
Received April 16, 2020, accepted May 9, 2020, date of publication May 12, 2020, date of current version May 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994268

Topic-Oriented Bucket-Based Fast Multicast
Routing in SDN-Like Publish/Subscribe
Middleware
YULONG SHI 1,2, JONATHON WONG2, HANS-ARNO JACOBSEN 2, (Fellow, IEEE),
YANG ZHANG 1, AND JUNLIANG CHEN1
1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Middleware Systems Research Group, University of Toronto, Toronto, ON M5S 1A1, Canada

Corresponding author: Yulong Shi (shiyulong2015@bupt.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1003800.

ABSTRACT In traditional IP-based publish/subscribe middlewares, a detour to overlay network is
demanded to match events with defined filters, which introduces more latency overhead for deliver-
ing events from publishers to subscribers. The emerging Software Defined Networking (SDN) creates
boundless possibilities to improve the efficiency of event delivery because of its centralized control and
customized programmability. In this paper, we propose a topic-oriented bucket-based fast multicast routing
to improve the efficiency of delivering events in SDN-like publish/subscribe middlewares. First, we design
an SDN-like publish/subscribe middleware hierarchical architecture with an implementation framework in
SDN controller to deliver events. Topic encoding, topic prefix matching, and the subscription coverage
relationships between topics are considered to reduce the number of flow entries and improve the matching
abilities of SDN switches. Then, a topic-oriented multicast tree construction algorithm is proposed to build
publish/subscribe overlay networks with the minimal total link delay of event transmission and minimal
switches in SDN controllers to deliver events fast. A topic-oriented bucket-based multicast forwarding
algorithm is designed to achieve efficient multicast forwarding in SDN switches. Finally, experiments are
conducted to verify that our construction algorithm has the minimal total delay of event transmission and
our bucket-based multicast forwarding algorithm is effective.

INDEX TERMS IoT, publish/subscribe, middleware, SDN, bucket, multicast.

I. INTRODUCTION
In Internet of Things (IoT) scenarios, the publish/subscribe
(pub/sub) paradigm is commonly exploited to establish the
communication infrastructure for multiple clients to access
tremendous real-time sensor data [1]–[5]. Software Defined
Networking (SDN) [6]–[11] is used to solve the difficult
problem of Quality of Service (QoS) guarantees of delivering
events from publishers to subscribers in IoT. For traditional
IP-based pub/sub middlewares [12], [13], event matching
with defined filters takes more latency owing to a detour to
broker network. However, eventmatching and forwarding can
become more efficient in SDN-based pub/sub middlewares
[14], [15] because these processes can be executed directly

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

and fast on SDN-enabled switches via OpenFlow specifica-
tions [16] and OF-Config protocol [17].

In SDN, the control layer of the network is decoupled from
the forwarding layer. The centralized control function of SDN
controller makes it convenient to acquire the global network
information (i.e., the whole network topology), which can
be adopted to calculate event routing, deploy global security
strategies, and make global QoS decisions. We can also take
full advantage of the programmability of SDN to encode
event priorities, topics, and security strategies into the flow
tables of SDN switches to achieve personalized QoS guar-
antees. In our previous works of [18], [19], topic priorities
and authorization strategies are encoded into flow tables to
provide differentiated IoT services and cross-layer access
control for clients, respectively in our SDN-like [20] pub/sub
middleware [21]. Therefore, SDN can be used to simplify

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 89741

https://orcid.org/0000-0002-4704-6765
https://orcid.org/0000-0003-0813-0101
https://orcid.org/0000-0003-1324-1084

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

the design and management of networks and enhance their
flexibility and scalability. In this paper, we focus on designing
an efficient fast multicast routing to improve the efficiency of
event delivery in pub/sub middlewares over SDN networks.

One huge challenge in SDN-like pub/sub middlewares is
how to minimize the cost of event transmission from pub-
lishers to subscribers for delivering events efficiently. Every
event should be transmitted only once along each related link,
which is a multiple source multicast communication. Pub/sub
overlay networks, usually topic-oriented multicast trees need
to be constructed to cover all publishers and subscribers in
SDN controllers. There are three common methods to con-
struct multicast trees for SDN-like pub/sub routing.

A. SHORTEST PATH TREE (SPT)
The SPT algorithm [22] can minimize the cost of each
(publisher, subscriber) pair. However, it can only guarantee
that the local cost is optimal and cannot guarantee that the
global cost is optimal for all (publisher, subscriber) pairs.
Moreover, this algorithm also restricts the reuse of common
paths between multicast trees. When every new advertise-
ment or subscription arrives, new paths or multicast trees are
added for related pub/sub nodes, increasing the overhead of
dynamic routing computations.

B. MINIMUM SPANNING TREE (MST)
The MST algorithm [23] can be used to construct a sin-
gle spanning tree across all subscribers and publishers. The
forwarding times of events decrease obviously because all
pub/sub paths are generated in one tree. However, the critical
links can be overloaded, and the delay may increase due to a
few edge selections for new paths.

C. STEINER TREE
The Steiner tree [24] can minimize the total link cost of
event transmission in network. It has a smaller total cost than
the MST because it allows nodes that are not publishers or
subscribers (extra nodes) to join the pub/sub transmission net-
work. The Steiner tree problem is NP-hard [25]. In this paper,
we improve the classic heuristic KMB algorithm [26] to get
an approximate solution, which has a lower time complexity
and a higher approximation rate.

Therefore, we can use the Steiner tree to construct
topic-oriented pub/sub overlay with the minimal total link
delay of event delivery, forming a fast multicast routing.
Moreover, we improve the shortest path in the KMB algo-
rithm to choose the paths with fewer extra nodes (switches)
between the shortest path and second shortest path to reduce
the number of flow entries in SDN switches, further enhanc-
ing the matching efficiency of flow tables in SDN-like
pub/sub middlewares. The work of [27] proposed a minimum
topic-connected overlay (Min-TCO) to minimize the number
of links without considering weighted links. The work of [28]
proved the feasibility of the Steiner tree routing for pub/sub
networks by using the KMB algorithm directly to minimize
the total delay of event delivery. However, we improve the

algorithm by modifying the shortest path in it to minimize
not only the delay but also the number of extra nodes, achiev-
ing fast event delivery and reducing the number of flow
entries.

Another huge challenge in SDN-like pub/sub middlewares
is how to implement an efficient topic-oriented multicast
forwarding in SDN switches based on pub/sub overlay. Many
pub/sub middlewares adopted IP multicast addresses [18],
[19], [29] to realize network levelmulticast. However, IPmul-
ticast does not have good scalability for large groups, and it
takes more latency for event matching due to a detour routing
to brokers. The works of [30] and [27] described application
level multicast for event notification services. However, event
delivery at the application level is less efficient than at the
network level [31].

In SDN, events are matched and forwarded directly, fast
and controllably in SDN switches with OpenFlow, which sup-
ports the installation and modification of flow tables in SDN
switches to reduce the delay of event delivery. A commonway
to realize multicast is writing multiple actions into the same
action set for a matching flow entry, but it is not convenient
for group management because no group concept is used.
In order to address this issue, we propose a new way that uses
the action buckets of group tables in OpenFlow to achieve
efficient topic-oriented bucket-based multicast forwarding in
SDN switches, improving the efficiency of event forwarding
and facilitating group management.

Topic design is also an important issue in topic-oriented
SDN-like pub/sub middlewares. In our work, topics are orga-
nized into a Lightweight Directory Access Protocol (LDAP)
topic tree with theHuffman coding to prevent topic explosion.
Topic prefix matching based on the parent-child relationships
between topics is presented to enhance the matching effi-
ciency of topic events. In order to map multiple 64-bit topics
to 32-bit group IDs, the subscription coverage relationships
between topics are considered to merge flow entries in SDN
switches, further reducing the number of flow entries and
improving the matching efficiency of flow tables.

In this paper, we propose a topic-oriented bucket-based fast
multicast routing in SDN-like pub/sub middlewares, aiming
at improving the efficiency of delivering events between the
publishers and subscribers of messages in IoT.

The major contributions of this paper are as follows:
(1) We propose an SDN-like pub/sub middleware hier-

archical architecture and an implementation framework in
SDN controller with topics encoded into the flow entries of
SDN switches for directly and fast matching to deliver events
efficiently in IoT scenarios.

(2) A topic representation method is presented with an effi-
cient topic encoding to present topic explosion. Topic prefix
matching is designed to improve the matching efficiency of
flow tables in SDN switches, and the subscription coverage
relationships between topics are considered to merge flow
entries in SDN switches to map multiple topics to limited
group IDs, further reducing the number of flow entries and
improving the matching abilities of SDN switches.

89742 VOLUME 8, 2020

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

(3) We propose a topic-oriented bucket-based fast multi-
cast routing algorithm to improve the efficiency of deliver-
ing events between publishers and subscribers in SDN-like
pub/sub middlewares. On one hand, a topic-oriented Steiner
tree multicast routing algorithm with improved shortest path
algorithm is designed to construct pub/sub overlay networks
aboutmultiple topics in SDN controllers, which canminimize
the total link delay of event transmission and have minimal
switches for multiple event streams, realizing a real-time fast
multicast routing to improve the efficiency of event delivery,
and reducing the number of flow entries to save the storage
space of flow tables in SDN switches. On the other hand,
a topic-oriented bucket-basedmulticast forwarding algorithm
with OpenFlow is also designed to improve the efficiency of
event forwarding in SDN switches. The forwarding algorithm
considers the subscription coverage relationships between
topics to merge the flow entries of SDN switches, further
reducing the number of flow entries and improving thematch-
ing efficiency of SDN switches. These two algorithms and
the SDN-like design together compose our topic-oriented
bucket-based fast multicast routing in SDN-like pub/sub
middlewares.

(4) Experiments are conducted to verify our topic-oriented
Steiner tree multicast routing algorithm by comparisons with
the MST and SPT algorithms. We also perform some exper-
iments to validate our topic-oriented bucket-based multicast
forwarding algorithm by a contrast of group and no group.
Experimental results show that our algorithms are effective.

