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ABSTRACT In this paper, we introduce a novel extended sliding mode control algorithm for a class
of uncertain nonlinear system through a lumped disturbance estimator. The fundamental concept of this
approach is to use multiple proportional-integral sliding surfaces to estimate the lumped disturbances
generated by arbitrary matched/mismatched uncertainties. Following, an effectively extended sliding mode
controller integrated with the estimated values is designed through the proposed series of sliding-surfaces to
deal with the control problem of an uncertain nonlinear engineering model. The stability of both closed-loop
control system and lumped disturbance estimator is achieved by Lyapunov theorem. The effectiveness of the
proposed approach is demonstrated through simulation results of an illustrative example.

INDEX TERMS Multi-sliding surface, sliding mode control, lumped disturbance, disturbance estimator,
matched/mismatched uncertain systems.

I. INTRODUCTION
Conventional sliding mode control (SMC) and extended
SMCs are effective and well-known control techniques for
nonlinear practical engineering systems. It is studied and
developed in many decades due to its conceptual simplicity,
and a great ability to eliminate disturbances and uncertain-
ties [1]–[4]. Most of the conventional SMCmethods describe
the various control strategies to solve the nonlinear systems
with matched disturbances/uncertainties [5], [6]. However,
many practical engineering systems with unknown distur-
bances do not only consist of the matched condition but
also the mismatched term, meaning that in these nonlinear
systems the appearance of disturbances/uncertainties is on
channels in which a control input is not available [7], [8].
If the traditional SMC techniques are used in the systems,
the mismatched uncertainties may severely influence the
tracking control performance or generate a divergent signal
of the sliding control due to lumped disturbances induced
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by inaccuracy mathematic model, external perturbations or
uncertain parameters [9].

Because of the great significance of eliminating the
matched/mismatched uncertainties and external disturbances
in practical engineering nonlinear systems, this topic has
attracted many researchers in recent years. Currently, many
study activities keep going on solving the issue such as
adaptive control [10], Riccati method [11], output feedback
variable structure-basedmethod [12], linear matrix inequality
(LMI)-based method [13]–[15]. However, these approaches
are not a realistic assumption in practical applications
because the non-zero steady state value of mismatched
uncertainties may occur in the real engineering systems.
Hence, adaptive model compensation and adaptive con-
trollers were proposed in [16]–[18] to overcome this disad-
vantage. However, the considered adaptive control techniques
in these researches ignored the influences of high-frequency
dynamics and nonlinearity. Other adaptive backstepping
approaches also introduced in [19], [20] for controlling
matched/mismatched uncertain systems. However, the most
difficult requirement of these methods is to compute the
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derivatives of virtual inputs which are not easy to obtain, even
these values are achieved through the analytical methods,
they may generate a large control signal. Thus, the close-
loop system may suffer from the so-called ‘‘explosion of
term’’ [21]. The multi-surface sliding mode control (MSSC)
was also introduced in [22]–[24] to control a nonlinear
system under the presence of matched/mismatched distur-
bances/uncertainties. In MSSC, the series of sliding surfaces
are established based on virtual desired trajectories and their
derivatives. Thus, the problem of ‘‘explosion of term’’ also
exists in the systems. However, this drawback is solved by a
numerical differentiation method in [25], filter technique and
dynamic surface control technique [21], [26].

Disturbance observer-based control is also another pop-
ular trend of research to solve the problem of mismatched
uncertain systems. The concept of this method is to derive
a controller integrated with the disturbance estimation
value to eliminate the influences of mismatched uncer-
tainties [27], [28]. A basic nonlinear disturbance observer
based SMC and Integral SMC was proposed in [29], [30],
this method exhibited a better performance than previous
approaches. However, the disturbance observer technique
may cause bias estimates once the mismatched disturbances/
uncertainties are the unknown time-varying signals. A well-
known research of the nonlinear disturbance observer-based
control method was introduced in [31], [32]. However,
the assumptions of an exogenous disturbance in this method
are not general case because the effect of external distur-
bances on a nonlinear system may not be harmonic signals
or constant signals.

Fuzzy structures and neural network (NN) techniques
have been widely applied to control the matched/mismatched
uncertain systems. The concept of this approach is to use a
fusion algorithm between a fuzzy logic theorem and the NN
technique to obtain the input-output data from the learning
process [33]. However, it is not easy to obtain a partial
derivative and prove the overall stability of a control system.
Hence, this issue was solved by an adaptive SMC for fuzzy
system in [34], [35], and by the integration of SMC and
NN-fuzzy structure in [36].

