′
(ni,nj),k̂

〉
← CI

(
Ep(ni,ni),k ,

˙distk (ni, nj), Ėpi→j,k̂ , ˙dist
k̂ (ni, nj)

)
13 fnj,k ← Identity(nj, Ep′(ni,nj),k̂

, Ep′′
(ni,nj),k̂

)

14 P(ni,nj),k ← P(ni,nj),k ∪ fnj,k
15 k ′← k̂
16 end
17 forall the Ep∗

(ni,nj),k̂
∈ P(ni,nj),k do

18 ZS(Ep∗
(ni,nj),k̂

)←
Ep∗
(ni,nj),k̂

−mean(P(ni,nj),k )

stddev(P(ni,nj),k )

19 end
20 P(ni,nj),k ← ZS_halve(P(ni,nj),k )
21 Ėp(ni,nj),k ← centroid(P(ni,nj),k )

22 PKT
i,j
rcv

add
←−−

〈
k,RSSInj,k , Ėvj,k , Ėvj,k− , Ėp(ni,nj),k

〉

so far (Ep(ni,ni),k and Ėpni→nj)k̂
) and distances ( ˙distk (ni, nj) and

˙distk̂ (ni, nj)), the CI( Ep1, d1, Ep2, d2) function (line 12) calcu-
lates the intersections between the circles with centers p1, p2
and radius d1, d2, respectively. Figure 4 shows the outputs
of the circle intersection function, with two results being
returned, denoted by the red UAV (correct estimation) and
the grey one (wrong estimation). A single HELLO message
does not allow discriminating the right solution, hence both
the outputs are processed and inserted into the P(ni,nj),k set
through the Identity function; this latter returns the argu-
ments provided as inputs, and has been introduced only for
ease of exposition, and more specifically to highlight the
difference with the cooperative-based algorithm described in
the next Section. Figure 5 depicts the solution set P(ni,nj),k
computed by node ni (green UAV) regarding the position of
node nj (blue UAV). Half of the estimations are clustered
close to the real UAV position, while the other half is located
on the circle of radius ˙distk (ni, nj). In order to remove the
outliers with respect to the main clusters, the Z-score index
is computed at lines 17 - 19; based on such metric, half
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Algorithm 2 The COOPERATIVE Algorithm

Input: PKTi,jrcv, NBq,∀nq ∈ NBi
1 Function ChooseCoop(nj, Ep1, Ep2):
2 perr1 ← 0; perr2 ← 0;
3 forall the nq ∈ NBi, nq 6= nj do
4 if nj ∈ NBq then
5 perr1 ←

perr1 + (
∣∣Ep1 − Ep(ni,nq),k ∣∣− ˙distk (nq, nj))2

6 perr2 ←

perr2 + (
∣∣Ep2 − Ep(ni,nq),k ∣∣− ˙distk (nq, nj))2

7 end
8 end
9 if perr1 < perr2 then
10 return {Ep1}
11 else
12 return {Ep2}
13 end
14 Function OnPacketRCV(HELLOnj,k):
15 . . .

16 fnj,k ← ChooseCoop(nj, Ep′(ni,nj),k̂
, Ep′′

(ni,nj),k̂
)

17 . . .

of the points are removed from the P(ni,nj),k set (function
ZS_halve at line 20). This operation is shown in Figure 5
where the grey points are removed from the solution set.
Finally, at line 21, the centroid of P(ni,nj),k is returned as the
relative position estimation of UAV uj at time slot tk .

COMPUTATIONAL COMPLEXITY
The computational complexity CC of Algorithm 1 is deter-
mined by the main loop (lines 6-16 of Algorithm 1) where
the set of possible solutions P(ni,nj),k is built. We assume that
each node keeps only a limited number of received packets,
defined by the system parameter PKTmax. It is easy to notice
that CC(Algorithm1) = O(PKTmax).

