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ABSTRACT In this paper, the task-related fMRI problem is treated in its matrix factorization form, focusing
on the Dictionary Learning (DL) approach. The proposed method allows the incorporation of a priori knowl-
edge that is associated with both the experimental design and available brain atlases. Moreover, it can cope
efficiently with uncertainties in the modeling of the hemodynamic response function. In addition, the method
bypasses one of the major drawbacks of the DL methods; namely, the selection of the sparsity-related
regularization parameters. Under the proposed formulation, the associated regularization parameters bear
a direct relation to the number of the activated voxels for each one of the sources’ spatial maps. This natural
interpretation facilitates fine-tuning of the related parameters and allows for exploiting external information
from brain atlases. The proposed method is evaluated against several other popular techniques, including the
classical General Linear Model (GLM). The obtained performance gains are quantitatively demonstrated via
a novel realistic synthetic fMRI dataset as well as real data from a challenging experimental design.

INDEX TERMS Dictionary learning, fMRI, semi-blind, sparsity, weighted norms.

I. INTRODUCTION
To perform actions/tasks, the brain relies on the simultane-
ous activation of many Functional Brain Networks (FBN),
which are engaged in appropriate interaction to effectively
execute the tasks. Such networks, potentially distributed
over the whole brain, are defined as segregated regions
exhibiting high functional connectivity. Connectivity is quan-
tified via the underlying correlations among the associ-
ated activation/deactivation time patterns, referred to as time
courses [1]. Functional Magnetic Resonance Imaging (fMRI)
is the dominant data acquisition technique for the detection
and study of FBNs [2]. fMRI measures the Blood Oxy-
genation Level-Dependent (BOLD) contrast [3], which tracks
the evoked hemodynamic response of the brain to the cor-
responding neuronal activity. This process can be modeled
as a convolution between the actual neuronal activation and
a person-dependent impulse response function, called the
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Hemodynamic Response Function (HRF). The fMRI cap-
tures 3D images with a typical resolution of 64 × 64 × 32
voxels per image, acquired in sequences of 200 to 300 images
per session (usually, one image every one or two seconds).
The obtained fMRI measurements associated with each voxel
comprise amixture of the time courses corresponding to those
FBNs that are active at the specific voxel. Moreover, beyond
the brain-induced sources, additional machine-induced inter-
fering sources are also present that contribute to the measured
mixture. The ultimate goal of fMRI analysis is to detect the
set of activated voxels, referred to as spatial map, in which
each brain source of interest manifests itself in revealing the
corresponding FBN.

In the case of block- or event-related experimental designs,
i.e., when the subject is presented with a fixed set of con-
ditions, the time courses associated with these experimen-
tal conditions are usually estimated as the convolution of
the pre-defined stimuli of each condition with the canoni-
cal Hemodynamic Response Function (cHRF) [4]. Hereafter,
such time courses are referred to as task-related time courses.
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A prominent approach for fMRI data analysis is via Blind
Source Separation (BSS), which is usually performed with
the aid of appropriate matrix factorization schemes [5].
In general, BSS methods aim to discover the different
sources from the fMRI data without the necessity of any
prior information regarding the experimental task. This fea-
ture makes BSS-based methods the dominant tool for the
analysis of resting-state fMRI data, which lack any prior
external task-related information. Independent Component
Analysis (ICA) [6]–[8], and Dictionary Learning (DL) are
the most popular paths in this direction. A drawback of ICA
is the underlying independence assumption, which can be
violated in fMRI, especially in the presence of high spa-
tial overlapping, [9]–[11]. Unlike ICA, DL relies on spar-
sity that is a reasonable assumption for the neuronal brain
activity [12]–[15].

However, DL approaches are not without shortcomings.
The tuning of the associated regularization parameters is
not easy in practice, and it is performed via cross-validation
techniques; however, in real experiments, this is not possible
due to the lack of ground truth data. Therefore, the only
way to fine-tune parameters is via visual inspection of
the results, a process that requires the subjective judgment
of the user, which can be inconsistent and susceptible to
errors. This may hamper the adoption of DL approaches in
practice.

Alternatively, another candidate family of BSS for fMRI
data analysis is the Non-negativeMatrix Factorization (NMF)
approach [16]–[18]. Unlike the aforementioned approaches,
NMF methods impose a non-negativity constraint over the
matrix factorization. However, the non-negativity constraint
may not be valid in practice [19]. In the fMRI context, such a
constraint would aim at eliminating the negative contribution
of the BOLD signal response, leaving only the positive activa-
tions [16]; this is an undesired effect, taking in consideration
the true nature of the hemodynamic response [3], [20]. Fur-
thermore, NMF algorithms often require tunning of several
regularization parameters, sharing the same limitations with
standard DL techniques.

Conventional analysis of fMRI data relies on the General
Linear Model (GLM), which assumes the prior availability
of the task-related time courses [21]. This approach suffers
from a critical limitation: It assumes that the HRF is known
and fixed, whereas in reality the HRF may vary across sub-
jects [22], as well as among brain locations [20]. In contrast,
BSSmethodsmake no assumption regarding theHRF and can
reveal other brain-induced sources beyond the task-related
ones. For example, they inherentlymodel interfering artifacts,
such as scanner-induced artifacts, uncorrected head-motion
residuals, or other unmodeled physiological signals that may
obscure the brain activity of interest.

Despite their advantages, BSS methods share a major
drawback compared to GLM: when two or more task-related
sources manifest themselves in highly overlapping brain
regions, ICA (to a larger extent) and DL (to a smaller extent)
can fail to discriminate them [23]. From a neuroscience

perspective, the presence of overlaps between FBNs is fre-
quent in most of the typical experimental designs of inter-
est. More specifically, several research groups have reported
that conventional task-related FBNs such as motor, language,
emotion, or auditory, exhibit considerable overlap with each
other [24]–[26].

In an attempt to overcome the aforementioned fundamen-
tal drawbacks of the BSS methods against GLM, alterna-
tive approaches have been proposed [27], [28]. In the ICA
case, the most relevant is to impose task-related information.
Collectively, such methods are referred to as constrained
ICA [29]–[34]. Although these often lead to enhanced per-
formance, compared with their fully blind counterparts [33],
they suffer from a critical limitation: the embedded con-
straint, e.g., the imposed task-related time courses, must
not violate the independence assumption. This requirement
poses stringent constraints either on the total number of
allowable time sequences, e.g., [35], or on the nature of the
imposed time courses, which need to be independent of each
other [30]–[37]. Both restrictions heavily limit the applicabil-
ity of constrained ICA in fMRI, since the most common case
is to have experimental designs that comprise more than two
BOLD sequences.

Furthermore, in contrast to many unconstrained ICA algo-
rithms, which require a reduced number of relatively easy
to tune parameters, all constrained ICA algorithms require
extensive regularization parameter fine-tuning [34], based
on cross-validation. Even the most recent constrained ICA
technique, referred to as CSTICA [34], involves three reg-
ularization parameters and, as it is pointed out by the
authors, the algorithm needs further improvement to ‘‘enable
these parameters not to be determined by the experiments’’.
Besides constrained ICA, there are also NMF algorithms that
allow incorporation of external information [17], [18]; yet,
they suffer from similar drawbacks that limit their applicabil-
ity in practice.

Recently, a DL method called Supervised Dictionary
Learning (SDL) [38] was introduced, which allows the incor-
poration of external information from the task-related time
courses with a rationale similar to GLM. As a result, SDL is
greatly aided in the case of highly overlapping spatial maps
and attains performance similar to that of GLM. However,
SDL inherits from GLM two primary drawbacks: a) it builds
upon the cHRF, which is fixed and, inevitably, different from
the true one, and b) it adopts a regularized formulation of the
DL, which inherits the difficulties associated with the tuning
of the corresponding regularization parameter. In Section IV,
Table 2, we provide a thorough comparison among all com-
petitive approaches and their characteristics of interest in the
fMRI case.

In this paper, a novel DL formulation of the fMRI BSS
problem, referred to as Information Assisted Dictionary
Learning (IADL) is proposed, which, among other merits,
alleviates the two aforementioned critical disadvantages of
SDL as well as those of the constrained ICA approaches.
More specifically:
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• A new sparsity constraint is adopted, which bears a
physical interpretation that naturally complies with the
segregated nature of FBNs. Unlike standard approaches,
the proposed sparsity constraint establishes a bridge
between the optimization parameters and the expected
number of activated voxels of each source.

• The proposed sparsity constraint also offers the flexi-
bility of simultaneously dealing with sparse and dense
sources. Indeed, in real fMRI, in addition to sparse
sources, dense sources may appear, usually related to
physiological or machine-induced artifacts.

• Anew semi-blindDL approach is proposed that incorpo-
rates task-related information. In contrast to the standard
approaches, where any task-related information is fully
governed by the canonical HRF, our novel formulation
incorporates this information in a relaxed way, allowing
the imposed time course to adjust to the subject (or sub-
jects) at hand. Thanks to this relaxation, we implicitly
accommodate discrepancies between the HRF and the
cHRF, and we cope with distortions and inaccuracies
regarding the convolutional model, e.g., due to nonlinear
effects. In case no prior task-related information is avail-
able (e.g., resting-state fMRI data), the proposedmethod
still benefits from the newly adopted sparsity constraint.