The research’s motivation is to solve the aforementioned
disadvantages of the previous methods. Thus, in this paper,
we introduce a different approach based on the multiple
proportional-integral sliding surfaces to control the nonlinear
engineering systems with matched/mismatched uncertainties
through the lumped disturbance estimators (LDE). The main
contributions of this research are mentioned as the following
statements:
i) A novel multiple proportional-integral sliding surfaces

are presented for a general single input and single out-
put (SISO) nonlinear system of order nth, simultane-
ously containingmatched andmismatched uncertainties.

ii) An effective sliding controller is designed through
the proposed multi-sliding surface and the LDE to
alleviate the chattering effects and improve control
performance.

iii) The lumped disturbance estimator is introduced to esti-
mate the undesirable effects of both arbitrarily matched
and mismatched uncertainties in all channels of the sys-
tem. The proposed LDE also overcomes the drawbacks
of the previous researches such as in [29], the estimation
method requires the bounded condition of uncertainties,
while in [31], [32] the disturbance observer algorithm
is only applied for estimating the harmonic signals and
constant signals.

iv) The proposed algorithm does not require any aware-
ness of bounded information of thematched/mismatched
uncertainties/disturbances in both controller design and
disturbance estimation process.

The rest of the article is organized as follows. The prob-
lem statement is given in Section 2. The controller design
and LDE are given in Section 3. The overall stability is
analyzed in Section 4. The numerical simulation results of
an illustrative example are presented in Section 5. Finally,
the conclusion of the study is provided in Section 6.

II. PROBLEM STATEMENT
In this section, it is proposed to consider an nth order
single-input and single-output nonlinear engineering system
simultaneously influenced by both non-zero matched and
mismatched disturbances/uncertainties as the following
equation:

ẋ1 = x2 + d1(x, t)

ẋ2 = x3 + d2(x, t)

ẋ3 = x4 + d3(x, t)
...

ẋn−1 = xn + dn−1(x, t)

ẋn = f (x, t)+ b(x, t)u+ dn(x, t)

y = x1 (1)

where x and u are represented instead of x(t) and u(t) for
convenience, x = [x1, x2, . . . , xn]T ∈ Rn is a variable
state vector, u ∈ R denotes the control input signal, and
y ∈ R represents the output of the system. The unknown
continuous functions di (x, t) ∈ R, i = 1, 2, . . . , n are the
matched and mismatched disturbances/uncertainties. ∀t ≥ 0,
the math expressions of both f (x, t) and b(x, t) 6= 0 are
smooth functions in term of x. The objective is to design
a controller u such that the output feedback x1 converges
to the desired trajectory x1d with a small tracking error in
the presence of unknown non-zero mismatched and matched
uncertainties.

III. MAIN RESULTS
A. CONTROLLER DESIGN
A general procedure of designing the multiple sliding
surfaces and control law u are derived in this section.
A novel proportional–integral sliding surface is proposed by
modifying the integral sliding surface described in [29] as
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follows:

si = βix̃i + αi

∫ t

0
x̃idt − x̃i (0) e−γit (2)

x̃i = xi − xid , (i = 1, 2, . . . n) (3)

where x̃i denote tracking errors. xid represent the desired
trajectories. βi, αi and γi are positive constants. It can be
seen that the term x̃i(0)e−γit → 0, t → ∞. Therefore, if a
controller u is designed in such a way that the sliding surface
variables, si in Eq.(2), converge to a small neighborhood of
origin zero for all time t > 0, then the output feedback xi
will exponentially converge to a small neighborhood of the
desired trajectories xid .
From Eq.(2), the derivative of sliding surface is computed

as follows:

ṡi = βi ˙̃xi + αix̃i + γix̃i (0) e−γit (4)

The proposed controller for the given SISO system based on
the LDE is presented by several steps:
Step i=1: The derivative of the 1st sliding surface, ṡ1,

is obtained from Eq.(4):

ṡ1 = β1 ˙̃x1 + α1x̃1 + γ1x̃1 (0) e−γ1t (5)

where the tracking error, x̃1, and its first derivative, ˙̃x1, are
achieved from Eqs.(1),(3), x̃1 = x1−x1d , ˙̃x1 = x2+d1− ẋ1d .
Thus, ṡ1 can be re-written as follows:

ṡ1 = β1 (x̃2 + x2d − ẋ1d + ξ1)+ α1x̃1 (6)

where the lumped disturbance ξ1 is given by:

ξ1 = d1 +
γ1

β1
x̃1(0)e−γ1t (7)

The virtual desired trajectory x2d can be chosen as:

x2d = ẋ1d − ξ̂1 − c1s1 −
α1

β1
x̃1 (8)

where ξ̂1 is an approximate value of the lumped distur-
bance ξ1, and c1 ∈ R+ is a given constant. Eq.(6) can be
simplified by using the Eq.(8)

ṡ1 = β1
(
x̃2 + ξ̃1 − c1s1

)
(9)

where the estimate error ξ̃1 is defined by ξ̃1 = ξ1 − ξ̂1.
Step i=2: The derivative of the 2nd sliding surface, ṡ2,

is computed by:

ṡ2 = β2 ˙̃x2 + α2x̃2 + γ2x̃2 (0) e−γ2t (10)

where the virtual tracking error, x̃2, and its first derivative, ˙̃x2,
can be computed by x̃2 = x2 − x2d , and

˙̃x2 = x̃3 + x3d + d2 −
(
ẍ1d −

˙̂
ξ1 − c1ṡ1 −

α1

β1

˙̃x1

)
(11)

Thus, ṡ2 can be re-written from Eq.(10) and Eq.(11)

ṡ2 = β2 (x̃3 + x3d − ẍ1d + ξ2)+ α2x̃2 (12)

where the lumped disturbance ξ2 is described by:

ξ2 = d2 +
γ2

β2
x̃2(0)e−γ2t +

˙̂
ξ1 + c1ṡ1 +

α1

β1

˙̃x1 (13)

The virtual desired trajectory x3d can be selected as:

x3d = ẍ1d − ξ̂2 − c2s2 −
α2

β2
x̃2 (14)

where ξ̂2 is an approximate value of the lumped distur-
bance ξ2, and c2 ∈ R+ is a given constant.
The Eq.(12) can be simplified by using the Eq.(14)

ṡ2 = β2
(
x̃3 + ξ̃2 − c2s2

)
(15)

where the estimate error ξ̃2 is defined by ξ̃2 = ξ2 − ξ̂2.
Step i=3: The derivative of the 3rd sliding surface, ṡ3,

is described by:

ṡ3 = β3 ˙̃x3 + α3x̃3 + γ3x̃3 (0) e−γ3t (16)

where the virtual tracking error, x̃3, and its first derivative,
˙̃x3, can be computed by x̃3 = x3 − x3d , and

˙̃x3 = x̃4 + x4d + d3 −
(
...
x1d −

˙̂
ξ2 − c2ṡ2 −

α2

β2

˙̃x2

)
(17)

Thus, ṡ3, can be re-written from Eq.(16) and Eq.(17)

ṡ3 = β3 (x̃4 + x4d −
...
x1d + ξ3)+ α3x̃3 (18)

where the lumped disturbance ξ3 is given by:

ξ3 = d3 +
γ3

β3
x̃3 (0) e−γ3t +

˙̂
ξ2 + c2ṡ2 +

α2

β2

˙̃x2 (19)

The virtual desired trajectory x4d can be chosen as:

x4d =
...
x1d − ξ̂3 − c3s3 −

α3

β3
x̃3 (20)

where ξ̂3 is an approximate value of the lumped distur-
bance ξ3, and c3 ∈ R+ is a given constant. The Eq.(18) can
be simplified by using the Eq.(20),

ṡ3 = β3
(
x̃4 + ξ̃3 − c3s3

)
(21)

where the estimate error ξ̃3 is defined by ξ̃3 = ξ3 − ξ̂3.
Step i = 1, 2, . . . , n − 1: The analysis process is entirely

similar to the previous steps. We can obtain the following
results:

The derivative of the ith sliding surface, ṡi, is described
by:

ṡi = βi
(
x̃i+1 + x(i+1)d − x

(i)
1d + ξi

)
+ αix̃i

= βi

(
x̃i+1 + ξ̃i − cisi

)
(22)

where x(i)1d represents the ith derivative of x1d , ci > 0 are
given constants, ξi, ξ̂i, ξ̃i ∈ R are the lumped disturbances
in the ith channel, its estimate values, and the approximate
errors, respectively. x(i+1)d are desired trajectories of (i+1)th
channel. The functions of ξi, ξ̃i, and x(i+1)d are described by
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the following equations:

ξ̃i = ξi − ξ̂i (23)

ξi = di +
γi

βi
x̃i(0)e−γit +

˙̂
ξi−1 + ci−1ṡi−1 +

αi−1

βi−1

˙̃xi−1

(24)

x(i+1)d = x(i)1d − ξ̂i − cisi −
αi

βi
x̃i (25)

Step i = n: The derivative of the nth sliding surface, ṡn,
is computed from Eq.(4)

ṡn = βn

(
ẋn − ẋnd +

γn

βn
x̃n (0) e−γnt

)
+ αnx̃n (26)

where ẋn can be obtained by Eq.(1) and Eq.(24)

ẋn = f (x, t)+ b(x, t)u+ ξn −
γn

βn
x̃n(0)e−γnt −

˙̂
ξn−1

−cn−1ṡn−1 −
αn−1

βn−1

˙̃xn−1 (27)

and the term of ẋnd is computed by Eq.(25) with i = n− 1,

ẋnd = x(n)1d −
˙̂
ξn−1 − cn−1ṡn−1 −

αn−1

βn−1

˙̃xn−1 (28)

Substituting ẋn and ẋnd from Eqs.(27),(28) into Eq.(26),
the term of ṡn can be obtained as follows:

ṡn = βn
(
f (x, t)+ b(x, t)u− x(n)1d + ξn

)
+ αnx̃n (29)

To stabilize the nonlinear systems with matched/mismatched
disturbances/uncertainties, the actual control law u is
designed as follows:

u = −
1

b(x, t)

[
f (x, t)+ ξ̂n − x

(n)
1d + cnsn

+
1
ks
|sn| sgn (sn)+

αn

βn
x̃n

]
(30)

where ks > 0 is a constant. ξ̂n is an estimate of the lumped
disturbance ξn. The function sgn (sn) is defined by [37]:

sgn (sn) =


+1, if sn > 0
0, if sn = 0
−1, if sn < 0

(31)

B. LUMPED DISTURBANCE ESTIMATOR (LDE)
In this section, the lumped disturbance estimator is designed
to estimate the lumped disturbances/uncertainties, ξi, follow-
ing steps:
Step 1: The LDE is proposed for channel ith (i =

1, 2, . . . , n− 1) as follows:

ξ̂i = pi1 + δi1

∫ t

0

ˆ̇ξidt + li1si (32)

ṗi1 = −li1
(
βi

(
x̃i+1 + x(i+1)d − x

(i)
1d + ξ̂i

)
+ αix̃i

)
(33)

ˆ̇ξi = pi2 + δi2

∫ t

0
ξ̂idt + li2si (34)

ṗi2 = −li2
(
βi

(
x̃i+1 + x(i+1)d − x

(i)
1d + ξ̂i

)
+ αix̃i

)
(35)

where ξ̂i and ˆ̇ξi are estimates of ξi and ξ̇i respectively; pi1 and
pi2 are auxiliary variables, li1, li2, δi1, δi2 are positive con-
stants. The errors in the estimations of ξi and ξ̇i is computed
by:

ξ̃i = ξi − ξ̂i (36)
˜̇ξi = ξ̇i −

ˆ̇ξi (37)

From Eqs.(32),(33) and Eq.(22), we can see that:

˙̂
ξi = li1βiξ̃i + δi1 ˆ̇ξi (38)

The function of ˙̃ξi is achieved from Eq.(36), (37) and Eq.(38).

˙̃
ξi = −li1βiξ̃i + δi1 ˜̇ξi + (1− δi1) ξ̇i (39)

Similar process, from Eqs.(34), (35), and Eq.(22)

˙̂
ξ̇i = li2βiξ̃i + δi2ξ̂i (40)

The term of
˙̃
ξ̇i can be computed from Eqs.(36), (37) and

Eq.(40).