B. COOPERATIVE-BASED NEIGHBOUR ESTIMATOR
The local algorithm described before might introduce some
errors when pruning the solution set, as depicted in Figure 5.
To this purpose, we propose an enhanced version of the
algorithm, in which each node shares also its relative distance
matrix with respect to its active neighbours: this is performed
by extending the information contained in each HELLOni,k
message as follows:〈
ni, Ėvni,k , Ėvni,k− ,

[〈
nj, ˙distk (ni, nj)

〉
. . .
]〉
∀nj ∈ NBi (24)

The cooperative-based neighbour estimator is mainly
based on Algorithm 1, however it introduces a new method
for the solution selection at each iteration. More in details,
we replace the Identity function (line 13 in Algorithm 1)
with the ChooseCoop function shown in Algorithm 2).
Here, we consider the neighbours of ni (i.e. the nq ∈ NBi
in line 3) which are also neighbours of nj. A mean square

FIGURE 6. Relative position estimation of UAV u2 calculated by node u1
using the cooperative-based algorithm.

positioning error for both the candidate solutions (Ep1 and Ep2)
is computed by considering the distance estimation between
nq and nk (contained in the HELLO message), and the esti-
mated distance between ni and nq (computed locally by ni).
The solution associatedwith the lowest error (i.e. better fitting
with the relative distance matrix) is returned and included in
the set P(ni,nj),k .

Figure 6 depicts the operations of the cooperative-based
algorithm, by using the same notation of Figure 5: it is easy
to notice that, even with more sparse position estimations,
the algorithm is able to identify the correct UAV position
within P(ni,nj),k thanks to the neighbours’ relative distances
information.

COMPUTATIONAL COMPLEXITY
The computational complexity of Algorithm 2 can be derived
from the complexity of Algorithm 1. In addition to it, at each
step of the mail loop, the ChooseCoop function is invoked;
the latter iterates over the neighbour set in order to compute
the localization errors for the candidate solutions Ep1 and Ep2.
Hence, CC(Algorithm2) = O(PKTmax · |N |), where |N | =
NU + NH + NR.

C. ERROR FILTER
Both the algorithms described before attempt to estimate the
relative node position of node nj by analyzing the list PKT

i,j
rcv

of received messages at node ni. However, consecutive posi-
tion estimations performed by the same node (ni) on the same
target (nj) can incur into large variations/oscillations, due to
noisy distance computations and lowmobility conditions. For
this reason, we included a filter mechanism that takes into
account the history of the estimations produced so far and
applies smoothing functions.
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Algorithm 3 The Estimation Filter Algorithm

Input: PKTi,jrcv
1 Function EstimationFilter(Ėp(ni,nj),k):
2 FIj← ∅
3 forall the pkti,j

k̂
∈ PKTi,jrcv do

4 Ėestk̂ ← Ėp(ni,nj),k̂ + Ėvnj (k̂, k) · (k − k̂) · tslot

5 wk̂ ← f (k−k̂)filter · 1/e
dispersion(P(ni,nj),k̂

)2

6 FIj←
〈
Ėestk̂ ,wk̂

〉
7 end
8 Ėpfilt← WeightedAverage(FIj)
9 pdist← |Ėpfilt − Ėp(ni,nj),k |
10 maxdist← 2 · ˙distk (ni, nj)
11 if maxdist > pdist then
12 ffactor← p2dist/

(
p2dist+(maxdist−pdist)2

)
;

13 else
14 ffactor← 1
15 end
16 return Ėpfilt · ffactor + Ėp(ni,nj),k · (1− ffactor)

Algorithm 3 shows the pseudocode of the proposed error
filtering mechanism. Within the main loop (lines 3 - 7), we
derive Ėestk̂ , i.e. the estimated position of node nj ∈ N based
on the previous estimation calculated at time slot tk̂ and on
the average velocity till time slot tk . A weight coefficient wk̂
quantifies the accuracy of each estimation, by considering
two factors (line 5): (i) the temporal freshness of the infor-
mation, since positioning errors may accumulate over time
and hence too old estimations can be largely inaccurate2;
(ii) the trustworthiness of the estimation, reflected by an
index of dispersion (i.e. the dispersion function) that is
defined as dispersion = σ 2/µ. The weighted average of
the estimations produced so far, i.e. Ėpfilt, is produced at line
8. Finally, the position of node nj is built as combination
between the original estimation Ėp(ni,nj),k (i.e. the output of the
previous algorithms) and the weighted historic average, Ėpfilt.
Again, the the factor ffactor ∈ ]0..1[ (lines 11 - 15) works as
a weighting coefficient, and it gives more trust to the historic
average or to the original estimation based on the distance
between Ėp(ni,nj),k and Ėpfilt (we use the estimated distance as
reference max distance, see line 10).