• A new, highly realistic synthetic dataset, is constructed,
that allows conducting a thorough performance evalua-
tion of the new method against state-of-the-art ICA- and
DL-based techniques.

Notation: A lower case letter, x, denotes a scalar, a bold
capital letter, X, denotes a matrix, and a bold lower case
letter, x, denotes a vector with its ith component denoted as
xi. The ith row and the ith column of a matrix, X ∈ RM×N ,
are represented as xi ∈ R1×N and xi ∈ RM×1, respectively.
Moreover, xij denotes the element ‘‘located’’ at row i and
column j of the matrix X.

II. NOVEL DL CONSTRAINTS TAILORED
TO TASK-RELATED fMRI
A. PRELIMINARIES ON DL-BASED FMRI ANALYSIS
The data collected during an fMRI experiment form a
two-dimensional data matrix as follows: Each of the acquired
3D images is unfolded and stored into a vector, x =
[x1, x2, . . . , xN ] ∈ R1×N , where N is the total number of
voxels per image. Such vectors correspond to the sequence
of, say, T successively obtained images and they are stacked
as rows to form the data matrix X ∈ RT×N . Note that,
in practice, before the formation of the data matrix,X, several
standardized preprocessing steps are performed to account
for many detrimental effects related to the fMRI image acqui-
sition process, such as slice-timing correction, head motion,
realignment, normalization, etc.

From a mathematical point of view, the source separation
problem can be described as a matrix factorization task of the
data matrix, i.e.,

X ≈ DS, (1)

where, following the dictionary learning jargon, D ∈ RT×K

is the dictionary matrix, whose columns represent different
time courses, S ∈ RK×N is the coefficient matrix, whose
rows are the spatial maps associated with the corresponding
time courses, andK is the number of sources. In general, such
a matrix factorization can be obtained via the solution of a
constrained optimization task:

(D̂, Ŝ) = argmin
D,S

‖X− DS‖2F s.t.
D ∈ D
S ∈ L

, (2)

where D, L are two sets of admissible matrices, defined by
an adopted set of appropriately imposed constraints and ‖·‖F
denotes the Frobenius norm of a matrix.

The concept of signal sparsity refers to discrete signals that
involve a sufficiently large number of zero values. The typical
way to quantify sparsity is via the `0-norm: given an arbitrary
vector, x ∈ RN , the `0-norm (which, strictly speaking, is not a
norm in its strict mathematical definition [5]) is defined as the
number of non-zero components of a vector. In standard DL
methods, the sparsity constraints are usually implemented in
two ways: either each column of S is separately constrained
to be sparse, e.g., ‖si‖0 6 γi, where γi is the maximum
number of the non-zero values of the ith column of S, or the
full coefficient matrix, S, is constrained to involve, at most,
γ̂ non-zeros [38]–[40].

The proposed method introduces new constraints on the
spatial maps (i.e., on each row of the coefficient matrix, S)
and time courses (i.e., on the dictionary, D), the design of
which serves the specific needs of the task-related fMRI data
analysis. These proposed constraints are discussed next.

B. INFORMATION-BEARING SPARSITY CONSTRAINTS
ON THE SPATIAL MAPS
In the fMRI framework, sparsity appears to be a natural
assumption for the segregated nature of the spatial maps of
the FBNs. In other words, each row, say si, of the coefficient
matrix, S, should have non-zero values only at entries that
correspond to voxels activated by the corresponding time
course di. The smaller the area that a specific FBNoccupies in
the brain, the sparser the corresponding row of the coefficient
matrix should be. At this point it is worth recalling that none
of the DL methods applied in fMRI so far impose sparsity
row-wise. However, imposing sparsity column-wise assumes
that only a few sources are active in each voxel. Although
this assumption is generally true, this piece of information
is voxel-dependent, and it is hard to accommodate a suitable
regularization parameter that simultaneouslyworks optimally
for all of the thousands of columns. On the other hand,
imposing sparsity in the full coefficient matrix may be easier
to handle, but it is a general constraint that fails to exploit
relevant information regarding the segregated nature of each
FBN.

In this paper, to the best of our knowledge, it is the first
time that the DL framework is extended to allow sparsity pro-
motion along rows of the coefficient matrix. Looking at (2),
sparsity in the rows of the coefficient matrix can be imposed
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using the following admissible set of constraints:

L0 =

{
S ∈ RK×N

|

∥∥∥si∥∥∥
0
6 φi, i = 1, 2, . . . ,K

}
, (3)

where φi is a user-defined parameter, which denotes the max-
imum number of non-zero elements of the ith row of S. In the
fMRI case, the parameterφi has a clear physical interpretation
and it corresponds to the total number of voxels that are active
due to the ith source. This corresponds to the number of voxels
that the corresponding FBN occupies, an estimate of which
can be obtained from brain atlases.

It is well known that the `0-norm constraint results in an
NP-hard optimization, and it is usually relaxed to its closest
convex relative, namely, the `1-norm [41]. The corresponding
constrained set then becomes:

L1 =

{
S ∈ RK×N

|

∥∥∥si∥∥∥
1
6 λi, i = 1, 2, . . . ,K

}
, (4)

where λi are new user-defined parameters to implicitly con-
trol the sparsity of the rows of the coefficient matrix. In con-
trast to the φi parameters, the new parameters, λi, are not
directly related to the sparsity level. This makes them hard to
tune in practice, unless cross-validation is an option, which is
not the case in fMRI.

An additional novelty of IADL that allows us to overcome
this obstacle is the application across rows of a weighted
version of the `1-norm. In particular, given an arbitrary vector
x ∈ RN , the weighted `1-norm is defined as:

‖x‖1,w =
N∑
i=1

wi |xi| , (5)

where w is a real positive vector given by

wi =
1

|xi| + ε
i = 1, 2, . . . ,N , (6)

and ε ∈ R+ is a real positive number, which is introduced in
order to avoid division by zero, providing enhanced numeri-
cal stability, [5], [42], [43], and can be set directly to a small
value, e.g. 10−6. Accordingly, the row-sparsity constraint
now becomes:

Lw =

{
S ∈ RK×N

|

∥∥∥si∥∥∥
1,wi

6 φi i = 1, 2, . . . ,K
}
, (7)

wherewi is the vector of weights that correspond to the vector
si computed as in (6). The key point is that, similar to the `0
case, the constraint is imposed via the sparsity level φi and,
consequently, φi can now be used as an upper bound. This
is theoretically substantiated, since it has been shown that
the weighted `1-norm is bounded by the corresponding `0-
norm [43], as discussed in Section VI of the supplementary
material. Moreover, as shown in Section VI-C of the supple-
mentary material, for a given w, Lw remains convex.
Hereafter, an equivalent but conceptually easier to handle

sparsity-related measure that is independent of the length of
the vector, known as sparsity percentage, will be used inter-
changeably with sparsity level. Sparsity percentage expresses

the proportion of zeros within a vector, x, and it is given by

θ =

(
1−

φ

N

)
× 100, (8)

where φ = ‖x‖0, and N is the total number of elements.

C. TASK-RELATED DICTIONARY SOFT CONSTRAINTS
The enhanced discriminative power of the GLM over
BSS methods comes from the fact that, in the GLM,
the task-related time courses are explicitly provided to GLM
modeling via the estimated BOLD sequences [2]. Such infor-
mation is left unexploited in the BSS framework. Hence,
it seems reasonable to also incorporate this information
into the BSS methods, leading naturally to a semi-blind
formulation.

As stated in the introduction, in contrast to ICA techniques,
DL-based methods can easily incorporate, in principle, any
constraint in the time courses, since sparsity is not affected.
This fact has been exploited in SDL through splitting the
dictionary into two parts:

D = [1,DF ] ∈ RT×K , (9)

where the first part, 1 ∈ RT×M , comprises fixed columns,
which are set equal to the imposed task-related time courses,
δ1, δ2, . . . , δM . The second part, DF ∈ RT×(K−M ), is left
to vary, and is learned during the DL optimization phase.
Nevertheless, SDL inherits the same drawback associated
with the GLM: the constrained atoms of the fixed dictionary
(columns of the matrix 1) lead to improvement only if the
imposed task-related time courses are sufficiently accurate.
Otherwise, the task-related time courses will be mis-modeled
and their contribution can introduce detrimental effects, lead-
ing to inaccurate results.

In this paper, we relax the strong equality requirement of
SDL to a looser similarity-based distance-measuring norm
constraint. Then, if part of the a priori information is inac-
curate, e.g., the assumed HRF differs from the true one,
the method can efficiently adjust the constrained atoms since
they are not forced to remain fixed and equal to the prese-
lected time courses. Moreover, the proposed modeling also
accounts for multiple factors that potentially alter the func-
tional shape of the task-related time courses across subjects
and brain regions, such as vascular differences, partial vol-
ume imaging, brain activations, [22], hematocrit concentra-
tions [44], lipid ingestion [45], and even nonlinear effects due
to short interstimulus intervals [46].