The remainder of this paper is organized as follows.
Section II introduces the related work. Section III pro-
poses the system design of SDN-like pub/sub middlewares.
Section IV presents the topic-oriented Steiner tree multicast
routing algorithm. Section V proposes our topic-oriented
bucket-based multicast forwarding algorithm. Section VI
presents experimental evaluations. Finally, we conclude this
paper with an outlook on future research in Section VII.

II. RELATED WORK
There are many significant works for pub/sub middle-
wares. They are separated into several types based on
different subscription schemes. For instance, VCube-PS
[32], PICADOR [33], and Poldercast [34] are popu-
lar topic-oriented pub/sub middlewares. PhSIH [35] and
PADRES [36] are famous content-oriented pub/sub middle-
wares. Flexpath [37] is a classic typed-oriented pub/sub mid-
dlewares. The topic-oriented pub/sub middlewares cost less
runtime overhead and are easy to develop, which are very
appropriate for IoT services. However, these middlewares are
built on overlay networks, underlying switches are difficult to
control by publishers/subscribers and a detour to overlay net-
work is needed for routing, therefore, the routing of delivering
events is not efficient enough.

With the development of IoT, open source commer-
cially supported Message-Oriented Middlewares (MOMs)
are becoming more and more popular. The famous pub/sub
bus RabbitMQ [38] is an open source widely deployed

message broker, which is an implementation of the Advanced
Message Queuing Protocol (AMQP). It is featured by relia-
bility, high availability, clustering, and fault tolerance. Rab-
bitMQ has a powerful routing function, supporting multiple
exchange categories such as direct exchange, topic exchange,
and fanout exchange. Many studies have verified its good
performance. The work of [39] indicates that RabbitMQ is
more stable than the Representational State Transfer (REST)
API approach under substantial concurrent client requests
about microservices. The work of [40] shows that RabbitMQ
has a better throughput than Kafka [41]. However, RabbitMQ
has distributed consistency issues. Redis (Remote Dictionary
Service) [42] is an open source memory-based storage mid-
dleware, which is very suitable for frequent search scenarios
and often adopted as message broker, database and cache.
It can be used to build middleware cluster to improve the
scalability of IoT middleware [43]. However, Redis does not
have automatic fault tolerance and recovery functions.

In recent years, SDN are increasingly popular due to
its customized programmability and flexibility. However,
there are few works about SDN-like pub/sub middlewares.
PLEROMA [44] is an SDN-oriented pub/sub middleware,
which adopts the Ternary Content Addressable Mem-
ory (TCAM) of switches to implement the line-rate for-
warding of events. However, the storage space of TCAM is
scarce and the cost is very expensive. In the work of [45],
authors proposed a data-centric SDN-based pub/sub mid-
dleware POSEIDON by proactive overlay to improve the
capabilities of data delivery. A load balancing algorithm was
presented in [46] to realize the minimal forwarding cost for
topic overlay network in SDN-based pub/sub systems.

The routing problems of pub/sub middlewares contain
routing selection and event forwarding. Routing selection
means constructing a multicast tree for pub/sub networks
to find paths from publishers to subscribers. LIPSIN [47]
proposed a line speed pub/sub network which adopted the
SPT [48] and Bloomed link identifiers to realize energy
efficient forwarding. For each publisher, there is a SPT for
multicast; For all publishers, there are multiple per-source
SPTs. However, the SPT algorithm cannot acquire the whole
optimal cost. PADRES [36] introduced the MST multicast
routing to forward content-based events. A single spanning
tree is created to reduce forwarding times. However, the key
links may be overloaded and the construction delay of new
paths may increase [49]. To overcome these shortcomings,
the famous SDN-based middleware PLEROMA [44] pre-
sented the method of multiple spanning trees. For new adver-
tisements, the middleware renews spanning trees and decides
trees to which a publisher can forward messages for link
load balancing. Moreover, for new subscriptions, it only uses
edges associated with subscribers and publishers to reduce
path length, saving the delay of event delivery. However,
the total cost for event transmission is not optimal.

The Steiner tree can minimize the total cost of event
transmission. There are two kinds of algorithms to construct
the Steiner multicast tree. The first kind of algorithms is

VOLUME 8, 2020 89743

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

to find the optimal solution. Hakimi proposed the spanning
tree enumeration algorithm in [50], but it has a very high
time complexity O(2|V |−|S|), where V is the vertex set of
network graph, S is the set of publishers and subscribers.
Aho et al. presented a dynamic programming algorithm [51]
with a high space complexity O(|S| ∗ 8|S|). The second kind
of algorithms is to get approximate solutions. The basic
principle is to reduce the complexity by sacrificing accuracy.
Takashami and Matsuyama proposed the nearest participant
first greedy algorithm in [52]. The time complexity is O(|S| ∗
|V |2), and the approximation ratio is less than or equal to 2.
Kou et al. presented the classic KMB algorithm [26]. The
time complexity is O(|S| ∗ |V |2), and the approximation ratio
is 2−2/k , where k is the leaf number in the optimal tree [53].
Mehlhorn [54] introduced another implementation of the
KMB algorithm. It has a time complexityO(|V |∗log|V |+|E|)
(E is the edge set of network graph), and the approximation
ratio is 2. In this paper, we select the KMB algorithm because
it has a lower time complexity and a higher approximation
rate.

There are three approaches to achievemulticast forwarding
about events in pub/sub middlewares. Namely, network level
multicast, application level multicast and SDN-based multi-
cast. In the work of [29], authors used IP multicast addresses
to realize network level multicast in pub/sub communica-
tion schemes. However, IP multicast is difficult to scale and
costs more time to match events because a detour to broker
network. In the famous middleware SCRIBE [30], authors
proposed application level multicast methods for event noti-
fication services. However, it is less efficient than in the
network layer [31]. In SDN, events matching and forwarding
can be executed directly in SDN switches, reducing the end-
to-end delay for delivering events. The work of [55] described
an SDN basedmulticast method in pub/sub networks, making
full use of the matching abilities of SDN switches.

There are also someworks similar to ours. Thework of [28]
verified the feasibility of the Steiner tree routing to deliver
messages in real-time for pub/sub applications in the Future
Internet by using the KMB algorithm directly. However,
we improve the KMB algorithm by modifying the shortest
path in it to minimize the total delay of event delivery and the
number of switches in paths, realizing fast delivery of events
and less flow entries in SDN switches. The work of [56]
proposed the Branch-aware Steiner Tree (BST) to improve
the scalability of pub/submulticast in SDN byminimizing the
total numbers of branch nodes and edges, which is different
from our optimization goals. The work of [19] presented
a policy-driven pub/sub topology construction about many
topics by excluding unauthorized nodes to minimize the total
delay of event delivery. In a word, our optimization objectives
are different from them about the pub/sub overlay construc-
tion. In the work of [55], authors implemented an SDN-based
multicast in pub/sub middlewares to reduce end-to-end delay
and flow table size. However, they did not consider using the
subscription coverage relationships between topics to reduce
the flow entries of SDN switches.

In this paper, we consider the pub/sub routing problem
comprehensively. Namely, the topic-oriented Steiner multi-
cast tree construction for fast routing and the topic-oriented
bucket-basedmulticast for efficient event forwarding are con-
sidered together to implement a topic-oriented bucket-based
fast multicast routing in SDN-like pub/sub middlewares.

III. SYSTEM DESIGN
In IoT environments, pub/sub middleware is required to
construct an IoT communication infrastructure aimed at
seamlessly interconnecting heterogeneous networks with IoT
applications. With the popularity of SDN, how to design the
next generation pub/submiddleware becomes an urgent prob-
lem. In this section, we propose an SDN-like pub/sub middle-
ware architecture with an implementation framework in SDN
controller to design our SDN-like pub/sub middleware, and
discuss topic design including topic encoding and matching
in our topic-oriented SDN-like pub/sub middleware.

A. SDN-LIKE PUBLISH/SUBSCRIBE MIDDLEWARE
ARCHITECTURE
We propose an SDN-like pub/sub middleware architecture,
as illustrated in Fig. 1. The SDN network is separated
into several clusters (brokers, partitions, domains or nodes).
Each cluster is a relatively independent network area, which
is composed of a local controller, several SDN-enabled
switches, and clients (publishers or subscribers). Neighbour
clusters are interconnected by a pair of border switches.
Therefore, the topology is a hierarchical structure, which
is very suitable for deploying distributed large-scale IoT
services. One layer is intra-cluster topology, the other
layer is inter-cluster topology. In this paper, we adopt the
topic-oriented pub/sub interaction model [57]. An event
(message) is identified by a topic exclusively, consisting of a
topic name and a (attribute, value) pair. All topics constitute
a topic tree.

FIGURE 1. Our SDN-like publish/subscribe middleware architecture.

89744 VOLUME 8, 2020

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

Our SDN-like pub/sub middleware is composed of four
layers, as illustrated in Fig. 1.

(1) Global Management Layer: The global management
layer only includes one global administrator, which is used
to manage all SDN controllers. It runs on a server to build
topic trees for events, the whole network topology, security
strategies and QoS guarantee mechanisms.

(2) Control Layer: This layer is composed of SDN con-
trollers. Its main function is to run the SDN-like pub/sub
middleware. Each SDN controller manages the cluster in its
domain, maintains link states, computes routings for event
flows according to subscriptions, advertisements and the
network topology and installs flow forwarding rules into
SDN-enabled switches.

(3) Data Layer: The data layer contains SDN-enabled
switches, which forward event flows in line with the flow
matching rules installed in their flow tables. The matching
rules for flow entries can be encoded into MAC addresses,
IP addresses or VLAN tags [16] to match against the packet
header fields of events, such as IPv4 or IPv6 addresses.