COMPUTATIONAL COMPLEXITY
Similarly to Algorithm 1, the computational complexity of
Algorithm 3 is dominated by the loop over the received
packets, hence: CC(Algorithm3) = O(PKTmax).

D. PSO OPTIMIZER
Finally, we further enhance the position estimations produced
so far by means of a Particle Swarm Optimization (PSO).

2 ffilter ∈ [0..1] is a system parameter, powered to the freshness of the
information given by the time interval tk − tk̂ .

Algorithm 4 The PSO Optimization Algorithm
Input: NBi; NBj,∀nj ∈ NBi

1 Function ExecPSO():
2 forall the paw ∈ PA do
3 forall the nj ∈ NBi do
4 if w = 1 then
5 paposw,j ← Ėp(ni,nj),k
6 else
7 paposw,j ←〈

rnd(x jmin, x
j
max),rnd(y

j
min, y

j
max)

〉
8 end
9 pavelw,j← rnd(vmin, vmax)
10 end
11 palocw ← paw
12 end
13 paglob← argminpaz∈PA L(paz)
14 for ite = 1; ite ≤ itePSO; ite++ do
15 forall the paw ∈ PA do
16 forall the nj ∈ NBi do
17 pavelw,j← ω · pavelw,j+

18

+cloc · rnd(0, 1) ·
(
paposlocw,j

− paposw,j

)
+

19

+cglob · rnd(0, 1) ·
(
paposglobw,j

− paposw,j

)
20 paposw,j ← paposw,j + pavelw,j
21 checkIfOutside(paposw,j )
22 end
23 palocw ← argminpaz∈{paw,palocw } L(paz)
24 end
25 PAloc←

⋃
paw∈PA

palocw
26 paglob← argminpaz∈PAloc∪{paglob}

L(paz)
27 end
28 forall the nj ∈ NBi do
29 Ėp(ni,nj),k ← paposglob,j
30 end

Since the latter exploits the knowledge of each node ni neigh-
bourhood NBi, it can be used only when the cooperative
technique (Section V-B) is enabled. The PSO is a heuristic
computational technique which explores a solution space for
the optimum search, by means of a set of candidate solutions
named particles. At each iteration, the candidate solutions are
updated by adjusting the particle’s position and velocity with
respect to a goal function.

In our scenario, the PSO particles correspond to the rel-
ative positions of each node nj ∈ NBi. The PSO technique
-described in Algorithm 4- is executed by node ni each tPSO
time slots, and the goal is to minimize an error/loss position-
ing function introduced later in this Section.

Let PA be the set of particles and paw the w-th particle,
with w ≤ Npa. Moreover, let paposw,j be the candidate relative
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FIGURE 7. The w-th particle definition in the PSO algorithm.

position of node nj ∈ NBi with respect to node ni belonging
to the w-th particle, and pavelw,j its velocity. Here, Npa is a
system variable and defines the number of used particles. The
structure of each particle is shown in Figure 7. In the ini-
tialization phase (lines 2-12 of Algorithm 4), all the particles
are randomly initialized, except one which corresponds to the
output of the cooperative-based algorithm (line 5). The search
space of the particles is defined by the variables x jmin, x

j
max ,

yjmin, and y
j
max . We define x jmax = yjmax = 2 · ˙distk (ni, nj)

and x jmin = yjmin = −2 · ˙dist
k (ni, nj), while the rnd function

returns a random number within the range passed as input.
Similarly, the particle’s velocity is randomly initialized (line
9) within the range vmin and vmax . The algorithm keeps track
of the the best local candidate solution (visited by particle
palocw ) and also of the best global candidate solution (visited
by particle paglob). The space exploration is performed within
the main loop which is executed for a number of itePSO itera-
tions (lines 14-27). At each iteration, the particle’s position
and velocity are updated (lines 16-22) and then, the best
and local candidates are also updated in line 23 and line 26,
respectively. Finally, the paglob is returned as the final result
(line 29). The velocity update rule is defined as in [25]: ω
indicates the inertia weight factor; cloc and cglob quantifies
the attraction force toward the local and global best values,
respectively. The overall rationale is that each particle has its
own velocity and hence its inertial force, but it is still attracted
by the local and global optimal solutions discovered so far.
The randomness factor enforces the space exploration; to this
purpose, the checkIfOutside function ensures that the
candidate positions lie within the search space defined by
x jmin, x

j
max , y

j
min, and y

j
max .