Mathematically, the starting point is to split the dictionary
into two parts:

D = [DC ,DF ] ∈ RT×K , (10)

where, in contrast to SDL, the part DC ∈ RT×M has columns
which are constrained to be similar—rather than equal—to
the imposed task-related time courses. Then, we can define a
new convex set of admissible dictionaries:

Dδ =

{
D ∈ RT×K

∣∣∣∣ ‖di − δi‖22 6 cδ i=1,...,M

‖di‖22 6 cd i=M+1,...,K

}
, (11)
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where ‖ · ‖2 denotes the Euclidean norm, di is the ith col-
umn of the dictionary D and δi is the ith a priori selected
task-related time course. The constant cδ is a user-defined
parameter, which controls the degree of similarity between
the constrained atoms and the imposed time courses; essen-
tially, this reflects our confidence on how accurate the cHRF
is for the subject under consideration. In particular, as it
is further explained in Section I-C of the supplementary
material, cδ accounts for the natural variability the HRFs are
expected to have among subjects, giving rise to consistent
strategies for its tuning. Moreover, the free atoms have a
bounded norm controlled by cd , another user-defined param-
eter to avoid ill-conditioned phenomena. This can be fixed
to 1 [47].

III. THE IADL ALGORITHM
In this section, we present an implementation of IADL that
solves (2), incorporating the two proposed sets of constraints,
namely, D = Dδ and L = Lw.

The simultaneous minimization for D and S is challenging
due to both the non-convexity of the task in (2) and the
potentially large size of the data matrix. The size of the
latter is restrictive for optimization frameworks, which are
computationally demanding. Therefore, we adopt the Block
Majorized Minimization (BMM) rationale, which provides a
robust framework for the solution of this type of optimization
tasks, e.g., [48]. In this way, the BMM scheme simplifies
the optimization task by adopting a two-step alternating min-
imization, under certain assumptions [49]. For simplicity,
we algorithmically describe the proposed DL approach next,
and the full mathematical derivation and convergence proof
are both analytically provided in detail in Section VI of the
supplementary material.

Put succinctly, the proposed DL algorithm follows the
standard scheme of classical DL methods, which iteratively
alternate between a sparse coding step and a dictionary update
step. Concerning the sparse coding step, the corresponding
recovery mechanism is a soft thresholding operator similar to
the one that corresponds to the standard `1-norm constraint,
as explained in [43]. In this study, we used an efficient imple-
mentation of the algorithm of the weighted `1-norm projector
based on [50].

In Algorithm 1, we present the pseudo-code for solving (2),
given the number of sources, K , an arbitrary set of estimates,
S[0],D[0], M estimates of the task-related time courses,
δ1, δ2, . . . , δM , grouped by columns in thematrix1, the spar-
sity for each row, φ = [φ1, φ2, . . . , φK ]T , and the number of
iterations, Iter . Observe that the free parameters of the algo-
rithm that need to be tuned are: a) the number of sources, K ,
b) the maximum sparsity per row φi, c) the radius parameter
cδ and d) the parameters cd and ε involved in equations (11)
and (6), respectively. The last two can be directly fixed to
1 and a small value, say 10−6, respectively, and their choice
is not crtical. The rest of the parameters can be straightfor-
wardly tuned based on physical arguments, which can easily

Algorithm 1 Information Assisted DL

input : K , S[0], D[0], 1, φ, Iter
1 B = D[0];
2 for t = 0 to Iter do
3 cS equal to (or larger than)

∥∥BTB∥∥;
4 A = 1

cS

[
BTX+

(
cSIK − BTB

)
S[t]
]
;

5 W← wij = 1
|aij|+ε

with (ε>0);

6 for i = 1 to K do
7 if

∥∥ai∥∥1,wi > φi then
8 ai = PB`i [wi,φi](a

i);
9 end
10 end
11 S[t+1] = A;

12 cD equal to (or larger than)
∥∥AAT

∥∥;
13 B = 1

cD

[
XAT

+ D[t]
(
cDIK − AAT

)]
;

14 for i = 1 to M do
15 if ‖bi − δi‖2 > cδ then

16 end

17 bi =
c
1
2
δ (bi−δi)
‖bi−δi‖

+ δi;
18 end
19 for i = M + 1 to K do
20 if ‖bi‖2 > cd then

21 bi =
c
1
2
d
‖bi‖

bi;
22 end
23 end
24 D[t+1]

= B;
25 end

output: D = D[t+1], S = S[t+1]

26 PB`1 [wi,φi]
is the projection operator over the weighted `1-norm ball,

B`1 [w
i, φi] = {x ∈ RN | ‖x‖1,wi 6 φi}, of weights wi and radius φi.

This projection operator onto the weighted `1-norm ball is derived in

closed form in [43].

be drawn from the fMRI study at hand. The algorithm is
insensitive to the overestimation of K , which renders this
parameter easily tunable (see discussion in Section I.A and
Section V.C of the supplementary material). Also, the max-
imum sparsity per row is readily obtained from published
brain atlases (see Section I.B and Section II in the supple-
mentary material) and cδ is easily tuned by considering the
task-related time courses (see Section I.C in the supplemen-
tary material); the latter results from established HRF models
and their expected variability. Furthermore, we provide a
Matlab implementation for IADL-based analysis, which is
freely available in the IADL’s capsule1 within the CodeOcean
platform. It comprises automatic initialization and parameter
self-tuning for cδ . Accordingly, its default parameter setup

1IADL’s capsule: https://codeocean.com/capsule/5510515/tree
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TABLE 1. Sparsity parameter θ used for IADL.

can be adopted out-of-the-box with any task-related fMRI
dataset. At the same time, a more thoughtful specification
of the parameters, e.g., incorporating the expected sparsity
level of the task-related FBNs at hand, can further improve
results.

IV. PERFORMANCE COMPARISON
A. PERFORMANCE RESULTS BASED ON SYNTHETIC DATA
In Section III of the supplementary material, a novel synthetic
data set is presented. This highly realistic dataset emulates
demanding experimental tasks, where some of the spatial
maps substantially overlap each other. Therefore, this syn-
thetic dataset allows us to effectively evaluate the perfor-
mance of the proposed DL method, in comparison with the
state-of-the-art of blind and semi-blind approaches, under
more realistic settings.

The adopted performance measure, r , is associated with
Pearson’s correlation coefficient among the estimated and the
true sources, and is described in detail in Section IV.A of the
supplementary material.

The aim of this performance study is twofold: First,
to study the effectiveness of the proposed approach in deal-
ing with HRF mis-modeling; and second, to evaluate the
decomposition performance of the algorithm with respect to
the set of sources of interest. As benchmarks, the following

FIGURE 1. Visual representation of the synthetic spatial maps and their
corresponding time courses generated with the canonical HRF. The
intensity of the sources is normalized to facilitate visual inspection.

competitive algorithms are considered: a) McICA,2 which
is a constrained ICA algorithm [35] that allows assisting a
source using task-related time courses, b) SDL, c) an Online
DL algorithm (ODL) [51], which is included in SPAMS3

toolbox, and d) three ICA algorithms, namely, Infomax4 [52],
a widely used ICA algorithm within the fMRI commu-
nity, JADE5 [53], which we used as an initialization point
for all DL algorithms, and CanICA6 [54], a state-of-the-art
ICA-based algorithm for fMRI data analysis.

To emulate HRF variability, we generated six different
‘‘subjects’’, through six different, yet realistic, synthetic
HRFs. The selected HRFs are depicted in Fig. 2. Six differ-
ent datasets were built, one for each subject, with the only
difference among them being the HRF used to generate the
brain-induced time courses. Sources 1, 11 and 14 (see Fig. 1)

2Morphologically constrained ICA is a constrained ICA algorithm
that subtracts one particular signal of interest using given a priori
information. In this paper we utilized the open implementation from
http://dsp.ucsd.edu/ zhilin/Software.html

3The SPAMS (SPArse Modeling Software) is an open-source optimiza-
tion toolbox for solving various sparse estimation problems. http://spams-
devel.gforge.inria.fr

4Infomax is an algorithm for ICA relying on maximum likelihood. In this
paper, we used an open-source implementation of this algorithm from the
DTU Toolbox: http://cogsys.imm.dtu.dk/toolbox/menu.html

5The Joint Approximate Diagonalization of Eigenmatrices (JADE)
is an algorithm for ICA that separates observed mixed signals into
latent source signals by exploiting fourth-order moments. In this
paper, we used the open-source implementation from J.F. Cardoso:
http://mikexcohen.com/lecturelets/eigen/jader.m

6Canonical ICA (CanICA) is an ICA-based algorithm specifically
designed for fMRI group analysis by identifying the common subspace to
all the subjects containing the main acitvation patterns [54]. In this study,
we utilized the CanICA available from the package Machine learning for
Neuro-Imaging in Python (nilearn) https://nilearn.github.io/
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FIGURE 2. Graphic representation of 100 HRFs (gray) randomly generated
from the two gamma distributions model. The red curve represents the
canonical HRF (cHRF) and the rest of the colored HFRs stands for the five
selected alternatives.

were chosen to be the task-related time courses, since they
correspond to realistic scenarios that are often encountered in
practice: Source 1 is easy to identify, since it barely spatially
overlaps with other sources and corresponds to a block-event
experimental design. Sources 11 and 14 are more challeng-
ing and exhibit notable overlap, emulating an event-related
task (intervals shorter than 5 seconds, see Fig. 1). Conse-
quently, we generated the imposed task-related time courses
δ1, δ2 and δ3, convolving the experimental conditions
related to these sources with the cHRF, according to the
standard procedure that is followed in GLM/SPM-based
analysis.