In this paper, we encode event types, priorities, secu-
rity policies and topics into IPv6 multicast addresses as the
matching fields of event flows, as illustrated in Fig. 2. Top-
ics are encoded as 64-bit binary strings of IPv6 destination
addresses. If the matching fields of flow entries can match
with the IP multicast address of topic events, the events
will be forwarded to the specific output ports of switches;
otherwise they will be dropped.

(4) Access Layer: This layer consists of clients, that is
to say, subscribers or publishers. The main function is to
offer the local access interfaces for handling events, i.e., the
interfaces to publish or receive events.

In traditional pub/sub middlewares [13], [35], clients are
divided into publishers and subscribers. In our SDN-like
pub/sub middleware, publishers are further decoupled into
producers and advertisers; subscribers are further decoupled
into consumers and interest managers. Advertisers and inter-
est managers are responsible for advertisements and subscrip-
tions (control plane), respectively. Producers and consumers
are responsible for the productions and consumptions (data
plane) of publications, respectively. This decoupling of the
control and data planes in clients can provide more power-
ful functionality for pub/sub middlewares [20], i.e., we can
configure dedicated access control mechanisms or security
policies for publishers and subscribers.

B. SDN-LIKE PUBLISH/SUBSCRIBE IMPLEMENTATION
FRAMEWORK
In this section, we propose our SDN-like pub/sub implemen-
tation framework with Ryu controller [58] based on the archi-
tecture presented in Section III-A, as shown in Algorithm 1.
A complete publish/subscribe process is as follows:

Step 1: Topology discovery. SDN controllers capture
switches, hosts and links in their network autonomous
domains by the Link Layer Discovery Protocol (LLDP). The
switch ID, port number, and the connection relationships

FIGURE 2. Topic encoding.

of switches are collected by SDN controllers. Then they
exchange network topology information with each other and
upload the information to the administrator of systems. In this
way, SDN controllers can get the global network topology
and know the whole network status information.

During this process, we should create network topology
and start SDN controllers first. There are three important
events, as shown in lines 2–8 of Algorithm 1. (1) SwitchFea-
tures events. A table-miss flow entry should be installed on
switches by SDN controllers when events come to switches
for the first time. (2) StateChange events. The states of
switches have changed. It means that switches join or leave
the network, and they should register with or logout SDN con-
trollers. (3) SwitchEnter events. Switches enter the network.
SDN controllers discover (capture) switches, links and con-
nected ports in their autonomous domains, the local network
topology is obtained.

Step 2: PacketIn event processing. After topology discov-
ery, packets enter the network and are processed, as shown

VOLUME 8, 2020 89745

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

Algorithm 1 SDN-Like Pub/Sub Implementation Frame-
work
Input: Network topology, SDN controller Ryu, Publishers,
Subscribers

Output: SDN controller adds group tables and flow tables to
SDN switches, event flows are forwarded from Publishers
to Subscribers

1: Initialize Create network topology, start SDN controller
Ryu

2: @set_ev_cls(ofp_event.EventOFPSwitchFeatures,
CONFIG_DISPATCHER)

3: function switch_features_handler(event)
4: add_flow(datapath, 0,match, output to controller)
5: @set_ev_cls(ofp_event.EventOFPStateChange,

[MAIN_DISPATCHER, DEAD_DISPATCHER])
6: state_change_handler(event)
7: @set_ev_cls(event.EventSwitchEnter)
8: get_topology_data(event)
9: @set_ev_cls(ofp_event.EventOFPPacketIn,

MAIN_DISPATCHER)
10: function packet_in_handler(event)
11: Get IPv6, Ethernet packets by event (message) pars-

ing
12: Calculate message type, ip by packet parsing
13: if message type is Advertisement then
14: function advertisement_handler(event)
15: Add publisher nodes to topology
16: if find subscription matching event topic then
17: path ←

find_path(publishers, topic, type)
18: add path about new advertisement to

paths
19: else if message type is Subscription then
20: function subscription_handler(event)
21: Add subscriber nodes to topology
22: if find advertisement matching event topic

then
23: path ←

find_path(subscribers, topic, type)
24: add path about new subscription to paths
25: else if message type is Publication then
26: publication_handler(event) F Not run forever
27: if len(paths) > 0 then F Bucket multicast along

paths
28: Bucket_based_multicast(paths, topic)

in lines 9–28. First, events are parsed into IPv6 packets,
message type can be acquired by packet parsing. Then, events
are processed according to their message types. When the
message type isAdvertisement or Subscription, pub/sub paths
about the same topic is computed from publishers to sub-
scribers by SDN controllers (Step 3). When the message
type is Publication, events are delivered from publishers to
subscribers (Step 5). At last, flow tables and group tables are

installed on switches for event forwarding according to the
paths (Step 4).

Step 3: Routing computation. After acquiring the network
topology, we can use it to compute paths from publishers
to subscribers. The commonly used routing algorithms are
Flooding, IP multicast, the Shortest Path First (SPF) and
the Minimum Spanning Tree (MST). When SDN controllers
receive an advertisement message which announces a pub-
lisher will publish specific events to SDN-like pub/sub sys-
tems, they compute the related paths from the publisher
to all subscribers who express their interests in the events
beforehand in lines 13–18. Similarly, when SDN controllers
receive a subscription message which announces a subscriber
is interested in specific events, paths are computed from the
subscriber to all publishers who can publish the events in
lines 19–24. The key issue is how to compute efficient event
transmission paths between publishers and subscribers by
function find_path in lines 17 and 23, which will be discussed
in detail in Section IV.

Step 4: Flow table installation. For each switch on for-
warding paths, flow forwarding rules should be installed on it
to decide the output ports of the switch for event forwarding.
We propose a topic-oriented bucket-based multicast algo-
rithm, which use topic-oriented action buckets to install group
tables and flow tables into switches by SDN controllers in
lines 27–28, as described in Section V.
Step 5: Publication and subscription. Publishers publish

events, subscribers receive the events if they subscribe to
them in advance. Switches are responsible for event forward-
ing by installed flow tables. SDN controllers will do nothing
in this process in lines 25–26. All publication code will not
run, because the code cannot reach SDN controllers, events
are handled by switches directly. SDN controllers are only
responsible for control and SDN switches become simple
packet forwarding devices, which simplifies network design
and management. This also reflects the idea of separation
between the control and forwarding planes in SDN.

C. TOPIC DESIGN
In topic-oriented SDN-like pub/sub middlewares, one hard
issue is how to organize topics into a topic tree with optimized
topic encoding to prevent topic explosion, the other is how to
match topic events against the flow tables of SDN switches
efficiently. In order to solve these issues. We discuss the
equal length coding and Huffman coding by the parent-child
relationships between topics, and design an efficient topic
prefix matching method based on the subscription coverage
relationships between them.

In our topic-oriented SDN-like pub/sub middleware,
events are identified uniquely by topics. Topics are repre-
sented as a Lightweight Directory Access Protocol (LDAP)
topic tree. Parent-child relationship exists between topics in
the adjacent layers of topic tree. If a parent topic is subscribed,
all child topics are subscribed by default, which is called
subscription coverage. We can use this subscription coverage
relationships between topics to merge flow entries in SDN

89746 VOLUME 8, 2020

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

Algorithm 2 Topic Encoding in Event Header by Publisher
Input: A LDAP topic tree T , a topic Topic in T
Output: Topic code TopicCode, IPv6 code corresponding to

topic TopicIPv6Code
1: Compute the Huffman Coding of T
2: TopicPath← GetTopicPath(Topic)
3: for Node in TopicPath do
4: TopicCode← TopicCode + NodeCode
5: TopicIPv6Code ← "ff0e" + EventType + Priority +
SecurityPolicy + TopicLength + TopicCode + Reserved

switches, reducing the number of flow entries and enhancing
the matching efficiency of flow tables.

1) TOPIC ENCODING
In order to prevent topic explosion, a topic encoding method
is needed to embed topic into the header of event by publish-
ers. One way is the equal length coding, another way is the
Huffman coding, as illustrated in Fig. 2. Event type, prior-
ity, security policy and topic are embedded into IPv6 mul-
ticast addresses. Topics are represented as 64-bit binary
strings, which can be used to match the flow entries of
SDN switches for event forwarding directly. For example,
if we use the equal length coding, the topic code of Apple
is 000001, and the IPv6 code will be ff0e:5000:0230:2000::
for publication events with high priority and policy code
000000000000000001. If we use the Huffman coding,
the topic code of Apple is 0001, and the IPv6 code will be
ff0e:5000:0230:8000::. In fact, the Huffman coding can use
fewer bits to encode topics than the equal length coding with
a little more computation overhead. Therefore, we adopt the
Huffman coding described in Fig. 2(b) to encode topic.

We propose our topic encoding algorithm executed in the
topic code fields of event headers by publishers, as illustrated
in Algorithm 2. First, we compute the Huffman coding of
topic tree in line 1. Then, topic path is calculated by traversing
the topic tree in level order in line 2. In the for loop of line 3–4,
topic code is computed by joining the coding of each node in
the topic path. At last, we get the IPv6 code of the topic by
connecting the topic code with other fields in line 5.

2) TOPIC MATCHING
In our SDN-like pub/sub middleware, event topics are
encoded into event headers and used to match the flow entries
of SDN switches, solving the problem of routing selection in
the data link layer directly. The more bits the topic matches,
the better the matching accuracy will be, but the flow table
size will be larger and the matching speed will be slower,
and vice versa. Therefore, it is necessary to strike a balance
between matching accuracy and speed, i.e., we can use all
topic bits tomatch flow entries, but a newflow entry should be
added for each topic. The matching accuracy is best, but the
flow table size will be very large with a lowermatching speed.
However, the storage space in SDN switches is very limited,

Algorithm 3 Topic Matching in Flow Entry by SDN Con-
troller and Switch
Input: Topic publication event Pub
Output: Topic matching successful, events are forwarded,

or failed
1: IPv6Addr ← PublicationEventParsing(Pub)
2: TopicCode← TopicParsing(IPv6Addr)
3: mask ← ff:ff:ff:ff F 32 bit mask matching
4: if TopicCode⊗ mask = TopicMatingField then F ⊗ is

bitwise AND
5: return Topic matching successful
6: else
7: goto Next flow entry
8: return Topic matching failed

exact topic matching with all bits is unrealistic in practise.
According to the subscription coverage relationships between
topics, we can use mask to define the bits of topic matching
like the prefix match for IP addresses, called as topic prefix
matching.