The PSO loss is modeled by the L(paz) function, which is
executed on node ni ∈ N at time slot tk and is defined as
follows:

L(paz) =
∑

nj∈NBi

(
|paposz,j − Ėp(ni,nj),k |

2

+
(
|paposz,j | −

˙distk (ni, nj)
)2

+

∑
nq∈NBi
[nq 6=nj,
nj∈NBq]

(
|paposz,q − paposz,j | −

˙distk (nq, nj)
)2) (25)

Here, the second row computes the positioning error of node
nj with respect to the local distance estimation ˙distk (ni, nj),

whereas the third line computes the positioning error with
respect to the estimations produced by the other neighbours
of ni. It is worth highlighting that the optimal solutions might
be infinite since the loss function takes into account only the
nodes’ distances; hence, given an optimal solution, a new one
can be produced by a simple rotation. To avoid the problem,
we used as fixed anchor the previous relative position estima-
tion of node nj (described in the first row of Equation (25)).

COMPUTATIONAL COMPLEXITY
The computational complexity of the PSO technique is dom-
inated by the main loop over the particles. i.e. by lines 14-
27 of Algorithm 4. Here, three additional, consecutive loops
are executed for the particles’ updates: the first is bound by
the number of iterations itePSO; the second goes over all the
particles; the third visits all the node neighbours, i.e.O(|N |).
Hence, we can state that CC(Algorithm4) = O(itePSO · Npa ·

|N |).

VI. PERFORMANCE EVALUATION
In this Section, we evaluate the system performance of
the ELAPSE framework by a twofold evaluation. First,
in Section III, we investigate the swarm creation and manage-
ment for the aerial coverage of large-scale, disaster areas by
means of extensive OMNeT++ simulations. Then, we focus
the attention on selected components of our framework (e.g.
theQoS support), and demonstrate their effectiveness through
a small-case testbed composed of autonomous ground robots.

A. OMNeT++ SIMULATIONS
We modelled the scenario characteristics and the wireless
communications on the AtA and AtG links in OMNeT++,
by creating new modules for the virtual-spring based swarm
mobility algorithms and the positioning techniques. Simi-
larly, we modeled the position of the Help Requesters via
a Markov-Gaussian mobility model (to simulate the pedes-
trian mobility), and of mobility of each Rescue Person-
nel via a Random-direction mobility model (to simulate a
search mobility around the scenario). Unless stated other-
wise, we used the following parameters: NU = 12, NH = 20,
NR = 6, fa = 10 m, distmin = 10 m, k(MtM ) = 120,
k(MtH ) = 100, KT = 180, tdec = 3 s, tslot = 0.1 s,
tbroadcast = 5, αAtA = 2, αAtG = 2.6, σd = 5m, ttimeout = 50,
ffactor = 0.85, tPSO = 20, NPA = 20, itePSO = 120, ω = 0.1,
cloc = cglob = 1.25. In the evaluation, we keep uniform the
value of LBkreq(ni, nj) = LBreq = 12 dB.

1) RELATIVE POSITION ESTIMATION
The first analysis investigates the performance of the GPS-
free positioning techniques proposed in Section V, and more
specifically the average accuracy of each node in estimating
the relative positions of its neighbours. To this aim, we com-
pare the two methods described in Section V, i.e. the local-
based and cooperative-based algorithms.

Figure 8 shows the average neighbour position error when
varying the number of UAVs composing the swarm. As we
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FIGURE 8. Average position estimation error when varying the number of
UAVs NU .

FIGURE 9. The position error after each block of the Position Estimation
algorithm when varying the number of UAVs NU .

can notice from the plot, the two methods follow differ-
ent trends, i.e. the average error increases with the number
of UAVs for the local-based algorithm while it decreases
for the cooperative-based one. For the local-based solution,
the trend can be explained by the error accumulation; indeed,
each local neighbour estimation introduces some positioning
errors, which impact the computation of the resultant spring
force in Equation 17 and hence the (wrong) positioning of the
node. The spring direction error will clearly increase when
considering more forces, i.e. when increasing the UAV den-
sity. Vice versa the cooperative-based algorithm exploits the
neighborhood information in order to select the next position
of each neighbour, between the speed-based and a RSS-based
estimations (the ChooseCoop function of Algorithm 2).
The higher is the number of neighbors, the higher becomes
the probability to remove potential outliers. Figure 8 shows
that the error is in the order of a tens of meters, which is still
quite high in absolute way, however tolerable in relative way
when compared with the average node distance which is in
the order of 300 meters.