Concerning the parametrization of the algorithms, K was
overestimated by 20%, i.e., K = 25 rather than 20. This is
typical in realistic scenarios since it is not possible to know
the exact number of sources. All benchmark methods require
an estimate of the number of sources. Thus, the same value
was provided to all the algorithms. Moreover, as discussed in
Section III, IADL requires to set up three extra quantities: a)
the maximum sparsity for each task-related sources, b) the set
of maximum sparsity values the rest of the sources can take
and c) the parameter cδ .
For (a), the imposed sparsity percentages for the

task-related source 1, 11 and 14 are 95%, 90% and 94%
respectively, which correspond to a slight overestimation
compared to the true sparsity values. Sparsity set-up informa-
tion related to this experiment is also listed in Table 1. In par-
ticular, the true sparsities of the task-related time courses are
shown in Table 1.b and the corresponding imposed sparsities
are shown in the corresponding rows of the first column of
Table 1.a (sparsity set up scheme θ1).

For (b), the exact used sparsity values are shown in the rest
of the rows of θ1. To better grasp the relationships among
imposed values and the true sparsity of non-task-related
sources, both the true and the imposed ones are sorted with
decreasing sparsity percentage. In Section IV-B, it will be
shown that the proposed scheme is largely insensitive to the
provided sparsity values.

Finally, for (c), we set cδ = 0.2, which is large enough
to accommodate the variations among HRFs in the different
synthetic datasets. This value has been calculated following
the algorithmic procedure described in the Supplementary
Section I-C.

SDL and ODL tune the sparsity constraint via a single
regularization parameter, λ. In contrast to IADL, λ is not
directly related to a certain sparsity level, and its optimum
value is case-specific. Moreover, it does not bear a concise
physical interpretation that could serve as a guide for its
tuning. Also, the range of values of the optimum λ can vary
significantly from case to case. It can take a very small
value, e.g., 0.01 or a relatively large value, e.g., 10. In the
synthetic dataset case, since the ground truth, i.e., the correct
decomposition, is fully known, λ can be optimized through
cross-validation. However, such a luxury is never available in
practice, where real fMRI datasets need to be analyzed. In this
study, we evaluate SDL using λ values that lead to the best
performance according to specific criteria: The first criterion
was to optimize SDL in terms of the mean performance of
the time courses of all the sources, leading to a λ1 = 0.02.
The second criterion was to optimize with respect to the
mean value of the full source performance (see Eq. S31 in
the supplementary material) for the assisted sources only,
leading to a λ2 = 2.8. In both cases, we conducted the
λ value optimization for the subject that corresponds to the
cHRF. Observe the large gap between the obtained λ values,
which is indicative of the sensitivity of the SDL approach to
λ tuning.

On the other hand, the optimal value for the fully blind
ODL algorithm was found to be λ = 1.6. SDL and ODL
are initialized from ICA, similarly to IADL. Such an initial-
ization leads to better performance compared to the original
version presented in [38]. These observations agree with the
results reported in [55], where the authors use ICA as an ini-
tialization point for their proposed DL algorithm to enhance
its performance.

McICA requires fine-tuning a set of 4 regularization
parameters. We observed that optimal selection of these
parameters heavily depends on the particular synthetic sub-
ject, similarly to the SDL algorithm. Accordingly, we man-
ually optimized these parameters via cross-validation aiming
to achieve the best average performance over all the subjects.

Fig. 3.A and Fig. 3.B show the performance results with
respect to the full source and the time course, respec-
tively. The horizontal axis indicates the six synthetic subjects
that correspond to different HRFs. Both figures comprise
three inset graphs, each of which depicts performance with
respect to three different sets of sources: (a) the task-related
sources 1, 11 and 14, (b) the brain-like sources (1, 2, . . . , 15),
and (c) the whole dataset (1, 2, . . . , 20) which includes both
brain-like sources and artifacts. For completeness, the Sup-
plementary Fig. S4 shows the individual performance of the
studied methods for each assisted source and depicts some
of the obtained time courses and their corresponding spatial
maps.
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FIGURE 3. Performance comparison of different approaches with respect to the full source (A) and
with respect the time courses only (B). The inset figures correspond to (a) the sources of interest [1,
11, 14], (b) the brain-like sources only, and (c) all sources (including artifacts).

Let us first focus on the two information-assisted DL
algorithms, SDL and IADL, whose performance is indicated
with green and dark blue curves, respectively. They are both
assisted with the task-related time courses that correspond to
the cHRF. In the SDL case, the solid and the dashed curves
correspond to regularization parameter tuning equal to λ1
and λ2 respectively. Recall that these two cases lead to the
best performance for the canonical subject in Fig. 3.B.(a)
and Fig. 3.A.(c), respectively. In the inset Fig. 3.A.(a) and
Fig. 3.B.(a), it is already observed that IADLmanages to cope
well with subject variability even in cases where the discrep-
ancy between the canonical and the subject HRF is large, e.g.,
subject E (see Fig. 2). On the contrary, in Fig. 3.A.(a), SDL
copes well only in the canonical case, for which the algorithm
has been explicitly optimized. In Fig. 3.B.(a), SDL attains
superior performance only in the canonical case—where the
exact task-related time courses have been used—as well as
in subject A which, as can be seen in Fig. 2, has an HRF

similar to the canonical one. Focusing on SDL performance
for subjects B to E, it is apparent that the strategy to fix the
assisted time courses can lead to high deterioration according
to both performance measures.

In the cases where only brain-like and all the sources
are considered (mid and rightmost subfigures), the proposed
approach still outperforms SDL. Note that the time courses
estimated by IADL are overall better than those of SDL
even in the case of the canonical subject, in which SDL is
fully optimized exploiting ground truth knowledge. In com-
parison to the fully blind methods, i.e., ODL, JADE, and
Infomax, task-related assisted methods perform better. Con-
cerning the performance of the blind methods, we observed
that ODL works better than ICA-based approaches for
the optimal selected λ value. However, note that in prac-
tice it is very hard—if possible at all—to optimize the
associated λ parameter as done here with the synthetic
dataset.
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FIGURE 4. Performance evaluation of the IADL algorithm for different choices of sparsity.
Fig. (A) shows performance with respect to the full sources and Fig. (B) with respect to the time
courses only. The inset figures correspond to (a) the sources of interest [1, 11, 14], (b) the brain-like
sources only, and (c) all sources (including artifacts) IADL performance using three different choices
of sparsity. The figures also include the results from SDL and JADE from the Fig. 3 as a reference.

The yellow curves in Fig. 3 depict the performance of
McICA. This particular constrained ICA algorithm provides
estimates only of the assisted sources [35]; hence, results
correspond only to the assisted brain-like sources. First,
we observe that the McICA algorithm performs better than
JADE, CanICA, and Infomax. On the other hand, our pro-
posed IADL algorithm outperformsMcICA for all the studied
synthetic subjects.

Observe that CanICA (orange curves) exhibits perfor-
mance that is similar to that of the other two ICA algo-
rithms (see Fig. 3.B). This was expected because CanICA
performs best in the multi-subject level [54], rather than in
single-subject setups as the one we used so far, where it does
not offer any particular advance. In section V, where we deal
with multi-subject analysis, we confirm the superiority of
CanICA over the other ICA methods examined here.

B. IADL ROBUSTNESS AGAINST SPARSITY
PARAMETER MISTUNING
In this section, the tolerance of the proposed approach to the
choice of maximum sparsity parameters, φi, is investigated.
In the preceding experiment with synthetic data, it was found
convenient to separately consider the sparsity constraints of
the task-related time courses, which need to be explicitly set
on a one-to-one basis. The sparsity constraints of the remain-
ing sources only need a rough estimation of the sparsity
percentage, as described in Section I-B of the supplementary
material. This convention is followed in Table 1.a, where
three such setups, denoted by θ1, θ2 and θ2 are listed. The
first one is the closest, overall, to the true sparsities. In θ2,
the sparsities of the non-task-related sources, i.e., the 4th
up to the 25th, have been grossly assigned in a simplified
way; 5 sources with sparsity percentage 90%, 5 sources with
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80%, etc. In θ3, the sparsity percentage associated to the
task-related sources have been largely relaxed by fixing the
sparsity percentage value to 85% for all three of them (i.e.,
the 1st up to the 3rd). This figure roughly corresponds to
the smallest sparsity percentage that can be found in all the
FBNs and atlases that we have checked (a list of FBN sparsity
percentages for several published brain atlases can be found
in Section II of the supplementary material).

Fig. 4 shows the performance for these three sparsity
setups. The first figure illustrates performance results with
respect to the full sources, whereas the second one shows per-
formance results concerning the time courses only. Besides
the sparsity levels, the setup of the experiment is the same
as the previous one. Performance curves of JADE and SDL
are repeated here for reference. Observe that the proposed
approach is remarkably robust to sparsity specifications.
Indeed, in the analysis of the performance of the time courses
(Fig. 4.B), there are no detrimental effects, whereas in the
full-source case, θ3 led to minor performance degradation
in the estimates of the task-related sources. This result con-
firm that the requirement to explicitly set the sparsity for
the task-related time courses is not an obstacle when using
the proposed algorithm. Thus, if there is extra informa-
tion concerning the maximum expected sparsity level of
the task-related time courses, then this can be used since it
can only help. Otherwise, the sparsity percentages for the
task-related time courses are all set to a safely small value,
e.g., 85%, and this will still be beneficial to the algorithm
leading to reliable results.