˙̃
ξ̇i = − (li2βi − δi2) ξ̃i − δi2ξi + ξ̈i (41)

Step 2: The LDE is proposed for the channel nth (i = nth)
as follows:

ξ̂n = pn1 + δn1

∫ t

0

ˆ̇ξndt + ln1sn (42)

ṗn1 = −ln1
(
βn

(
f (x, t)+ b(x, t)u− x(n)1d + ξ̂n

)
+ αnx̃n

)
(43)

ˆ̇ξn = pn2 + δn2

∫ t

0
ξ̂ndt + ln2sn (44)

ṗn2 = −ln2
(
βn

(
f (x, t)+ b(x, t)u− x(n)1d + ξ̂n

)
+ αnx̃n

)
(45)

where ξ̂n and ˆ̇ξn are estimates of ξn and ξ̇n respectively;
pn1, pn2 are auxiliary states; ln1, ln2, δn1, δn2 are positive con-
stants; ξ̃n and ˜̇ξn are the errors in the estimations of ξn and ξ̇n,
and theirs values are computed fromEq.(36) and Eq.(37) with
i = n. From Eqs.(42),(43), and Eq.(29)

˙̂
ξn = ln1βnξ̃n + δn1 ˆ̇ξn (46)

The term of ˙̃ξn can be achieved from Eqs.(36), (37) and
Eq.(46).

˙̃
ξn = −ln1βnξ̃n + δn1 ˜̇ξn + (1− δn1) ξ̇n (47)

Similar process, from Eqs.(44), (45), and Eq.(29)

˙̂
ξ̇n = ln2βnξ̃n + δn2ξ̂n (48)

The function of
˙̃
ξ̇n can be computed from Eqs.(36), (37) and

Eq.(48).

˙̃
ξ̇n = − (ln2βn − δn2) ξ̃n − δn2ξn + ξ̈n (49)
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Let ζ ∈ Rn×1 and ẽ ∈ R2n×1 denote the lumped disturbance
vector and its estimation error vector defined as

ζ =
[
ξ1 ξ2 . . . ξn

]T (50)

ẽ =
[
ξ̃1

˜̇ξ1 ξ̃2 ˜̇ξ2 . . . ξ̃n
˜̇ξn

]T
(51)

Assumption 1: The lumped disturbances, ξi, are jth times
differentiable functions and satisfy the following expression:∥∥∥∥d jζdt j

∥∥∥∥ ≤ η for j = 0, 1, 2 (52)

where η is an unknown positive constant.
The mathematic model of the lumped disturbance estima-

tor can be described from Eqs.(39), (41), (47), (49), (50) and
Eq.(51) as follows:

˙̃e = Aẽ+ Bζ + C ζ̇ + Dζ̈ (53)

where A is a matrix 2n× 2n; B,C, and D are matrices 2n× n,
see (54)–(56), as shown at the bottom of this page.

IV. STABILITY ANALYSIS
In this section, the stability of LDE and the overall control
system is analyzed. From Eqs.(53), (54), (55) and Eq.(56),
obviously, it is always possible to choose the constants of
βi, li1, li2, δi1, and δi2(i = 1, 2, . . . , n) in such a way that
eigenvalues of matrix A are arbitrarily placed in the left half
complex-plane (LHP). Therefore, it is always possible to
determine a positive symmetric matrix P such that

ATP+ PA = −Q (57)

where Q is a positive definite matrix. Let λmin{Q} and
λmax{Q} represent the smallest and largest eigenvalue of the
matrix Q respectively.

λmin{Q} ‖ẽ‖
2
≤ ẽTQẽ ≤ λmax{Q} ‖ẽ‖

2 (58)

A Lyapunov function candidate is considered as follows:

V (ẽ) = ẽTPẽ (59)

Derivative of V (ẽ) is computed and evaluated as follows:

V̇ (ẽ) = ˙̃eTPẽ+ ẽTP ˙̃e

= ẽT
(
ATP+ PA

)
ẽ+2ẽTPBζ+2ẽTPC ζ̇+2ẽTPDζ̈

≤ −ẽTQẽ+ 2 ‖PB‖ ‖ẽ‖ ‖ζ‖

+ 2 ‖PC‖ ‖ẽ‖
∥∥ζ̇∥∥+ 2 ‖PD‖ ‖ẽ‖

∥∥ζ̈∥∥
≤−λmin{Q} ‖ẽ‖

2
+2 (‖PB‖+‖PC‖+‖PD‖) ‖ẽ‖ η

≤ −‖ẽ‖ (λmin{Q} ‖ẽ‖−2η (‖PB‖+‖PC‖+‖PD‖))

(60)

Therefore, after a sufficiently long time, the norm of lumped
disturbance estimation error vector will be bounded by:

‖ẽ‖ ≤ ϑ (61)

where

ϑ =
2η (‖PB‖ + ‖PC‖ + ‖PD‖)

λmin{Q}
(62)

From the Eq.(61) and Eq.(62), it can be seen that the norm of
estimation error vector, ‖ẽ‖, will be ultimately bounded if the
constant parameters βi, li1, li2, δi1, and δi2 (i = 1, 2, . . . , n)

A =



−l11β1 δ11 0 0 · · · 0 0
− (l12β1 − δ12) 0 0 0 · · · 0 0

0 0 −l21β2 δ21 · · · 0 0
0 0 − (l22β2 − δ22) 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −ln1βn δn1
0 0 0 0 · · · − (ln2βn − δn2) 0


(54)

B =



0 0 · · · 0
−δ12 0 · · · 0
0 0 · · · 0
0 −δ22 · · · 0
...

...
...

...

0 0 · · · 0
0 0 · · · −δn2


, C =



(1− δ11) 0 · · · 0
0 0 · · · 0
0 (1− δ21) · · · 0
0 0 · · · 0
...

...
...

...

0 0 · · · (1− δn1)
0 0 · · · 0


(55)

D =



0 0 · · · 0
1 0 · · · 0
0 0 · · · 0
0 1 · · · 0
...

...
...

...

0 0 · · · 0
0 0 · · · 1


(56)
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are appropriately selected in such a way that the eigenval-
ues of matrix A are placed in the LHP. Thus, the errors,
ξ̃1, ξ̃2, . . . , ξ̃n, will also be all bounded. In other words,
the lumped disturbance estimation errors, ξ̃i, will converge
to small balls containing the origin zero.∣∣∣ξ̃i∣∣∣ ≤ ‖ẽ‖ ≤ ϑ, i = 1, 2, . . . , n (63)

Following, the bound of sn can be found as follows
The derivative of nth sliding surface, ṡn in Eq.(29), can be

simplified by using the controller u in Eq.(30)

ṡn = βn

(
−cnsn −

1
ks
|sn| sgn (sn)+ ξ̃n

)
(64)

Consider a Lyapunov function

Vn (sn) =
1
2
s2n (65)

The derivative of Vn (sn) can be obtained and analyzed from
Eq.(64) and Eq.(65)

V̇n (sn) = snṡn

= βn

(
−cns2n −

1
ks
|sn| snsgn (sn)+ snξ̃n

)
≤ βn

(
−cns2n −

1
ks
|sn|2 + |sn|ϑ

)
≤ −βn |sn|

[(
cn +

1
ks

)
|sn| − ϑ

]
(66)

From the result of Eq.(66), it can be seen that after a suffi-
ciently long time, the value of sn will be bounded by

|sn| ≤
ϑks

kscn + 1
(67)

Therefore, the tracking error x̃n will also be bounded and
converged to a small neighborhood of zero

|x̃n| ≤ µn (68)

where µn > 0 is an ultimately bounded of x̃n.
Next, the bounds of si, (i = 1, 2, . . . , n− 1) are also found

as follows:
Consider a Lyapunov function Vi(si)

Vi (si) =
1
2
s2i (69)

Using Eq.(22), the derivative of Vi (si) is evaluated as follows

V̇i(si) = βi
(
six̃i+1 + siξ̃i − cis2i

)
≤ βi

(
|si| |x̃i+1| + |si|ϑ − cis2i

)
(70)

• If i = n− 1, from Eq.(68): |x̃i+1| = |x̃n| ≤ µn, the Eq.(70)
becomes

V̇n−1(sn−1) ≤ βn−1
(
|sn−1|µn + |sn−1|ϑ − cn−1s2n−1

)
≤−βn−1 |sn−1| (−µn−ϑ+cn−1 |sn−1|) (71)

Obviously, after a sufficiently long time, sn−1 is bounded by

|sn−1| ≤
µn + ϑ

cn−1
(72)

Thus, the tracking errors x̃n−1 is also bounded by

|x̃n−1| ≤ µn−1, where µn−1 > 0 (73)

• If i = n − 2, from Eq.(73): |x̃i+1| = |x̃n−1| ≤ µn−1, the
Eq.(70) becomes

V̇n−2(sn−2)≤−βn−2 |sn−2| (−µn−1−ϑ+cn−2 |sn−2|) (74)