Figure 9 highlights the impact of the different build-
ing blocks of Figure 3 on the final position error of the
cooperative-based algorithm. We can see that the error filter
and the optimizer blocks introduce higher performance gains
with low number of UAVs (e.g. NU ≤ 10), since the neigh-
bour estimation module has more uncertainty regarding the

FIGURE 10. Relative angle estimation error over the number of UAVs NU .

FIGURE 11. Position estimation error when varying the distance
estimation noise σd .

scenario. For the same reason, the impact of the two blocks
is reduced when increasing the number of UAVs.

The same trend of Figure 8 is confirmed by Figure 10
which shows the angle/direction error of the positioning tech-
niques. Again, the cooperative-based algorithm overcomes
the local-based and it improves its performance with increas-
ing densities of UAVs.

Finally, we analyze the capability of the proposed algo-
rithms to cope with noisy distance estimations; to this pur-
pose, in Section V, we introduced the σd parameter which
models the error on the RSS-based distance estimator. Fig-
ure 11 shows the average position errors when varying the
σd values on the x-axis. As expected, both the single-based
and the cooperative-based algorithm degrade their perfor-
mance when increasing the error on the input. However, while
the error for the single-based almost triple from σd = 0
to σd = 20, the increase is limited to few meters for the
cooperative-based algorithm. This result confirms the robust-
ness of the proposed technique also over noisy channels.

2) SCENARIO COVERAGE
In this analysis, we investigate the ability of the swarmmobil-
ity model of Section IV to provide multi-hop connectivity
among the MGNs, and the impact caused by the positioning
algorithms on the overall coverage. It is worth reminding that
the connections among ground/aerial nodes, and the mobility
of the UAVs are both governed by the abstraction of virtual
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FIGURE 12. Percentage of covered help requesters when varying the
number of UAVs NU .

FIGURE 13. Number of UAVs cluster when varying the number of UAVs
NU .

spring forces. Obviously, the higher is the accuracy in esti-
mating the nodes’ positions, the higher is the ability to create
a connected aerial mesh network and to discover the ground
nodes.

Figure 12 shows the percentage of the help requesters cov-
ered by at least one UAV. As in the previous Section, we con-
sidered the local-based and cooperative-based algorithms,
and compared them against a reference GPS-based solution
where all the UAVs are equipped with a geo-localization
device (also, assumed error-free). Clearly, the latter consti-
tutes an upper bound on the system performance. It is easy
to notice that the coverage percentage increases with the
number of UAVs and that the cooperative-based algorithm
approaches the GPS-based one. Vice versa, the local-based
seems to maximize the coverage when NU ≤ 6, while its
performance degrades quickly for larger values of UAVs due
to the impact of the positioning errors on the configuration
of the virtual springs. A better insight on this analysis is pro-
vided by Figure 13 which shows the average number of UAV
isolated clusters created during the simulation. The aerial
mesh connectivity is a constraint of our problem (Equation 5),
and it is always met by the GPS-based and cooperative-based
algorithms. Vice versa, for the local-based algorithm, isolated
clusters might occur due to AtA link breakages when the
number of UAVs -and hence the number of virtual forces
acting on each node- is low. Clearly, multiple, independent

FIGURE 14. Percentage of covered help requesters when varying the
number of help requester NH .

FIGURE 15. Percentage of covered help requesters when varying the
number of UAVs NU .

aerial mesh networks can cover larger areas than a single
swarm; this explains the higher performance of the local-
based algorithm in Figure 12 for low UAV density values.
At the same time, isolated clusters do not allow coordinated
emergency responses that involve all the ground nodes con-
nected, and for this reason they are considered as a goal of
the ELAPSE framework.

Figure 14 shows the coverage percentage when we vary
the number of help requesters NH while keeping constant the
number of UAVs (NU = 12). Also in this case we can notice
that the cooperative-based algorithm performs very similar to
the GPS-based system, and that the performance gap reduces
when increasing the number of NH . This result confirms the
ability of the our solution to maximally exploit the infor-
mation exchanged by an increasing number of cooperative
nodes.