The algorithm of topic matching is proposed in
Algorithm 3. First, topic publication event is parsed into
IPv6 multicast address and topic code in lines 1–2. The mask
of topic matching field is defined by SDN controller in line 3.
In this paper, the mask is set to a 32-bit string ff:ff:ff:ff. The
filed of topic matching in the flow entries of SDN switch is a
bitwise AND operation of topic code and the mask in line 4.
In this way, topics with subscription coverage relationships
have the same topic matching filed, namely, the 32-bit prefix
of topic codes, which can be mapped into the same group
ID for multicast directly, reducing the number of groups and
saving the space of group tables and flow tables.

IV. TOPIC-ORIENTED STEINER TREE
MULTICAST ROUTING
In the SDN-like pub/sub implementation framework Algo-
rithm 1, when the message type is advertisement or sub-
scription, paths from publishers to subscribers should be
found by SDN controllers, which is called routing (path)
selection realized by function find_path in lines 17 and 23 of
Algorithm 1. Routing problems include routing selection and
event forwarding. In this section, we focus on routing selec-
tion, namely, how to select optimal paths from publishers
to subscribers to deliver events efficiently in topic-oriented
SDN-like pub/sub middlewares. This problem is also called
as the construction of pub/sub overlay network.

The work of [27] proposed a minimum topic-connected
overlay to trade off the scalability and forwarding overhead.
The work of [19] presented a policy-driven pub/sub topology
construction about many topics via bypassing the unautho-
rized nodes. In this paper, we focus on constructing the
topic-oriented pub/sub overlay with the minimum cost of
event transmission and the minimal extra nodes to reduce the
overhead of flow entries in SDN switches, as shown below:

VOLUME 8, 2020 89747

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

1) In order to transmit events fast and efficiently in
SDN-like pub/sub middlewares, the total cost of event trans-
mission should be minimized, the cost can be link delay,
bandwidth and switch hops. Many IoT services are delay-
sensitive, so we choose delay as theweight (cost) of each edge
in pub/sub networks. Our goal is to find several minimum
cost multicast trees covering all nodes of publishers and
subscribers.

2) Many event streams can cross the same extra node,
namely, non-publisher and non-subscriber node. Extra nodes
and publisher/subscriber nodes consist of topic-oriented over-
lay topology. Our goal is to minimize extra nodes for multiple
event streams to reduce the number of flow entries for SDN
switches.

A. PROBLEM STATEMENT
We use an undirected weighted connected graph G = (V ,E)
to describe the SDN-like pub/sub network, where V =

{vi|1 ≤ i ≤ n} is the node set, E = {ej|1 ≤ j ≤ m} is the
edge set with a link cost cj about ej. IfW = {wt |1 ≤ t ≤ p} is
used to denote the event stream set about p topics subscribed
by several nodes in G, Mt = (St ,Dt ,wt) can represent the
multicast from the node set of publishers St to the node set
of subscribers Dt about event stream wt with a multicast cost
cost(Mt).
Definition 1 (MCMN-TC-SDN): The problem of pub-

lish/subscribe TopologyConstruction aboutmultiple topics to
Minimize the total Cost of event transmission and Minimize
extra Nodes in Topic-oriented SDN-like publish/subscribe
middlewares is called as MCMN-TC-SDN, which is defined
as follows:

Given an SDN network G(V ,E) with multicast set M =
{Mt |1 ≤ t ≤ p} = {(St ,Dt ,wt)|1 ≤ t ≤ p} from publisher
set St to subscriber set Dt about event stream wt for p topics.
The goal of MCMN-TC-SDN is to find several sub-graphs
Gt = (Vt ,Et),Vt = {vti|1 ≤ i ≤ nt },Et = {etj|1 ≤
j ≤ mt }, 1 ≤ t ≤ p with link cost ctj about etj to connect
all publishers and subscribers, and each multicast Mt should
satisfy the following formulas:

minimize(|
p⋃
t=1

(Vt − St − Dt)|) (1)

minimize(
p∑
t=1

cost(Gt)|cost(Gt) =
mt∑
j=1

ctj) (2)

The goal of MCMN-TC-SDN is to connect all publishers
and subscribers with the minimal total cost of event transmis-
sion and the minimal extra nodes for all multicast streams in
SDN-like topic-oriented publish/subscribe middlewares.
Theorem 1: The problem ofMCMN-TC-SDN is NP-hard.
Proof: In formula (1), our goal is to minimize the total

extra nodes except publisher/subscriber nodes. If we remove
this goal, the problem of MCMN-TC-SDN will be the classic
Steiner tree problem [24] in the case of considering only
formula (2). Therefore, our goal of MCMN-TC-SDN can be

FIGURE 3. An example of multicast tree.

viewed as a special case of the Steiner tree. The Steiner tree
problem is NP-hard [25], so the problem ofMCMN-TC-SDN
is also NP-hard.
In graph theory, the Steiner tree [24] is a minimum

cost tree, which can minimize the consumption of network
resources. The Steiner tree can contain some Steiner (extra)
nodes, so the minimum cost can be better than the MST and
SPT, as illustrated in Fig. 3. Fig. 3(a) is the network graph
G. The weights of edges are randomly generated, ranging
from (0, 100). Node F is a publisher, nodes A,C and E are
subscribers. Fig. 3(b) is a SPT with a total cost 161. Fig. 3(c)
is aMSTwith a total cost 166. Fig. 3(d) is a Steiner tree with a
total cost 134. The terminal nodes are F,A,C and E , namely,
publishers and subscribers. The Steiner node is D, namely,
non-terminal nodes. Obviously, compared with the SPT and
MST, the Steiner tree has a minimum cost.

B. SOLVING MCMN-TC-SDN
For each multicast stream Mt = (St ,Dt ,wt) about topict in
SDN network G(V ,E), we first calculate the shortest paths
and the second shortest paths between St and Dt (St ⊆
V , Dt ⊆ V), then we choose the path which has the smaller
number of extra nodes as the path from each source node s
(s ∈ St) to each destination node d (d ∈ Dt) to save the space
of flow tables in SDN switches, as shown in the improved
shortest path Algorithm 4.

In Algorithm 4, dis[d][0] is the shortest path from node s
to node d , dis[d][1] is the second shortest path from s to d ,
Dis[s][d] is the selected path cost from s to d . In lines 6–9,
we get the current shortest or second shortest paths, thenmark
the optimal node and add connected edges to update paths in
lines 10–16. At last, the paths {Dis[s][d]|s ∈ S, d ∈ D}which
have a smaller number of extra nodes (switches) are selected
as the cost paths to reduce the number of flow entries in SDN
switches in lines 17–21.

89748 VOLUME 8, 2020

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

Algorithm 4 ImprovedDijkstra(G, S,D) From S to D
Input: G = (V ,E) with edge costs {cost[vi][vj]|vi, vj ∈ V },
multicast stream M = (S,D,w), S ⊆ V , D ⊆ V

Output: The improved shortest paths {Dis[s][d]|s ∈ S, d ∈
D}

1: Initialize G, {cost[vi][vj]|vi, vj ∈ V }
2: for s ∈ S do
3: dis[s][0]← 0
4: for i = 1→ 2 ∗ |V | do
5: min←∞
6: for v ∈ V do
7: for t = 0→ 1 do
8: if visit[v][t] is false and dis[v][t] < min

then
9: min← dis[v][t], vmin← v, k ← t
10: visit[vmin][k]← true
11: for each edge connected to vmin do
12: newDis← dis[vmin][k]+ cost[vmin][vj]
13: if newDis < dis[vj][0] then
14: dis[vj][1] ← dis[vj][0], dis[vj][0] ←

newDis
15: else if newDis < dis[vj][1] then
16: dis[vj][1]← newDis

17: for d ∈ D do
18: if the node number in the path of dis[d][0] > the

node number in the path of dis[d][1] then
19: dis[d][0]← dis[d][1]
20: Dis[s][d]← dis[d][0]
21: return The improved shortest paths {Dis[s][d]|s ∈

S, d ∈ D}

Algorithm 5 Topic-Oriented Steiner Tree Multicast Routing
Input: G = (V ,E) with edge costs {cost[vi][vj]|vi, vj ∈ V },
multicast stream {Mt = (St ,Dt ,wt)|1 ≤ t ≤ p}, St ⊆
V , Dt ⊆ V

Output: A multicast forest F consisting of several Steiner
trees

1: Initialize S ←
⋃p

t=1 St ,D←
⋃p

t=1 Dt , {cost[vi][vj]}
2: {Dis[s][d]|s ∈ S, d ∈ D} ← ImprovedDijkstra(G, S,D)
3: G1 = (S ∪ D,E1),∀(si, sj) ∈ E1, link cost is Dis[si][sj]
4: T1← Prim(G1)
5: G2← PathRecovery(T1,G)
6: T2← Prim(G2)
7: for node in T2 do
8: if node is leaf and node 6∈ S ∪ D then
9: Remove node and connected edges from T2
10: Get a Steiner tree ST1 or multiple Steiner trees {STi|1 ≤

i ≤ p1 ≤ p} if G or G1 or G2 is not a connected graph
11: return A multicast forest F ← {STi|1 ≤ i ≤ p1}

The pub/sub topology for multiple topics are constructed
by the classic KMB algorithm [26] about the Steiner tree
with an improvement on the shortest path, as shown in

Algorithm 5. In line 2, we get the optimal cost path from
publishers S to subscribers D according to the improved
shortest path Algorithm 4. Then, the complete cost graph
connecting all publishers and subscribers G1 = (S ∪ D,E1)
is computed in line 3, and the path of T1 are recovered with
the original path in G in line 5. At last, the cycles of G2 are
removed in lines 6–9. The time complexity of Algorithm 5
is O(|S ∪ D| ∗ |V |2). We use the Dijkstra algorithm to get
the optimal cost paths for reducing complexity, not the Floyd
algorithm, because most pub/sub network graphs are sparse
graphs (|St ∪Dt | � |V |), the time complexity of Algorithm 5
can reach O(|V |3) if we use the Floyd algorithm.
After constructing the pub/sub topology for multiple top-

ics, we can get paths for event routing conveniently by the
multicast forest to deliver events fast. This construction algo-
rithm uses the minimal total cost of event transmission and
minimal extra nodes to save the space of flow tables in SDN
switches in SDN-like topic-oriented pub/sub middlewares.