After a sufficiently long time, sn−2 is bounded by

|sn−2| ≤
µn−1 + ϑ

cn−2
(75)

Thus, the tracking errors x̃n−2 is also bounded by

|x̃n−2| ≤ µn−2, where µn−2 > 0 (76)

• The stability of other steps is similarly demonstrated. As a
general rule, when i = 1, 2, . . . , n− 1, we can see that,

V̇i(si) ≤ −βi |si| (−µi+1 − ϑ + ci |si|) (77)

Thus, after a sufficiently long time, si is bounded by

|si|≤
µi+1+ϑ

ci
, where µi+1>0, i=1, 2,. . ., n−1 (78)

In summary, from results of Eq.(67), and Eq.(78), it can be
seen that themultiple proportional–integral sliding surfaces si
(i = 1, 2, . . . , n) are always bounded and converged to small
balls containing the origin. Thus, the tracking errors, x̃i, are
also bounded and exponentially converged to small neighbor-
hoods of zero.

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, the proposed controller is verified through an
illustrative example considered in [29] as shown in Eq.(79).
The performance of simulation result is compared with
dynamic surface control (DSC) in [21], and integral-type
sliding mode control (ISMC) in [30].

ẋ1 = x2 + d1 (x, t) ,

ẋ2 = −2x1 − x2 + ex1 + u+ d2 (x, t) ,

y = x1 (79)

where d1 (x, t) and d2 (x, t) are disturbances/uncertainties
presented by d1 = θx41 + sin 3π t , where θ is an unknown
parameter selected of θ = 1.25, and d2 = −x1 + x2 sin 2π t .
The objective of this example is to design a controller in such
a way that the output feedback, x1, converges to a reference
trajectory x1d = 1 + sin 2π t . The coefficients of multi-
sliding surfaces s1, s2 are chosen as α1 = 30, β1 = 1.0, γ1 =
0.001, and α2 = 80, β2 = 1.0, γ2 = 0.001, respectively.
The controller gains of the presented method are selected as
c1 = c2 = 50, and the switching gain is given as ks = 0.002.
The gains of lumped disturbance estimators for channels of
the system (79) are appropriately chosen in such a way that
the eigenvalues of matrix A are in the LHP:

A =


−l11β1 δ11 0 0

− (l12β1 − δ12) 0 0 0
0 0 −l21β2 δ21
0 0 − (l22β2 − δ22) 0
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FIGURE 1. Tracking control performance.

FIGURE 2. Lumped disturbance in channel 1 and its estimation.

FIGURE 3. Lumped disturbance in channel 2 and its estimation.

We can select the parameters given by l11 = 400, l12 = 150,
l21 = 150, l22 = 150, δ11 = δ12 = δ21 = δ22 = 0.7; and
the Eigen(A)= {−399.74,−0.26,−149.3,−0.7}. The initial
states are given by x1(0) = 2, and x2(0) = 0. The results of
simulation are shown in Figures 1-6.

As shown in Figure 1, the output feedback x1 well
converges to the desired trajectory x1d although we do
not have any knowledge of bounded information of the
mismatched/matched uncertainties d1 and d2, while the
ISMC and DSC do not show a good tracking performance.
Figure 2 and Figure 3 exhibit approximations of the lumped
disturbance in channel 1 and 2. It can be seen that the
estimated values ξ̂1, and ξ̂2 rapidly converge to their true
signal ξ1 and ξ2, respectively. The trajectories of sliding
surfaces s1 and s2 converge to a small neighborhood of zero as
shown in Figures 4 and 5. The controller u exhibited a strong
chattering elimination as shown in Figure 6.

FIGURE 4. Sliding surface s1.

FIGURE 5. Sliding surface s2.

FIGURE 6. Controller signal u.

VI. CONCLUSIONS
In this research, we introduced a novel extended sliding mode
control algorithm based on the multiple proportional-integral
sliding surfaces for controlling the nonlinear systems of order
nth with matched/mismatched uncertainties. The fundamen-
tal concept of this method is to usemultiple sliding surfaces to
estimate the lumped disturbances influenced on all channels
of the system without knowing the bounded information of
uncertainties. In addition, an effective sliding controller inte-
grated with the estimated value is designed to stabilize the
system. The overall stability of the control system is demon-
strated by the Lyapunov theorem. The results of simulation
exhibited that the control system is possible of well handling
in both tracking performance and chattering alleviation.
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