C. COMPARISON BETWEEN IADL AND GLM
For completeness, we have performed a comparison between
the proposed IADL and the standard GLM approach using
the SPM127 toolbox, where the design matrix comprises the
three task-related time courses. For this study, we observed
that SPM and IADL recover the assisted sources 1 and 3 cor-
rectly. However, for assisted source 2 the result of SPM is
significantly inferior to that of IADL. Full details of this
experiment can be found in Section V-B of the supplementary
material.

D. COMPARISON BETWEEN IADL AND SEVERAL
ALTERNATIVES FOR THE ANALYSIS OF fMRI DATA
To position IADL among all the alternative matrix
factorization-based methods for fMRI, concerning all their
features and analysis capabilities, we present a comprehen-
sive comparison in Table 2. Among these different alter-
natives, observe that IADL complies with all the studied
criteria apart from criterion F, namely to be able to explic-
itly specify the place/voxels within the brain that a FBN
will appear through user-defined masks. However, note that
IADL can also comply with this criterion with relatively
mild modifications in the spatial map constraint, Lw. Such

7Statistical Parametric Mapping (SPM). Welcome Trust Centre for Neu-
roimaging, London, UK. https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

TABLE 2. Comparison between several alternatives for fMRI data
analysis.

a development is beyond this paper, and will be presented
elsewhere.

V. TASK-fMRI DATA ANALYSIS
The following study with real fMRI data aims to illus-
trate the advantages of the proposed approach in a realistic
scenario, and to compare its performance with other stan-
dard techniques. In particular, for this study, in addition to
the IADL algorithm we also employed SDL, the standard
GLM implemented in SPM, and two ICA algorithms: ERBM
from the GIFT8 toolbox and CanICA6 from the Nilearn
toolbox.

A. fMRI DATA
For this study, we considered 900 subjects from the
motor-task fMRI dataset of the WU-Minn Human Connec-
tome Project [57], which is available at the HCP repository,9

and the acquisition parameters are summarized in the imag-
ing protocols.10 This experiment follows a standard block
paradigm, where a visual cue asks the participants to either
tap their left/right fingers, squeeze their left/right toes or
move their tongue. Each movement block lasted 12 seconds

8The Group ICA of fMRI Toolbox (GIFT) is an open Matlab software
suitable for independent component analysis and blind source separation of
group (and single subject) fMRI data: http://mialab.mrn.org/software/gift/.

9Human Connectome Project: https://www.humanconnectome.org/
10HCP3T Imaging Protocol Overview: http://protocols.humanconnectome.

org/HCP/3T/imaging-protocols.html
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and is preceded by a 3 second of visual cue. In addition, there
are 3 extra fixation blocks of 15 second each, as detailed in
the Human Connectome Project protocols.11

There are two main reasons for selecting this specific
dataset: First, the FBNs related to this experimental design are
well studied [38], [58]–[62], which facilitates the evaluation
of the results. Second, this dataset is particularly challeng-
ing: The FBNs of interest exhibit significant asymmetries in
their intensity [60] and some spatial maps exhibit high over-
lap, particularly within the cerebellar cortex [61]. Besides,
the cerebral areas from the motor cortex are larger and exhibit
a lower inter-subject variability than those from the cerebel-
lum.

Finally, on top of the standard preprocessing pipeline
already applied to the obtained datasets (see [59], [63]),
we further smoothed each volume with a 4-mm FWHM
Gaussian kernel.

B. METHODS & PARAMETER SETUP
For the GLM analysis, we used SPM126, and we fol-
lowed the same standard procedure as described in [59].
Put succinctly, we defined six task-related time courses,
i.e., one per experimental condition: visual, right-hand,
left-hand, right-foot, left-foot, and tongue. We estimated
each task-related time course as the convolution between
the cHRF and each experimental condition, where each
experimental condition consisted of a succession of blocks
with duration equal to its presentation time. Apart from
the six task-related time courses, the design matrix also
includes the temporal and spatial derivatives. Then, fol-
lowing the same approach as in [59], at the single-subject
level, we computed a linear contrast to assess significant
activity.

For the group study, we randomly split the dataset to
generate a total number of twenty groups of 15, 30, and
60 subjects each. Then, we performed a group analysis for
each combination of subjects to assess significant activity.
We studied these three group sizes to evaluate the impact of
the number of subjects on performance.

For the matrix factorization methods, in all cases the total
number of sources was set equal to 20, which is a reasonable
estimate of the expected number of sources (see further dis-
cussion in Section I.A of the supplementary material). For the
ICA analysis, first, we used the software toolboxGIFT, which
implements multiple ICA algorithms in the context of fMRI
data analysis. In this study, the algorithms Fast-ICA, Infomax,
Erica and ERBMwere tested. To save space, we only reported
the results of the ERBM algorithm [64], since it appeared
to perform somewhat better compared to the rest. Finally,
we performed a group fMRI analysis using CanICA6, a state-
of-the art ICA-based algorithm.

Concerning IADL and SDL, they both used the same six
task-related time courses used in the SPM analysis. Table 1.c
shows the sparsity percentage set in IADL. The first six

11Task-fMRI 3T Imaging Protocol Details: http://protocols.
humanconnectome.org/HCP/3T/task-fMRI-protocol-details.html

values correspond to the task-related time courses, i.e., visual,
right/left-hand, right/left-foot, and tongue, in this order. The
sparsity percentage of the rest of the sources (7th to 20th
in Table 1.c) are gradually diminishing in a fashion similar
to the one used in the analysis of synthetic data above (see
Table 1.a). As discussed in the previous section, IADL is
robust to sparsity overdetermination. Therefore, little differ-
ence in performance is expected if the sparsity percentage
values are increased (e.g., all six first values in Table 1.c could
be set to 90%. Parameter cδ was set to 4.6, following the same
automatic tuning approach as used in Section IV (see also the
discussion in Section I.C of the supplementary material).

In SDL, the λ parameter, which determines the achieved
sparsity, requires to be fine-tuned. Of course, due to the lack
of a ground-truth, we can only implicitly optimize λ against
the performance criteria that we used, namely, reproducibility
and reliability, as we further explain in the next section.
However, we observed that the optimal λ is heavily dependent
on both the group size as well as on the particular selection
of subjects. Accordingly, the λ value that we finally used,
λ = 200, is the one that leads to the best mean performance
across all group sizes.

The spatial maps used to evaluate the performance of
the matrix factorization methods were computed via the
pseudo-inverse approach, namely S̃ = D+X, following the
discussion in Section I.E of the supplementary material.
Then, we identified the spatial maps associated with our task
of interest. For the blind methods, we determined the specific
sources of interest by selecting those sources whose time
courses presented the highest correlation with the studied
tasks, in a similar fashion as described in Section I.D of the
supplementary material. For all group analyses, we thresh-
olded each spatial map for statistical significance at z > 2.32
(p < 0.01), an informative lower threshold as used in [59].
Similarly, all statistics were computed voxel-wise (not, for
example, using cluster-based thresholding), to maximize sim-
plicity of interpretation of the results.

C. PERFORMANCE EVALUATION
To quantitatively evaluate the performance of the differ-
ent methods, we considered two different criteria: a) repro-
ducibility and b) reliability.

1) REPRODUCIBILITY
Reproducibilty refers to the similarity among different real-
izations with the same number of subjects, since the particular
selection of subject may affect performance. In this study,
we measured reproducibility among pairs of the twenty ran-
domly generated groups using three complementary metrics:

• t - A metric that measures the one-to-one overlap among
components [54].

• e - A metric that quantifies the match between the sub-
spaces spanned by the maps from each component [54].

• J - The Jaccard overlap, a standard metric that quantifies
the similarity between images, which has already been
used to quantify group reproducibilty in fMRI [62].
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TABLE 3. Average reproducibility measures t , e, and J among the five studied motor tasks for the different studied group sizes of SPM, IADL, SDL, CanICA,
and ERBM, where the value in parenthesis indicates the measured standard deviation of the obtained results among motor tasks. The table shows the
average reproducibility of the cerebral and the cerebellar areas separately, to have a clear view of the behavior of the ROIs.

The details regarding the formal definition of these metrics
can be found in Section I.B of the supplementary material.

It is essential to understand that reproducibility alone does
not measure if the method works correctly or not, in the sense
of correctly separating the different brain sources. Instead,
it only provides information regarding how consistent the
obtained results are among different realizations of the group
analysis. Note that a method can systematically fail to sep-
arate a specific brain source, and it can still exhibit good
reproducibility (i.e., consistently producing similar wrong
results), for example, keeping two sources merged as a single
one.

2) RELIABILITY
Reliability refers to the ability of the methods to consistently
detect significant activity within the expected regions of inter-
est (ROIs). Note that the ROIs related to the motor tasks
have beenwell documented and studied [24], [38], [58]–[62].
Therefore, we can define a mask that approximately delin-
eates the corresponding ROIs for each motor task.