V. TOPIC-ORIENTED BUCKET-BASED MULTICAST
FORWARDING
In this section, we focus on how to forward topic-based events
efficiently in SDN switches according to paths constructed
by the Steiner multicast trees in Section IV, which is called
event forwarding. Namely, the design and implementation of
function Bucket_based_multicast in line 28 of Algorithm 1.
First, OpenFlow group table and an example of bucket-based
multicast are introduced in detail. Then, we propose our
topic-oriented bucket-based multicast forwarding algorithm
to forward events efficiently from publishers to subscribers
by flow tables and group tables installed on SDN switches
along the paths in SDN-like pub/sub middlewares.

A. OpenFlow GROUP TABLE
Group table is an extension of flow table forwardingmethods,
which supports forwarding events to group, namely, multiple
receivers. We can associate flow table with group by adding
a flow entry to the group. Group table is composed of group
entries. Each group entry contains a group ID, group type,
counters and action buckets. The group ID is used to mark
a group uniquely with a 32-bit unsigned integer. The group
type all indicates that all action buckets should be performed
in a group, which is very suitable for multicast, broadcast
and flooding scenarios. The action buckets defines several
OpenFlow buckets, each bucket is an action list.

In this paper, OpenFlow 1.3.0 [59] is adopted to imple-
ment group multicast. The group ID is a mapping of topics,
i.e., the integer form of 32-bit topic prefix, if the topic prefix
is 1.2.3.4, the group ID will be 16909060. All subscribers
interested in the same topic (prefix) form one group. When
publishers publish events with this topic prefix, the action
buckets of the group are executed to forward topic events to
the output ports of SDN switches, as shown in Fig. 4, when
publication events with topic prefix 1.2.3.4 enter the port 0 of
the SDN switch, all action buckets (Bucket 1 and Bucket 2) in
group 16909060 are executed to forward events to the port 1

VOLUME 8, 2020 89749

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

FIGURE 4. An example of bucket-based multicast.

and port 2 of the switch. In this way, one-to-many multicast
is implemented in SDN-like pub/sub middlewares.

There are four advantages for our bucket-based multicast.
First, subscribers interested in the same topic prefix are put
into one group, which makes it easier to aggregate sub-
scriptions. Moreover, our topic-oriented bucket-based multi-
cast makes full use of the subscription coverage relationship
between topics to merge flow entries, reducing the number
of flow entries installed on SDN switches. False positives
mean that subscribers receive topic events that they are not
interested in. If a subscriber cancels a subscription, but the
installed flow entry has not expired, false positives will occur.
Therefore, our bucket-based multicast can reduce the false
positive rate under dynamic subscriptions or unsubscrip-
tions with fewer flow entries and subscription aggregations.
Second, the additional cost is saved for the only multicast
switch. Third, this method is suitable for all kinds of net-
work protocols, which is more efficient and reliable, because
traditional IP multicast uses the special class D multicast
addresses that limits its use. Fourth, it facilitates group man-
agement by group ID (topic).

B. TOPIC-ORIENTED BUCKET-BASED MULTICAST
FORWARDING ALGORITHM
We propose our topic-oriented bucket-based multicast for-
warding algorithm, as shown in Algorithm 6. It is used to
implement multicast forwarding from a publisher to mul-
tiple subscribers in topic-oriented SDN-like pub/sub mid-
dlewares. In order to map 64-bit topic to 32-bit group ID,
the subscription coverage relationships between topics are
considered to merge topics with the same 32-bit topic prefix
into one group, reducing the number of group entries and
flow entries and improving the matching abilities of SDN
switches.

The algorithm contains two-layer for loops, as shown
in lines 1–18. In lines 3–10, we merge the subscriptions
of topic to an ancestor topic with the topic length less
than or equal to 32 if the length of topic greater than 32.
In this way, topics with the same 32-bit topic prefix are
mapped to the same group, reducing the number of group
greatly. If (switch, topic) pair is not in buckets, we should

Algorithm 6 Topic-Oriented Bucket-Based Multicast
Forwarding
Input: publish/subscribe network topology, paths, topics
Output: multicast forwarding for topic events in switches
1: for path in paths do F Traverse each publish/subscribe

path
2: for switch in path do
3: if the length of topic code > 32 then
4: if there is an ancestor topic of topic in buckets

then
5: Merge topic to the ancestor topic
6: continue
7: else
8: find an ancestor topic with topic length6

32 in topic tree
9: Merge topic to the ancestor topic
10: topic← AncestorTopic
11: if (switch, topic) is not in buckets then
12: cmd[switch][topic]← OFPGC_ADD
13: else if (switch, topic) not in new group then
14: cmd[switch][topic]← OFPGC_MODIFY
15: actions← output to switch.outports[node]
16: bucket ← OFPBucket(0,wp,wg, actions)
17: Add bucket to buckets
18: Add switch to changed_nodes
19: for switch in changed_nodes do F Update group

table
20: gid ← Map(topic)
21: for topic in buckets do
22: if cmd[switch][topic] is OFPGC_ADD then
23: c← OFPGC_ADD F Add group
24: else
25: c← OFPGC_MODIFY FModify group
26: UpdateGroup(switch, c, all,

gid, buckets, topic)
27: functionUpdateGroup(switch, c, type, gid, buckets, topic)
28: group_msg←OFPGroupMod(switch, c, gid, buckets)
29: switch.send_msg(group_msg)
30: match← OFPMatch(Publication, topic, 0× 86 dd)
31: AddFlow(switch, priority,match, actions to group

gid)

add a new group in lines 11–12. Otherwise, if the pair is in
old group, we should modify the group, and wrap actions
to bucket for forwarding in lines 13–18. At last, group
table should be updated for each changed switch node in
lines 19–26.

The function of group table update is shown in lines 27–31.
Line 28 is the definition of group table. SDN controller
sends the group table update message to switch to modify the
group table in line 29. Line 30 defines the matching rules for
topic events embedded into IPv6 (0× 86dd) packets. Line 31
associates group ID to a flow entry.

89750 VOLUME 8, 2020

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

FIGURE 5. Steiner nodes under different node degrees.

FIGURE 6. Steiner nodes under different network sizes.

In this way, multiple topic events with the same 32-bit
topic prefix corresponds to one group entry, which records all
forwarding actions about topics with subscription coverage
relationships, achieving topic-oriented bucket-based multi-
cast, reducing the number of group entries and flow entries
in SDN switches and improving the matching efficiency of
flow tables in SDN-like pub/sub middlewares.

VI. EXPERIMENTAL EVALUATION
In this section, several sets of experiments are conducted to
validate the effectiveness of our bucket-based fast multicast
routing algorithm in SDN-like pub/sub middlewares. The
first part is to verify the effectiveness of the Steiner tree
multicast routing algorithm and test its performance. Specif-
ically, (i) Steiner nodes under different node degrees and
network sizes. (ii) Steiner multicast tree construction time.
(iii) Multicast tree cost (delay) comparison. (iv) Multicast
tree construction time comparison. The second part is to ver-
ify the effectiveness of our bucket-based multicast forward-
ing algorithm. Namely, (v) End-to-end delay comparison.
(vi) Flow table size comparison.

A. STEINER TREE MULTICAST ROUTING ALGORITHM
In this part, four sets of experiments are performed to verify
the effectiveness of our Steiner tree multicast routing algo-
rithm, namely, experiments (i), (ii), (iii), and (iv). The first
set of experiments is used to validate the rationality of our
pub/sub topology construction method by the Steiner tree,
and explore the impact of network size, node degree and
the number of pub/sub nodes on the topology construction.
The second set of experiments presents the time overhead of

our Steiner multicast tree construction algorithm. The third
set of experiments is used to verify that our Steiner tree has
the minimum total cost compared with the SPT and MST.
The fourth set of experiments verifies the rationality of the
construction time of our Steiner multicast tree by comparison
with the SPT and MST.

1) PUBLISH/SUBSCRIBE TOPOLOGY CONSTRUCTION
Two groups of experiments are performed for SDN-like
pub/sub topology construction, Namely, Steiner nodes under
different node degrees and network sizes. In the first group of
experiments, the number of network nodes is 3000; the degree
of nodes changes over [1, 5], [3, 8] and [6, 12], respectively;
the pub/sub node percent varies among 20%, 30%, 50%, 70%,
and 80%. In the second group of experiments, the network
size changes over 500, 1000, 1500, 2000 and 3000; the degree
of nodes is [1, 5] or [3, 8]; the pub/sub node percent is 20%
or 50%.

The first set of experimental results are illustrated in
Fig. 5. Topo represents the total number of nodes for
SDN-like pub/sub topology construction. Pub/Sub denotes
the pub/sub node (publisher/subscriber) number. Steiner
means the Steiner node number. In each subfigure, the Steiner
node number decreases as the pub/sub node percent increases.
In different subfigures, as the degree of nodes increases,
the Steiner node number decreases, and the number of nodes
about topology construction also decreases.