3) AERIAL NETWORK DEPLOYMENT
The last analysis investigates the QoS support of the
aerial mesh network, and the overall multi-hop connectivity
between the help requesters and the rescue teams, which
is the final goal of the ELAPSE deployment in emergency
scenarios.

To this purpose, we compare the ELAPSE framework
against two alternative solutions for aerial mesh deployments:
(i) a Fixed deployment, where the UAVs are placed according
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FIGURE 16. Percentage of time in which at least one rescue personnel is
covered, when varying the number of rescue personnel NR in the
scenario.

FIGURE 17. Average link-budget of the wireless links when varying the
number of UAVs NU .

to a connected grid formation at the center of the scenario;
(ii) Static formation where again a specific grid formation
is considered, however not anchored to static positions, i.e.
the UAVs can continuously move over the scenario. In both
cases, the grid formation is designed in order to guarantee
a link budget value equal to LBref between each couple of
neighbours UAVs.

Figure 15 compares the three deployment methods in terms
of coverage percentage of the help requesters. We can notice
that the ELAPSE framework greatly overcomes the other
two methods thanks to its flexibility, i.e. the possibility to
dynamically adapt the UAV formation (also assuming irregu-
lar shapes) based on the current location of the ground nodes;
vice versa theFixed approach provides the worst performance
due the limited exploration of the scenario. A visual evidence
of the self-organization capabilities of the ELAPSE frame-
work is provided by Figure 18, which shows a screenshot
of the OMNeT++ simulation; we can notice the irregular
formation of the self-configuring aerial mesh which is able
to provide global coverage of the MGNs.

Figure 16 further analyzes the dual coverage metric, this
time in terms of rescue personnel connected to the UAVs.
More specifically, we plot on the y axis the percentage of
time-slots in which at least one rescue personnel is connected
to the aerial mesh, while on the x axis we vary the number of
rescue personnel available within the scenario. We notice that

FIGURE 18. A screenshot of an OMNeT++ simulation, showing the ability
of the ELAPSE framework to adapt its deployment to the ground mobility
of the MGNs.

FIGURE 19. The test-bed scenario with the ground robot.

the constraint is not always satisfied over time by the Fixed
and the Static formation methods, while it is always satisfied
by the ELAPSE framework through the MtG virtual spring
mechanism. Considering this result in conjunction with Fig-
ures 13 and 14, we can conclude that theELAPSE framework
is able to support rescue operations in an effective manner,
by guaranteeing end-to-end connectivity among isolated help
requesters and rescue personnel.

Finally, in Figure 17 we analyze the average link budget
available on each communication link (here LBref = 12 dB).
We can notice that both the Fixed and the Static formation
methods do not guarantee the QoS on the communication
links. Indeed, despite the fact that -by construction- the UAVs
are placed in order to meet the requested link budget, i.e.
LBref, the AtG links might experience much lower values.
Vice versa, the ELAPSE framework, by taking into account
the LBref value inside the virtual spring Equation, is able
to guarantee uniform link qualities on both AtA and AtG
links, and to meet the QoS constraint on almost all the UAV
configurations.

B. GROUND VEHICLE TEST-BED
We further characterized the performance of selected com-
ponents of the ELAPSE framework through a small-case
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FIGURE 20. The UGV used in our test-bed.

testbed. More in details, we consider the experimental setup
depicted in Figure 19. Here we consider one help requester
(on the left), one rescuer (on the right) and one autonomous
Unmanned Ground Vehicle (UGV), which must move within
the scenario, discover the nodes, and control its own posi-
tion in order to provide QoS-aware end-to-end connectivity
among the two end-points. To this purpose, the MGN nodes
are constituted by two Bluetooth Low Energy (BLE) devices,
periodically broadcasting HELLOmessages with the payload
defined in Section 20. Beside the wireless link differences in
comparison with the aerial vehicles, the UGVs will be able
to test the core of the ELAPSE framework, i.e. the swarm
mobility algorithm and the positioning technique.