Tomeasure reliability, we first construct a conjunctionmap
for each motor task. The conjunction map is a particular kind
of spatial map, where each voxel indicates the number of sub-
jects/groups that exhibited significant activity within that spe-
cific voxel. In this study, for each method, we determine the
conjunction map among the twenty groups for each studied
group size. Then, we normalize the lesion maps dividing by
the total number of realizations. Thus, the normalized lesion
maps have values from 0 to 1, where 0 means that no activity
was detected in that voxel, and 1means that all studied groups
showed significant activity within that particular voxel.

Using the lesion maps and the defined ROIs for each motor
task, we quantify the reliability of the method through two
complementary metrics:

• OC - Overlap Consistency
• FPM - False Positive Rate

The OC measures the mean value of the detected signif-
icant active voxels within the ROI, that is, the mean value

of the active voxels of the conjunction map within the ROI.
This value serves to evaluate the success of the method to find
consistent activity within the expected ROIs. On the other
hand, the FPR (also known as fall-out or false alarm rate) is
defined as the ratio of the number of negative events wrongly
categorized as positive (false positive) over the total number
of actual negative events. We count as a false positive any
activated voxel outside the ROI.

Ideally, the perfect method should exhibit a mean overlap
consistency of 100% and an FPR of 0%, meaning that all the
analyses obtained the same spatial maps within the expected
ROI. Note that both the OC and the FPR are needed to provide
a complete view of the reliability of the results. For example,
one method may exhibit a good OC, but also a large FPR,
in which case, the method is not reliable. Similarly, a lower
FPR is not useful if the method does not have a good OC.

D. RESULTS
We analyzed the brain areas associated with each motor task
from the cerebrum and the cerebellum separately. We divided
the analysis of performance over these two main areas to pro-
vide a complete view of the behavior of the studied methods,
since the motor areas within the cerebrum present different
behavior than those from the cerebellum, as we further dis-
cuss in the next section.

Table 3 shows the obtained reproducibility measurement
for each studied method. The table depicts the mean value of
the three implemented metrics (t , e and J ), and the value in
parentheses stands for the standard deviation obtained among
the different studied motor tasks (left/right hand, left/right
foot, and tongue) for each studied group size. Similarly,
Table 4 shows the reliability of each studied method and
group size. The table shows the mean value of the OC and the
FPR and the value in parentheses indicates the corresponding
standard deviation among the five studied motor tasks.

For completeness, Fig. 5 shows the spatial maps
from two randomly selected groups with 60 participants.
We focused on the spatial maps from the group analysis
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TABLE 4. Average reliability of SPM, IADL, SDL, CanICA, and ERBM for the different group sizes. The table shows mean values for OC and FPR among the
five studied motor tasks from the analysis of the conjunction maps over the cerebral and cerebellar areas separately. The value in parenthesis indicates
the standard deviation of the obtained measures among the studied motor tasks.

.

with 60 participants since, according to Table 3, all methods
performed best with this group size. Both figures show the
significant active voxels at z > 2.32 (p < 0.01), and each
row presents the most representative slices for each motor
task [59].

E. DISCUSSION
The quantitative study verifies that the proposed IADL
algorithm exhibited the best reproducibility and reliability
at the same time, followed by CanICA, SDL, SPM, and
ERBM.

A closer inspection reveals some interesting facts: First,
regarding the performance of the ICA algorithms, CanICA
achieved considerably better performance compared to
ERBM. In particular, CanICA exhibits excellent repro-
ducibility among groups. These results agree with the
expected behavior of CanICA, since, before the separation
of the independent components, CanICA identifies the com-
mon subspace to all the subjects that contains the activation
patterns, as detailed in [54]. However, CanICA exhibited a
relatively poor OC with considerable variance among tasks,
as Table 4 shows. The reason for this is that CanICA (as
well as ERBM) had difficulties separating some of the motor
areas. For example, the spatial maps in Fig. 5 show that
CanICA failed to separate the motor areas from the feet cor-
rectly. Furthermore, the excellent reproducibility of CanICA
indicates that the algorithm was systematically failing to
separate these motor areas.

Second, SPM presents an excellent OC, especially over the
cerebral areas. However, SPM exhibited a low reproducibility
that is driven by the large presence of false-positive activa-
tions, as the large FPR in Table 4 indicates.
SDL appears to outperform SPM in all metrics. This is

consistent with the quantitative analyses at the single-subject
level performed in [38], but, to our knowledge, it has never
been previously demonstrated using quantitative analyses at
the group level. Compared with IADL, we can say that SDL’s

performances lies roughly in the middle between IADL and
SPM. Moreover, we observed that SDL fails to recover some
motor areas in some realizations. For example, in Fig. 5.A,
SDL missed the motor area corresponding to the right foot,
whereas IADL and SPM both show significant activity within
the expected ROI. Note that missing an area does not occur
often, and it is driven by the particular set of subjects because,
unlike CanICA, the relatively lower reproducibility of SDL
does not allow us to generalize this observation. Besides,
we also noticed that SDL presented more spurious activity
across the brain compared to IADL and lower than SPM (see
the FPR in Table 4).
With respect to parameter selection for the semi-blind

methods, we should emphasize that the differences between
IADL and SDL are substantial. First of all, parameter
λ in SDL was explicitly tuned (through a tedious and
time-consuming optimization process) to perform best in
terms of the particular quantitative measures. The value
obtained through this optimization process was λ = 200.
This particular λ value lacks any interpretation and is con-
siderably different from the λ value used in the analysis of
synthetic data. In contrast, for the parameter set-up of the
IADL algorithm, we followed the same guidelines as for the
analysis of the synthetic data without explicitly optimizing for
the specific metrics. Moreover, all parameters have a physical
interpretation, as discussed is Section I of the supplementary
material.

Differences between the main brain areas
In this study, we analyzed the performance of the studied
methods over the cerebrum and the cerebellum separately.
The main reason why we divided the analysis over these two
main areas is because the FBNs of interest exhibit significant
asymmetries, and some of the areas present high overlap.
Furthermore, the areas of the motor cortex are large and
present a relatively high intensity compared to those from the
cerebellum.
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FIGURE 5. Significant active voxels (z > 2.32) for two randomly selected group analyses (A and B) out of a total of twenty analyses performed. Results
correspond to studies with 60 subjects per group. Each row shows the most representative positions for each specific task: left/right hand, left/right feet
and tongue.

The detailed quantitative analysis of the performance of
the studied methods over these two main brain parts revealed
that the cerebellar areas are considerably more challenging
compared to the cerebral ones, as expected. In particular,
we observed that the performance of all studied method drops
over the cerebellar areas compared to the results from the
motor cortex. Interestingly, IADL attains the best perfor-
mance over the cerebellum, exhibiting a relatively high OC,
low FPR, as well as good reproducibility, even for the group
analysis with just 15 subjects.

Effect of group size
Our quantitative analysis revealed that the number of sub-
jects has a tangible effect on the performance of various
methods. In general, larger groups exhibit better perfor-
mance compared to smaller groups, which complies with the

expected general behavior. This effect is particularly evident
for the SPM method, which had the highest performance
gain compared to the rest of the tested methods. Furthermore,
we observe that the obtained results for SPM closely resemble
the Jaccard overlap results regarding the effects of the number
of subjects reported in [62] that also studied the same motor
task fMRI dataset.

Algorithmic complexity
Regarding the computational cost of the proposed algorithm,
we implemented an efficient approach based on [40], which
allows avoiding computationally expensive matrix calcula-
tions, as we detail in Section V of the supplementary mate-
rial. Thus, the most computationally expensive step of the
proposed algorithm is the sparse projection (see line 8 in
Algorithm 1). The sparse projection depends on the number
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of voxels, N , and the number of non-zeros (sparsity per-
centage), φ, and it scales proportionally to the number of
sources, K . For these reasons, we implemented an efficient
algorithm based on [50] to perform the sparse projection.
In the course of these group analyses, we did not observe sig-
nificant differences in the computation time of the proposed
algorithm compared to the rest of studied methods. Only SDL
required considerably longer computation time compared to
the rest.

VI. CONCLUSIONS
In this paper, we present a new Dictionary Learning method
that naturally incorporates external information via two novel
convex constraints: a) a sparsity constraint based on the
weighted `1-norm, which allows to set row-wise sparsity con-
straints that naturally encapsulate the sparsity of the spatial
maps, and b) a similarity constraint over the dictionary, which
integrates external a priori information that is available from
the experimental task.

The proposed sparsity constraint constitutes a natural alter-
native to the standard `1-norm regularization, allowing to
incorporate external sparsity-related information that is avail-
able in brain atlases and bypasses the problem of selecting
the regularization parameters by following cross-validation
arguments that have no practical meaning when real data are
involved. Furthermore, the incorporation of the task-related
time courses from the experimental task enhances the perfor-
mance decomposition of their corresponding sources. More-
over, the newly proposed constraints exhibit higher toler-
ance and robustness tomis-modeling, compared to alternative
approaches.

The advantages and the enhanced performance obtained
by the proposed method have been verified through detailed
quantitative analyses with both realistic synthetic and
task-related real fMRI datasets.