Fig. 6 shows the second set of experimental results. In each
subfigure, with the increase of network size, the topology
node number, the pub/sub node number and the Steiner node
number all increase. By comparing Fig. 6(a) and Fig. 6(b),

VOLUME 8, 2020 89751

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

FIGURE 7. Steiner multicast tree construction time in different network
sizes.

we can conclude that the topology node number increases
and the Steiner node decreases as the pub/sub node percent
increases for each network size. By comparing Fig. 6(b) and
Fig. 6(c), we can conclude that the topology node number
decreases and the Steiner node number also decreases as the
degree of nodes increases for each network size.

These two sets of experiments indicate that in addition to
network size, node degree and the percent of pub/sub node
number also have an impact on the number of Steiner nodes
and SDN-like pub/sub network topology construction, and
our topology construction method is effective.

2) STEINER TREE CONSTRUCTION TIME OVERHEAD
Fig. 7 illustrates the time overhead of the Steiner tree con-
struction in different network sizes. The size varies from
100 to 3000. The percent of pub/sub nodes is 20%, and
the degree of nodes changes over [1, 5]. The experiment
results indicate that our Steiner tree construction algorithm
is efficient because the construction time is in the sub-second
level when the network size is less than 750, it needs seconds
when the network size is [1000, 2000), which is tolerable for
a medium-sized network, and it costs tens of seconds when
the network size is [2000, 3000]. The time overhead curve of
our Steiner tree construction are also consistent with its time
complexity O(|S ∪ D| ∗ |V |2).

3) MULTICAST TREE COST COMPARISON
The Steiner tree is the minimum cost multicast tree. We con-
duct two sets of experiments to verify this theory. One is mul-
ticast tree cost comparison among our Steiner tree, the MST
and SPT under different node degrees, the other is multi-
cast tree cost comparison under different network sizes. The
parameters of the two set of experiments are the same as
those in Fig. 5 and Fig. 6, respectively. For each experiment,
we use link delay as the cost of edges, which is set to a
random number between 0 and 100 (ms). Steiner denotes our
Steiner multicast tree cost. MST represents the MST cost.
SPT indicates the SPT cost.
The first set of experimental results are illustrated in Fig. 8.

For each experiment, the Steiner multicast tree cost is less
than the MST cost and the SPF cost. For each subfigure,
the Steiner multicast tree cost increases with the increase of

the percent of pub/sub node number, these results are consis-
tent with the results of Fig. 5. When the percent of pub/sub
node number increases, the pub/sub topology node number
increases, so the Steiner multicast tree cost also increases in
the same node degree. For different subfigures, the Steiner
multicast tree cost decreases with the increase of node degree,
these results are consistent with the results of Fig. 6.When the
degree of nodes increases, the pub/sub topology node number
decreases, so the Steiner multicast tree cost also decreases in
the same pub/sub node percent.

The second set of experimental results are illustrated in
Fig. 9. For each experiment, the Steiner tree cost is mini-
mal. For each subfigure, the Steiner tree cost increases with
the increase of network size. By comparing Fig. 9(a) and
Fig. 9(b), we can conclude that the Steiner tree cost increases
with the increase of the percent of pub/sub node number,
these results are consistent with the results of Fig. 6. When
the percent of pub/sub node number increases, the pub/sub
topology node number increases, so the Steiner tree cost also
increases in the same node degree. By comparing Fig. 9(b)
and Fig.9(c), we can know that the Steiner tree cost decreases
with the increase of the degree of nodes, these results are
consistent with the results of Fig. 6. When the degree of
node increases, the pub/sub topology node number decreases,
so the Steiner tree cost also decreases in the same network
size.

These two sets of experiments show that our Steiner mul-
ticast tree cost is minimal compared with common mul-
ticast tree (MST, SPT) algorithms for SDN-like pub/sub
middlewares.

4) MULTICAST TREE CONSTRUCTION TIME COMPARISON
We perform one set of experiments to compare multicast tree
construction time among our Steiner tree, the MST and SPT
under different node degrees. For each experiment, the num-
ber of network nodes is 1000, and other parameters are the
same with Fig. 5.

The experimental results are illustrated in Fig. 10. For each
experiment, the multicast tree construction time is Steiner >

SPT > MST . The reason is as follows: the time complexity of
our Steiner tree construction is O(|S ∪D| ∗ |V |2), as shown in
Section IV-B. The time complexity of the SPT construction is
O(|S|∗|V |2). The time complexity of theMST construction is
O(|V |2), which is much smaller than the SPT and our Steiner
tree. This is the reason that many pub/sub systems select
the MST as multicast tree, however, it cannot guarantee the
minimum total cost (delay) of multicast tree. The time cost of
constructing the Steiner tree and the SPT is in the same level.
This set of experiments indicates that our Steiner multicast
tree construction time is reasonable.

B. BUCKET-BASED MULTICAST FORWARDING
ALGORITHM
We conduct some experiments about bucket-based multicast
by the classic SDN simulation platform Mininet [60] and
SDN controller Ryu, which both run on Ubuntu 14.04 LTS.

89752 VOLUME 8, 2020

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

FIGURE 8. Multicast tree cost comparison under different node degrees.

FIGURE 9. Multicast tree cost comparison under different network sizes.

FIGURE 10. Multicast tree construction time comparison under different node degrees.

FIGURE 11. Experiment topology.

Fig. 11 shows the experiment topology with one Ryu con-
troller, seven SDN-enabled switches, and 36 hosts. Switch S1
is connected to six switches, forming a two-layer tree struc-
ture. Every other switch has six hosts, host h1 is a publisher,

TABLE 1. Subscription Configuration.

other hosts are subscribers. Java socket program is deployed
on each host to send or receive packets. Publisher h1 pub-
lishes topic events which will be received by subscribers if
they express their interests in these events beforehand. Sev-
eral subscribers are put in the same multicast group, the sub-
scription configuration is shown in Table 1, i.e., the first line
in the table means five subscribers h7 to h11 subscribe a
specific topic, so the corresponding group has five members.

VOLUME 8, 2020 89753

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

FIGURE 12. End-to-end delay comparison.

1) END-TO-END DELAY
Fig. 12 shows the experiment results of end-to-end delay
comparison about three SDN-like pub/sub communication
styles under different number of subscribers. The first one
is the traditional multicast without group, multiple output
actions in many ports of switches are placed into one action
set. When switches receive publication messages about one
topic, the packet header fields of messages first match the
flow table of switches, and then the messages will be for-
warded to the specified ports of switches which are written
into the actions of the flow entry beforehand. The second one
is the bucket based multicast with group, each output action is
put into an OpenFlow bucket, multiple actions form a bucket
list. Publication messages with specific topic first match the
flow entry with a action to corresponding group ID, then the
group entry with the same group ID is matched, the messages
will be forwarded to the specified ports of switches which are
written into the action buckets of the group entry in advance.

In Fig. 12, for each set of experiments, bucket-based mul-
ticast with group takes a little more time because it needs
to matches two times for a pub/sub topic, one time in flow
table, the other time in group table compared to the multicast
without group, However, bucket-based multicast with group
has some new advantages, it is easy for flow management
and group management and easy to aggregate subscriptions.
Security policies, multipath load balancing and fast failover
can also be executed conveniently on specific groups.

As shown in Fig. 12, unicast takes more time than two
multicast styles. If there are n subscribers, n flows should be
sent for unicast communication, however, one flow is enough
for multicast, packets are copied and forwarded at the branch
of paths, so multicast can save a lot of end-to-end delay,
which is very suitable for IoT scenarios with strict latency
requirements. Therefore, these experiment results indicate
that our bucket-based multicast method is efficient.

2) FLOW TABLE SIZE
Fig. 13 shows the experiment results of total flow table size
comparison between SDN-like pub/sub multicast with group
and without group. For each experiment, the flow table size of
multicast with group is larger than multicast without group.

FIGURE 13. Flow table size comparison.

At first, each switch for twomulticast styles has two default
flow entries, so the total table size for all switches is 14.When
the number of subscribers is 5, hosts h7-h12 subscribe topic,
so pub/sub paths are formed from h1 to hi (i = 7, 8, . . . , 12),
three new flow entries are installed on switches S1, S2 and
S3, so the flow table size for multicast without group is 17;
For multicast with group, the size is 20 because each group
table adds one group entry.

When the number of subscribers is 30 or 35, the flow table
size no longer increases, because all flow entries and group
entries are full for switches, no new flow entries or group
entries can be added, only new output ports are added to the
action lists of flow entries for multicast without group, or only
new action buckets are added to the bucket lists of group
entries. However, for unicast, when new subscribers join in
pub/sub network, new flow entries are installed, increasing
the burden of pub/sub systems. For multicast with group,
only a small amount of group table space is added than
multicast without group. These experiment results verify the
effectiveness of our bucket-based multicast method.

VII. CONCLUSION
In this paper, we address the issue of how to adopt SDN
to implement a topic-oriented bucket-based fast multicast
routing for delivering events efficiently in SDN-like pub/sub
middlewares. On one hand, we adopt the features of cen-
tralized control of SDN controllers to acquire the global
network topology, then we use it and the Steiner tree to build
the minimum cost multicast tree of event transmission for
pub/sub topology construction in SDN controllers to deliver
events fast. On the other hand, we utilize the programmability
of SDN to install our customized topic-oriented flow tables
and group tables, which use topic-oriented action buckets to
implement the bucket-based multicast for efficient event for-
warding in SDN switches. Moreover, the design of SDN-like
pub/sub routing enables events to bematched directly and fast
on SDN switches, avoiding the additional delay caused by a
detour to overlay network in IP-based pub/sub middlewares.
These three schemes together constitute our topic-oriented
bucket-based fast multicast routing in SDN-like pub/sub mid-
dlewares. Experimental results indicate that our schemes are
effective.

89754 VOLUME 8, 2020

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

In the future, we can design an incremental Steiner tree
construction algorithm to reduce the construction time over-
head caused by frequent advertisements and subscriptions
for further improving the efficiency of event delivery in
topic-oriented SDN-like pub/sub middlewares.

REFERENCES
[1] A. Diro, H. Reda, N. Chilamkurti, A. Mahmood, N. Zaman, and

Y. Nam, ‘‘Lightweight authenticated-encryption scheme for Internet of
Things based on publish-subscribe communication,’’ IEEE Access, vol. 8,
pp. 60539–60551, 2020.