The UGV is the ground robot depicted in Figure 20,
equipped with the hardware below: (i) a Raspberry PI (model
3B+) board, which embeds the overall UGV controller,
including the spring algorithm, the positioning technique
(in this case, the UGV attempts to estimate the position
of the two BLE devices), the sensor data acquisition and
the wireless communications; (ii) an IMU, model GY-88,
including accelerometer, gyroscope and magnetometer sen-
sors used for speed computation and direction estimation;
(iii) a NodeMCU microcontroller, used for the sensor data
acquisition; (iv) two 2.4 GHz radio interfaces (embedded
within the Raspberry board) for the wireless communica-
tions, i.e. BLE to communicate with the two MGNs and
Wi-Fi to communicate with a laptop used for statistics col-
lection. We performed the tests on an outdoor scenario, with
a distance of 8.5 meters between the two MGNs, assumed
static. The software has been implemented using the Johnny-
Five3 framework, which communicates with NodeMCU via
the Firmata protocol. The software components have been
dockerized and deployed on the BalenaCloud,4 a container-
based platform for IoT applications.

First, we estimated the path-loss model, which is used to
calibrate the RSS-based distance estimation (from the BLE
signal), and more specifically the αGtG and κGtG parameters
of Section III-C. We highlight that the goal here is slightly

3https://github.com/rwaldron/johnny-five
4https://www.balena.io/cloud/

FIGURE 21. The Path-Loss model over distance.

FIGURE 22. The measured Link Budget (LB) values over time on the two
GtG links.

TABLE 1. Positioning Error Ratio with respect to the number of HELLO
messages received by the UGV.

different from the original problem since we are not consider-
ing aerial network deployments, hence the path loss refers to
Ground-to-Ground (GtG) links. We collected a consistent set
of BLE samples at different real distances, denoted as points
in Figure 21. The path-loss estimation, i.e. the fitting line in
the curve, is computed as follows:

PL(d) = 10 · 2.046 · log10(d)+ 64.4 (26)

In Figure 22 we demonstrate the QoS support offered
by the virtual spring mechanism described in Section IV.
Specifically, we consider a situation where LBref = 15 dB.
On the graph we depict the LB values on the wireless links,
i.e. from the help requester to the UGV (purple line) and
from the rescue personnel to the UGV (green line). The UGV
is initially placed at a random position of the scenario, but
closer to the rescuer node. It is easy to notice that the UGV
progressively adjusts its 2D position over time in order to
balance the LB on both links; this corresponds more or less to
the central position between the MGNs. After 300 seconds,
both the LB values converge to the requested threshold, and
hence the UGV achieves a stable position.
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We conclude the analysis by investigating the relationship
between the number of HELLO messages received by the
UGV and the accuracy of the neighbour estimator. We con-
sider the cooperative-based algorithm, executed by UGV in
order to estimate the relative position of the eachMGN. In the
table below, the error is computed as the ratio between the
average positioning error (i.e. the difference between the real
position of aMGN and the estimation computed by the UGV)
and the actual distance among the nodes. It is easy to notice
that the error ratio decreases considerably with the number
of received updates, i.e. the more the UGV moves within
the scenario, the higher is the accuracy of the neighbors’
knowledge acquired by the UGV.

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we investigated how to deploy autonomous
swarm of UAVs with the aim of supporting ground rescue
operations on large-scale emergency scenarios. To this pur-
pose, we proposed ELAPSE, a novel, QoS-aware framework
for the distributed aerial mesh deployment on coverage tasks.
The framework includes a novel swarm mobility algorithm
-based on a virtual spring model- which is able to maintain
multi-hop connectivity on the MtM and MtG wireless links
while ensuring a requested per-link QoS, expressed through
the Link Budget metric. Moreover, the ELAPSE frame-
work is designed to support rescue operations in hazardous
environments where nodes cannot rely on traditional geo-
localization systems (e.g. the GPS). To this purpose, we pro-
posed a pipeline of novel techniques through which each
node can estimate the relative position of its neighbours, and
hence properly adjust its movement. Finally, we evaluated the
performance of ELAPSE in terms of coverage, QoS support
and positioning accuracy through simulations and a ground
test-bed, and demonstrated the gain against other UAVmobil-
ity models. Future works include additional mechanisms to
guarantee the per-link QoS among the UAVs, the design of
a proper MGN discovery module in order to improve the
scenario exploration and hence the ground coverage, and
the validation and testing of the operations of the ELAPSE
framework on a small drone fleet.
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