ACKNOWLEDGMENT
The authors would like to thank Prof. E. Kofidis, Dept.
of Statistics and Insurance Science, University of Piraeus
(Greece), and C. Chatzichristos, Dept. of Electrical Engineer-
ing (ESAT), Leuven (Belgium), whose comments contributed
to improve the quality of the final manuscript.

REFERENCES
[1] V. Perlbarg and G. Marrelec, ‘‘Contribution of exploratory methods to the

investigation of extended large-scale brain networks in functional MRI:
Methodologies, results, and challenges,’’ Int. J. Biomed. Imag., vol. 2008,
pp. 1–14, Mar. 2008.

[2] R. A. Poldrack, J. A. Mumford, and T. E. Nichols,Handbook of Functional
MRI Data Analysis. Cambridge, U.K.: Cambridge Univ. Press, 2011.

[3] S. A. Huettel, A. W. Song, and G. McCarthy, Functional Magnetic Reso-
nance Imaging, vol. 1, 2nd ed. Sunderland, MA, USA: Sinauer Associates,
2009.

[4] K. J. Friston, A. P. Holmes, and J. Ashburner. (1999). Statistical Parametric
Mapping (SPM). [Online]. Available: http://www.fil.ion.ucl.ac.uk/spm/

[5] S. Theodoridis,Machine Learning: A Bayesian and Optimization Perspec-
tive, 2nd ed. New York, NY, USA: Academic, 2020.

[6] V. D. Calhoun and T. Adalı, ‘‘Multisubject independent component analy-
sis of fMRI: A decade of intrinsic networks, default mode, and neurodiag-
nostic discovery,’’ IEEE Rev. Biomed. Eng., vol. 5, pp. 60–73, 2012.

[7] W. Du, Y. Levin-Schwartz, G.-S. Fu, S. Ma, V. D. Calhoun, and T. Adalı,
‘‘The role of diversity in complex ICA algorithms for fMRI analysis,’’
J. Neurosci. Methods, vol. 264, pp. 129–135, May 2016.

[8] Y. Levin-Schwartz, V. D. Calhoun, and T. Adalı, ‘‘Quantifying the inter-
action and contribution of multiple datasets in fusion: Application to the
detection of schizophrenia,’’ IEEE Trans. Med. Imag., vol. 36, no. 7,
pp. 1385–1395, Jul. 2017.

[9] V. D. Calhoun, V. K. Potluru, R. Phlypo, R. F. Silva, B. A. Pearlmutter,
A. Caprihan, S. M. Plis, and T. Adalı, ‘‘Independent component analysis
for brain fMRI does indeed select for maximal independence,’’ PLoS ONE,
vol. 8, no. 8, 2013, Art. no. e73309.

[10] I. Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden,
K. D’Ardenne, W. Richter, J. D. Cohen, and J. Haxby, ‘‘Independent
component analysis for brain fMRI does not select for independence,’’
Proc. Nat. Acad. Sci. USA, vol. 106, no. 26, pp. 10415–10422, Jun. 2009.

[11] Y.-B. Lee, J. Lee, S. Tak, K. Lee, D. L. Na, S.W. Seo, Y. Jeong, and J. C. Ye,
‘‘Sparse SPM: Group sparse-dictionary learning in SPM framework for
resting-state functional connectivityMRI analysis,’’NeuroImage, vol. 125,
pp. 1032–1045, Jan. 2016.

[12] K. D. Harris and T. D. Mrsic-Flogel, ‘‘Cortical connectivity and sensory
coding,’’ Nature, vol. 503, no. 7474, pp. 51–58, Nov. 2013.

[13] S. Zhao, J. Han, X. Jiang, H. Huang, H. Liu, J. Lv, L. Guo, and T. Liu,
‘‘Decoding auditory saliency from brain activity patterns during free lis-
tening to naturalistic audio excerpts,’’ Neuroinformatics, vol. 16, nos. 3–4,
pp. 309–324, Oct. 2018.

[14] M. Carroll, G. Cecchi, I. Rish, R. Garg, and A. Rao, ‘‘Prediction and inter-
pretation of distributed neural activity with sparse models,’’ NeuroImage,
vol. 44, no. 1, pp. 112–122, Jan. 2009.

[15] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and
B. Thirion, ‘‘Multiscale mining of fMRI data with hierarchical structured
sparsity,’’ SIAM J. Imag. Sci., vol. 5, no. 3, pp. 835–856, Jan. 2012.

[16] J. Xie, P. K. Douglas, Y. N. Wu, A. L. Brody, and A. E. Anderson,
‘‘Decoding the encoding of functional brain networks: An fMRI classifica-
tion comparison of non-negative matrix factorization (NMF), independent
component analysis (ICA), and sparse coding algorithms,’’ J. Neurosci.
Methods, vol. 282, pp. 81–94, Apr. 2017.

[17] S. Ferdowsi, V. Abolghasemi, B. Makkiabadi, and S. Sanei, ‘‘A new
spatially constrained NMF with application to fMRI,’’ in Proc. Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., Aug. 2011, pp. 5052–5055.

[18] S. Ferdowsi, V. Abolghasemi, and S. Sanei, ‘‘A constrainedNMF algorithm
for bold detection in fMRI,’’ in Proc. IEEE Int. Workshop Mach. Learn.
Signal Process., Aug. 2010, pp. 77–82.

[19] B. Feng, Z. L. Yu, Z. Gu, and Y. Li, ‘‘Analysis of fMRI data based
on sparsity of source components in signal dictionary,’’ Neurocomputing,
vol. 156, pp. 86–95, May 2015.

[20] G. K. Aguirre, E. Zarahn, and M. D’Esposito, ‘‘The variability of human,
BOLD hemodynamic responses,’’ NeuroImage, vol. 8, no. 4, pp. 360–369,
Nov. 1998.

[21] F. I. Karahanoğlu, C. Caballero-Gaudes, F. Lazeyras, and D. Van De Ville,
‘‘Total activation: FMRI deconvolution through spatio-temporal regular-
ization,’’ NeuroImage, vol. 73, pp. 121–134, Jun. 2013.

[22] D. A. Handwerker, J. M. Ollinger, and M. D’Esposito, ‘‘Variation of
BOLD hemodynamic responses across subjects and brain regions and their
effects on statistical analyses,’’NeuroImage, vol. 21, no. 4, pp. 1639–1651,
Apr. 2004.

[23] W. Zhang, J. Lv, X. Li, D. Zhu, X. Jiang, S. Zhang, Y. Zhao, L. Guo,
J. Ye, D. Hu, and T. Liu, ‘‘Experimental comparisons of sparse dictionary
learning and independent component analysis for brain network inference
from fMRI data,’’ IEEE Trans. Biomed. Eng., vol. 66, no. 1, pp. 289–299,
Jan. 2019.

[24] T. D. Hermansen, S. Ventegodt, and I. Kandel, ‘‘Human development XI:
The structure of the cerebral cortex. Are there really modules in the brain?’’
Sci. World J., vol. 7, pp. 1922–1929, Sep. 2007.

[25] J. M. Fuster, ‘‘Cortex and memory: Emergence of a new paradigm,’’
J. Cognit. Neurosci., vol. 21, no. 11, pp. 2047–2072, Nov. 2009.

[26] J. Xu, M. N. Potenza, V. D. Calhoun, R. Zhang, S. W. Yip, J. T. Wall,
G. D. Pearlson, P. D.Worhunsky, K. A.Garrison, and J.M.Moran, ‘‘Large-
scale functional network overlap is a general property of brain functional
organization: Reconciling inconsistent fMRI findings from general-linear-
model-based analyses,’’ Neurosci. Biobehav. Rev., vol. 71, pp. 83–100,
Dec. 2016.

[27] D. Hu, L. Yan, Y. Liu, Z. Zhou, K. J. Friston, C. Tan, and D. Wu, ‘‘Unified
SPM-ICA for fMRI analysis,’’ NeuroImage, vol. 25, no. 3, pp. 746–755,
2005.

90066 VOLUME 8, 2020



M. Morante et al.: IADL for fMRI Data Analysis

[28] K. Lee, S. Tak, and J. C. Ye, ‘‘A data-driven sparse GLM for fMRI analysis
using sparse dictionary learning with MDL criterion,’’ IEEE Trans. Med.
Imag., vol. 30, no. 5, pp. 1076–1089, May 2011.

[29] W. Lu and J. C. Rajapakse, ‘‘Constrained independent component analy-
sis,’’ in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 570–576.

[30] V. D. Calhoun, T. Adalı, M. C. Stevens, K. A. Kiehl, and J. J. Pekar, ‘‘Semi-
blind ICA of fMRI: Amethod for utilizing hypothesis-derived time courses
in a spatial ICA analysis,’’ NeuroImage, vol. 25, no. 2, pp. 527–538,
Apr. 2005.

[31] Q.-H. Lin, J. Liu, Y.-R. Zheng, H. Liang, and V. D. Calhoun, ‘‘Semiblind
spatial ICA of fMRI using spatial constraints,’’ Hum. Brain Mapping,
vol. 31, no. 7, pp. 1076–1088, 2010.