[2] J. Hasenburg and D. Bermbach, ‘‘GeoBroker: Leveraging geo-contexts
for IoT data distribution,’’ Comput. Commun., vol. 151, pp. 473–484,
Feb. 2020.

[3] R. S. Gargees and G. J. Scott, ‘‘Dynamically scalable distributed virtual
framework based on agents and pub/sub pattern for IoT media data,’’ IEEE
Internet Things J., vol. 6, no. 1, pp. 599–613, Feb. 2019.

[4] A. E. C. Redondi, A. Arcia-Moret, and P. Manzoni, ‘‘Towards a scaled
IoT pub/sub architecture for 5G networks: The case of multiaccess edge
computing,’’ in Proc. IEEE 5th World Forum Internet Things (WF-IoT),
Apr. 2019, pp. 436–441.

[5] P. Lv, L. Wang, H. Zhu, W. Deng, and L. Gu, ‘‘An IOT-oriented privacy-
preserving publish/subscribe model over blockchains,’’ IEEE Access,
vol. 7, pp. 41309–41314, 2019.

[6] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang, and
K.-K.-R. Choo, ‘‘An energy-efficient SDN controller architecture for IoT
networks with blockchain-based security,’’ IEEE Trans. Services Comput.,
early access, Jan. 15, 2020, doi: 10.1109/TSC.2020.2966970.

[7] A. Wang, Z. Zha, Y. Guo, and S. Chen, ‘‘Software-defined network-
ing enhanced edge computing: A network-centric survey,’’ Proc. IEEE,
vol. 107, no. 8, pp. 1500–1519, Aug. 2019.

[8] S. Bera, S. Misra, and A. V. Vasilakos, ‘‘Software-defined networking
for Internet of Things: A survey,’’ IEEE Internet Things J., vol. 4, no. 6,
pp. 1994–2008, Dec. 2017.

[9] K. Smida, H. Tounsi, M. Frikha, and Y.-Q. Song, ‘‘Software defined
Internet of Vehicles: A survey from QoS and scalability perspectives,’’
in Proc. 15th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC),
Jun. 2019, pp. 1349–1354.

[10] K. Kalkan and S. Zeadally, ‘‘Securing Internet of Things with software
defined networking,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 186–192,
Sep. 2018.

[11] I. Farris, T. Taleb, Y. Khettab, and J. Song, ‘‘A survey on emerging SDN
and NFV security mechanisms for IoT systems,’’ IEEE Commun. Surveys
Tuts., vol. 21, no. 1, pp. 812–837, 1st Quart., 2019.

[12] S. Balasubramanian, D. Ghosal, K. N. B. Sharath, E. Pouyoul, A. Sim,
K.Wu, and B. Tierney, ‘‘Auto-tuned publisher in a pub/sub system: Design
and performance evaluation,’’ in Proc. IEEE Int. Conf. Autonomic Comput.
(ICAC), Sep. 2018, pp. 21–30.

[13] S. Nishio, D. Amagata, and T. Hara, ‘‘Lamps: Location-aware moving top-
K pub/sub,’’ IEEE Trans. Knowl. Data Eng., early access, Mar. 19, 2020,
doi: 10.1109/TKDE.2020.2979176.

[14] P. F. Moraes and J. S. B. Martins, ‘‘A pub/sub SDN-integrated framework
for IoT traffic orchestration,’’ in Proc. 3rd Int. Conf. Future Netw. Distrib.
Syst. (ICFNDS), 2019, pp. 1–9.

[15] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Durr, T. Kohler, and
K. Rothermel, ‘‘High performance publish/subscribe middleware in
software-defined networks,’’ IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1501–1516, Jun. 2017.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[17] R. Narisetty, L. Dane, A. Malishevskiy, D. Gurkan, S. Bailey, S. Narayan,
and S. Mysore, ‘‘OpenFlow configuration protocol: Implementation for
the of management plane,’’ in Proc. 2nd GENI Res. Educ. Exp. Workshop,
Mar. 2013, pp. 66–67.

[18] Y. Shi, Y. Zhang, H.-A. Jacobsen, L. Tang, G. Elliott, G. Zhang, X. Chen,
and J. Chen, ‘‘Using machine learning to provide reliable differentiated
services for IoT in SDN-like Publish/Subscribe middleware,’’ Sensors,
vol. 19, no. 6, p. 1449, 2019.

[19] Y. Zhang, H. Zhou, and J.-L. Chen, ‘‘Cross-layer access control in
publish/subscribe middleware over software-defined networks,’’ Comput.
Commun., vol. 134, pp. 1–13, Jan. 2019.

[20] K. Zhang and H.-A. Jacobsen, ‘‘SDN-like: The next generation
of pub/sub,’’ 2013, arXiv:1308.0056. [Online]. Available:
http://arxiv.org/abs/1308.0056

[21] Y. Shi, Y. Zhang, and J. Chen, ‘‘Cross-layer QoS enabled SDN-like pub-
lish/subscribe communication infrastructure for IoT,’’ China Commun.,
vol. 17, no. 3, pp. 149–167, 2020.

[22] P. D. Thanh, H. T. T. Binh, and T. B. Trung, ‘‘An efficient strategy for
using multifactorial optimization to solve the clustered shortest path tree
problem,’’ Int. J. Speech Technol., vol. 50, no. 4, pp. 1233–1258, Apr. 2020.

[23] T. Zaarour and E. Curry, ‘‘Adaptive filtering of visual content in distributed
publish/subscribe systems,’’ in Proc. IEEE 18th Int. Symp. Netw. Comput.
Appl. (NCA), Sep. 2019, pp. 1–5.

[24] M. Siebert, S. Ahmed, and G. Nemhauser, ‘‘A linear programming based
approach to the Steiner tree problem with a fixed number of terminals,’’
Networks, vol. 75, no. 2, pp. 124–136, Mar. 2020.

[25] C.-Y. Chen and S.-Y. Hsieh, ‘‘An efficient approximation algorithm for
the Steiner tree problem,’’ in Complexity and Approximation. Cham,
Switzerland: Springer, 2020, pp. 238–251.

[26] L. Kou, G. Markowsky, and L. Berman, ‘‘A fast algorithm for Steiner
trees,’’ Acta Inf., vol. 15, no. 2, pp. 141–145, 1981.

[27] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, ‘‘Constructing
scalable overlays for pub-sub with many topics,’’ in Proc. 26th Annu. ACM
Symp. Princ. Distrib. Comput. (PODC), 2007, pp. 109–118.

[28] C. Tsilopoulos, I. Gasparis, G. Xylomenos, and G. C. Polyzos, ‘‘Effi-
cient real-time information delivery in future Internet publish-subscribe
networks,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), 2013,
pp. 856–860.

[29] S. Akkermans, R. Bachiller, N. Matthys, W. Joosen, D. Hughes, and
M. Vucinic, ‘‘Towards efficient publish-subscribe middleware in the IoT
with IPv6 multicast,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2016,
pp. 1–6.

[30] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. T. Rowstron, ‘‘Scribe:
A large-scale and decentralized application-level multicast infrastructure,’’
IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1489–1499, Oct. 2002.

[31] B. Koldehofe, F. Dürr, M. A. Tariq, and K. Rothermel, ‘‘The power of
software-defined networking: Line-rate content-based routing using Open-
Flow,’’ in Proc. 7th Workshop Middleware Next Gener. Internet Comput.
(MW NG), 2012, p. 3.

[32] J. P. de Araujo, L. Arantes, E. P. Duarte, L. A. Rodrigues, and P. Sens,
‘‘VCube-PS: A causal broadcast topic-based publish/subscribe system,’’
J. Parallel Distrib. Comput., vol. 125, pp. 18–30, Mar. 2019.

[33] C. Borcea, Y. Polyakov, K. Rohloff, and G. Ryan, ‘‘PICADOR: End-to-
end encrypted Publish–Subscribe information distribution with proxy re-
encryption,’’ Future Gener. Comput. Syst., vol. 71, pp. 177–191, Jun. 2017.

[34] V. Setty, M. Van Steen, R. Vitenberg, and S. Voulgaris, ‘‘Poldercast: Fast,
robust, and scalable architecture for p2p topic-based pub/sub,’’ in Proc.
13th Int. Middleware Conf. New York, NY, USA: Springer-Verlag, 2012,
pp. 271–291.

[35] Z. Liao, S. Qian, J. Cao, Y. Cao, G. Xue, J. Yu, Y. Zhu, and M. Li, ‘‘PhSIH:
A lightweight parallelization of event matching in content-based pub/sub
systems,’’ in Proc. 48th Int. Conf. Parallel Process., Aug. 2019, pp. 1–10.

[36] H.-A. Jacobsen, A. Cheung, G. Li, B. Maniymaran, V. Muthusamy, and
R. S. Kazemzadeh, ‘‘The PADRES publish/subscribe system,’’ in Princi-
ples and Applications of Distributed Event-Based Systems. Hershey, PA,
USA: IGI Global, 2010, pp. 164–205.

[37] J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, ‘‘Flexpath: Type-based
Publish/Subscribe system for large-scale science analytics,’’ in Proc.
14th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2014,
pp. 246–255.

[38] M. Albano, L. L. Ferreira, L. M. Pinho, and A. R. Alkhawaja, ‘‘Message-
oriented middleware for smart grids,’’ Comput. Standards Interface,
vol. 38, pp. 133–143, Feb. 2015.

[39] X. J. Hong, H. S. Yang, and Y. H. Kim, ‘‘Performance analysis of RESTful
API and RabbitMQ for microservice Web application,’’ in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2018, pp. 257–259.

[40] P. Dobbelaere and K. S. Esmaili, ‘‘Kafka versus RabbitMQ: A comparative
study of two industry reference publish/subscribe implementations: Indus-
try paper,’’ in Proc. 11th ACM Int. Conf. Distrib. Event Syst. (DEBS), 2017,
pp. 227–238.

VOLUME 8, 2020 89755

http://dx.doi.org/10.1109/TSC.2020.2966970
http://dx.doi.org/10.1109/TKDE.2020.2979176

Y. Shi et al.: Topic-Oriented Bucket-Based Fast Multicast Routing

[41] Y. Lou, L. Chen, F. Ye, Y. Chen, and Z. Liu, ‘‘Research and implementa-
tion of an aquaculture monitoring system based on Flink, Mongodb and
Kafka,’’ in Proc. Int. Conf. Comput. Sci. Cham, Switzerland: Springer,
2019, pp. 648–657.

[42] P. Li, B. Luo, W. Zhu, and H. Xu, ‘‘Cluster-based distributed dynamic
cuckoo filter system for Redis,’’ Int. J. Parallel, Emergent Distrib. Syst.,
pp. 1–14, Apr. 2019, doi: 10.1080/17445760.2019.1599889.

[43] E. S. Pramukantoro, J. Ratna Wulandari, W. Yahya, and H. Nurwarsito,
‘‘A cluster message broker in IoT middleware using Ioredis,’’ in Proc. Int.
Conf. Sustain. Inf. Eng. Technol. (SIET), Nov. 2018, pp. 247–251.

[44] M. A. Tariq, B. Koldehofe, S. Bhowmik, and K. Rothermel, ‘‘PLEROMA:
A SDN-based high performance publish/subscribe middleware,’’ in Proc.
15th Int. Middleware Conf. (Middleware), 2014, pp. 217–228.

[45] A. Hakiri and A. Gokhale, ‘‘Data-centric publish/subscribe routing mid-
dleware for realizing proactive overlay software-defined networking,’’
in Proc. 10th ACM Int. Conf. Distrib. Event-based Syst. (DEBS), 2016,
pp. 246–257.

[46] Y. Wang, Y. Zhang, and J. Chen, ‘‘SDNPS: A load-balanced topic-based
Publish/Subscribe system in software-defined networking,’’ Appl. Sci.,
vol. 6, no. 4, p. 91, 2016.

[47] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander,
‘‘LIPSIN: Line speed publish/subscribe inter-networking,’’ ACM SIG-
COMM Comput. Commun. Rev., vol. 39, no. 4, pp. 195–206, Aug. 2009.

[48] H. T. T. Binh, P. D. Thanh, and T. B. Thang, ‘‘New approach to solving
the clustered shortest-path tree problem based on reducing the search
space of evolutionary algorithm,’’Knowl.-Based Syst., vol. 180, pp. 12–25,
Sep. 2019.

[49] M. A. Tariq, B. Koldehofe, and K. Rothermel, ‘‘Efficient content-based
routing with network topology inference,’’ in Proc. 7th ACM Int. Conf.
Distrib. Event-Based Syst. (DEBS), 2013, pp. 51–62.

[50] S. L. Hakimi, ‘‘Steiner’s problem in graphs and its implications,’’ Net-
works, vol. 1, no. 2, pp. 113–133, 1971.

[51] A. V. Aho, M. R. Garey, and F. K. Hwang, ‘‘Rectilinear Steiner trees:
Efficient special-case algorithms,’’ Networks, vol. 7, no. 1, pp. 37–58,
1977.

[52] H. Takashami andA.Matsuyama, ‘‘An approximate solution for the Steiner
tree problem in graphs,’’ Int. J. Math Educ. Sci. Technol, vol. 14, no. 1,
pp. 15–23, 1983.

[53] Y. Wenguo and G. Tiande, ‘‘An ant colony optimization algorithms for the
minimum steiner tree problem and its convergence proof,’’ Acta Mathe-
maticae Applicatae Sinica, vol. 29, no. 2, pp. 352–361, 2006.

[54] K. Mehlhorn, ‘‘A faster approximation algorithm for the Steiner problem
in graphs,’’ Inf. Process. Lett., vol. 27, no. 3, pp. 125–128, Mar. 1988.

[55] M. Hungyo and M. Pandey, ‘‘SDN based implementation of pub-
lish/subscribe paradigm using OpenFlow multicast,’’ in Proc. IEEE Int.
Conf. Adv. Netw. Telecommun. Syst. (ANTS), Nov. 2016, pp. 1–6.

[56] L.-H. Huang, H.-J. Hung, C.-C. Lin, and D.-N. Yang, ‘‘Scalable Steiner
tree for multicast communications in software-defined networking,’’ 2014,
arXiv:1404.3454. [Online]. Available: http://arxiv.org/abs/1404.3454

[57] S. Nakamura, L. Ogiela, T. Enokido, and M. Takizawa, ‘‘An information
flow control model in a topic-based publish/subscribe system,’’ J. High
Speed Netw., vol. 24, no. 3, pp. 243–257, Jun. 2018.

[58] R. Project Team. RYU SDN Framework, Release 1.0. Accessed:
Jun. 11, 2019. [Online]. Available: https://osrg.github.io/ryu-
book/en/Ryubook.pdf

[59] B. Pfaff, B. Lantz, B. Heller, C. Barker, and C. Beckmann, ‘‘Openflow
switch specification (version 1.3.0),’’ Open Netw. Found., Menlo Park,
CA, USA, Tech. Rep. ONF TS-006, Jun. 2012. [Online]. Available:
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-
spec-v1.3.0.pdf

[60] B. Rashma and G. Poornima, ‘‘Performance evaluation of multi con-
troller software defined network architecture on mininet,’’ in Proc. Int.
Conf. Remote Eng. Virtual Instrum. Cham, Switzerland: Springer, 2019,
pp. 442–455.

YULONG SHI is currently pursuing the Ph.D.
degree with the State Key Laboratory of Network-
ing and Switching Technology, Beijing Univer-
sity of Posts and Telecommunications (BUPT),
Beijing, China. He was a Visiting Ph.D. Student
with the Middleware Systems Research Group,
University of Toronto, Toronto, ON, Canada,
from August 2017 to August 2018. His research
interests include service computing, the Inter-
net of Things (IoT), SDN, and publish/subscribe
middleware.

JONATHON WONG received the M.A.Sc. and
B.A.Sc. degrees from the Department of Elec-
trical and Computer Engineering, University of
Toronto, Toronto, ON, Canada, in 2018 and 2016,
respectively. He conducted research on efficient
scaling techniques of microservice architectures in
cloud data centres, distributed systems, and pub-
lish/subscribe systems with the Middleware Sys-
tems Research Group.

HANS-ARNO JACOBSEN (Fellow, IEEE)
received the Ph.D. degree from Humboldt Uni-
versity of Berlin, Berlin, Germany, in 1999. He is
currently a Professor of computer engineering and
computer science and directs the activities of the
Middleware Systems Research Group, University
of Toronto, Toronto, ON, Canada. He engaged
in Postdoctoral Research at Inria, Paris, France,
before moving to the University of Toronto,
in 2001. He conducts research at the intersection

of distributed systems and data management, with a particular focus on
middleware systems, event processing, and cyber-physical systems. In 2011,
he received the Alexander vonHumboldt-Professorship to engage in research
at the Technical University of Munich, Munich, Germany.

YANG ZHANG received the Ph.D. degree in
computer applied technology from the Insti-
tute of Software, Chinese Academy of Sciences,
in 2007. He is currently an Associate Professor
with the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunications, Beijing, China.
His research interests include service-oriented
computing, the Internet of Things (IoT), and ser-
vice security and privacy. He leads a research team

on the Theoretic Foundation of EDSOA for IoT Services (National Natural
Science Foundation of China under Grant 61372115).

JUNLIANG CHEN graduated from the Depart-
ment of Telecommunications, Shanghai Jiao Tong
University, in 1955. He received the Doctor of
Engineering degree from the Moscow Institute
of Electrical Telecommunications, former Soviet
Union, in 1961. He was a Visiting Scholar with
the University of California at Berkeley and also at
Los Angeles, from 1979 to 1981. He is currently a
Professor and the Academic Leader with the State
Key Laboratory of Networking and Switching

Technology, Beijing University of Posts and Telecommunications, Beijing,
China. His current research interests include service-oriented computing and
service generation systems. He is a member of the Chinese Academy of
Science and the Chinese Academy of Engineering.

89756 VOLUME 8, 2020

http://dx.doi.org/10.1080/17445760.2019.1599889

	INTRODUCTION
	SHORTEST PATH TREE (SPT)
	MINIMUM SPANNING TREE (MST)
	STEINER TREE

	RELATED WORK
	SYSTEM DESIGN
	SDN-LIKE PUBLISH/SUBSCRIBE MIDDLEWARE ARCHITECTURE
	SDN-LIKE PUBLISH/SUBSCRIBE IMPLEMENTATION FRAMEWORK
	TOPIC DESIGN
	TOPIC ENCODING
	TOPIC MATCHING

	TOPIC-ORIENTED STEINER TREE MULTICAST ROUTING
	PROBLEM STATEMENT
	SOLVING MCMN-TC-SDN

	TOPIC-ORIENTED BUCKET-BASED MULTICAST FORWARDING
	OpenFlow GROUP TABLE
	TOPIC-ORIENTED BUCKET-BASED MULTICAST FORWARDING ALGORITHM

	EXPERIMENTAL EVALUATION
	STEINER TREE MULTICAST ROUTING ALGORITHM
	PUBLISH/SUBSCRIBE TOPOLOGY CONSTRUCTION
	STEINER TREE CONSTRUCTION TIME OVERHEAD
	MULTICAST TREE COST COMPARISON
	MULTICAST TREE CONSTRUCTION TIME COMPARISON

	BUCKET-BASED MULTICAST FORWARDING ALGORITHM
	END-TO-END DELAY
	FLOW TABLE SIZE

	CONCLUSION
	REFERENCES
	Biographies
	YULONG SHI
	JONATHON WONG
	HANS-ARNO JACOBSEN
	YANG ZHANG
	JUNLIANG CHEN