[32] Z. Wang, M. Xia, Z. Jin, L. Yao, and Z. Long, ‘‘Temporally and spa-
tially constrained ICA of fMRI data analysis,’’ PLoS ONE, vol. 9,
no. 4, 2014, Art. no. e94211. [Online]. Available: https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0094211

[33] W. Lu and J. C. Rajapakse, ‘‘ICA with reference,’’ Neurocomputing,
vol. 69, nos. 16–18, pp. 2244–2257, Oct. 2006.

[34] Y. Shi,W. Zeng, N.Wang, and L. Zhao, ‘‘A new constrained spatiotemporal
ICA method based on multi-objective optimization for fMRI data analy-
sis,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 9, pp. 1690–1699,
Sep. 2018.

[35] Z.-L. Zhang, ‘‘Morphologically constrained ICA for extracting weak
temporally correlated signals,’’ Neurocomputing, vol. 71, nos. 7–9,
pp. 1669–1679, Mar. 2008.

[36] W. Lu and J. C. Rajapakse, ‘‘Approach and applications of constrained
ICA,’’ IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 203–212, Jan. 2005.

[37] T. Rasheed, Y.-K. Lee, and T.-S. Kim, ‘‘Constrained spatiotemporal ICA
and its application for fMRI data analysis,’’ in Proc. 13th Int. Conf.
Biomed. Eng., in IFMBE Proceedings. Berlin, Germany: Springer, 2009,
pp. 555–558.

[38] S. Zhao, J. Han, J. Lv, X. Jiang, X. Hu, Y. Zhao, B. Ge, L. Guo, and T. Liu,
‘‘Supervised dictionary learning for inferring concurrent brain networks,’’
IEEE Trans. Med. Imag., vol. 34, no. 10, pp. 2036–2045, Oct. 2015.

[39] Y. Kopsinis, H. Georgiou, and S. Theodoridis, ‘‘fMRI unmixing via prop-
erly adjusted dictionary learning,’’ inProc. 22nd Eur. Signal Process. Conf.
(EUSIPCO), 2014, pp. 2075–2079.

[40] M. Yaghoobi, T. Blumensath, and M. E. Davies, ‘‘Dictionary learning for
sparse approximations with the majorization method,’’ IEEE Trans. Signal
Process., vol. 57, no. 6, pp. 2178–2191, Jun. 2009.

[41] D. L. Donoho and M. Elad, ‘‘Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization,’’ Proc. Nat. Acad. Sci.
USA, vol. 100, no. 5, pp. 2197–2202, 2003.

[42] E. J. Candès, M. B. Wakin, and S. P. Boyd, ‘‘Enhancing sparsity by
reweighted `1 minimization,’’ J. Fourier Anal. Appl., vol. 14, no. 5,
pp. 877–905, 2008.

[43] Y. Kopsinis, K. Slavakis, and S. Theodoridis, ‘‘Online sparse system
identification and signal reconstruction using projections onto weighted `1
balls,’’ IEEETrans. Signal Process., vol. 59, no. 3, pp. 936–952,Mar. 2011.

[44] J. M. Levin, B. D. Frederick, M. H. Ross, J. F. Fox, H. L. von
Rosenberg, M. J. Kaufman, N. Lange, J. H. Mendelson, B. M. Cohen,
and P. F. Renshaw, ‘‘Influence of baseline hematocrit and hemodilu-
tion on BOLD fMRI activation,’’ Magn. Reson. Imag., vol. 19, no. 8,
pp. 1055–1062, Oct. 2001.

[45] M. D. Noseworthy, J. Alfonsi, and S. Bells, ‘‘Attenuation of brain BOLD
response following lipid ingestion,’’ Hum. Brain Mapping, vol. 20, no. 2,
pp. 116–121, Oct. 2003.

[46] K. J. Friston, O. Josephs, G. Rees, and R. Turner, ‘‘Nonlinear event-
related responses in fMRI,’’Magn. Reson. Med., vol. 39, no. 1, pp. 41–52,
Jan. 1998.

[47] G. I. Allen and M. Weylandt, ‘‘Sparse and functional principal compo-
nents analysis,’’ 2013, arXiv:1309.2895. [Online]. Available: http://arxiv.
org/abs/1309.2895

[48] Y. Sun, P. Babu, and D. P. Palomar, ‘‘Majorization-minimization algo-
rithms in signal processing, communications, andmachine learning,’’ IEEE
Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.

[49] M. Razaviyayn, M. Hong, and Z.-Q. Luo, ‘‘A unified convergence analysis
of block successive minimization methods for nonsmooth optimization,’’
SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, Jan. 2013.

[50] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, ‘‘Efficient projec-
tions onto the l1-ball for learning in high dimensions,’’ in Proc. 25th Int.
Conf. Mach. Learn., 2008, pp. 272–279.

[51] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, ‘‘Online learning for matrix
factorization and sparse coding,’’ J. Mach. Learn. Res., vol. 11, pp. 19–60,
Jan. 2010.

[52] A. J. Bell and T. J. Sejnowski, ‘‘An information-maximization approach to
blind separation and blind deconvolution,’’ Neural Comput., vol. 7, no. 6,
pp. 1129–1159, Nov. 1995.

[53] J. F. Cardoso and A. Souloumiac, ‘‘Blind beamforming for non-Gaussian
signals,’’ IEE Proc.-F, Radar Signal Process., vol. 140, no. 6, pp. 362–370,
1993.

[54] G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. B. Poline,
and B. Thirion, ‘‘A group model for stable multi-subject ICA on fMRI
datasets,’’ NeuroImage, vol. 51, no. 1, pp. 288–299, May 2010.

[55] V. Abrol, P. Sharma, S. F. Roohi, A. K. Sao, and A. A. Kassim, ‘‘Fast and
robust FMRI unmixing using hierarchical dictionary learning,’’ in Proc.
IEEE Int. Conf. Image Process. (ICIP), Sep. 2016, pp. 714–718.

[56] M. M. Moreno, Y. Kopsinis, E. Kofidis, C. Chatzichristos, and
S. Theodoridis, ‘‘Assisted dictionary learning for FMRI data analysis,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2017, pp. 806–810.

[57] D. C. Van Essen, S.M. Smith, D.M. Barch, T. E. J. Behrens, E. Yacoub, and
K. Ugurbil, ‘‘The WU-minn human connectome project: An overview,’’
NeuroImage, vol. 80, pp. 62–79, Oct. 2013.

[58] A.-K. Seghouane and A. Iqbal, ‘‘Basis expansion approaches for reg-
ularized sequential dictionary learning algorithms with enforced spar-
sity for fMRI data analysis,’’ IEEE Trans. Med. Imag., vol. 36, no. 9,
pp. 1796–1807, Sep. 2017.

[59] D. M. Barch, G. C. Burgess, M. P. Harms, S. E. Petersen, B. L. Schlaggar,
M. Corbetta, M. F. Glasser, S. Curtiss, S. Dixit, C. Feldt, D. Nolan,
E. Bryant, T. Hartley, O. Footer, J. M. Bjork, R. Poldrack, S. Smith,
H. Johansen-Berg, A. Z. Snyder, and D. C. Van Essen, ‘‘Function in the
human connectome: Task-fMRI and individual differences in behavior,’’
NeuroImage, vol. 80, pp. 169–189, Oct. 2013.

[60] B. T. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari,
M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. Polimeni,
B. Fischl, H. Liu, and R. L. Buckner, ‘‘The organization of the human
cerebral cortex estimated by intrinsic functional connectivity,’’ J. Neuro-
physiol., vol. 106, no. 3, pp. 1125–1165, Sep. 2011.

[61] R. L. Buckner, F. M. Krienen, A. Castellanos, J. C. Diaz, and B. T. T. Yeo,
‘‘The organization of the human cerebellum estimated by intrinsic func-
tional connectivity,’’ J. Neurophysiol., vol. 106, no. 5, pp. 2322–2345,
Nov. 2011.

[62] B. O. Turner, E. J. Paul, M. B. Miller, and A. K. Barbey, ‘‘Small sample
sizes reduce the replicability of task-based fMRI studies,’’ Commun. Biol.,
vol. 1, no. 1, p. 62, Dec. 2018.

[63] M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson,
B. Fischl, J. L. Andersson, J. Xu, S. Jbabdi, M. Webster, J. R. Polimeni,
D. C. Van Essen, andM. Jenkinson, ‘‘Theminimal preprocessing pipelines
for the human connectome project,’’ NeuroImage, vol. 80, pp. 105–124,
Oct. 2013.

[64] G. Fu, R. Phlypo, M. Anderson, X. Li, and T. Adalı, ‘‘Blind source
separation by entropy rate minimization,’’ IEEE Trans. Signal Process.,
vol. 62, no. 16, pp. 4245–4255, Aug. 2014.

MANUEL MORANTE was born in Granada,
Spain, in 1992. He received the bachelor’s degree
in physics and the master’s degree in nanotechnol-
ogy, physics, and its applications from the Univer-
sity of Granada, in 2014 and 2015, respectively.
He is currently pursuing the Ph.D. degree with the
National and Kapodistrian University of Athens,
Greece.

In 2015, he received a Marie Sklodowska-Curie
Fellowship within the Innovative Training Net-

work (MacSeNet) of the European Union’s Seventh Framework Programme
(H2020-MSCA-ITN-2014).

VOLUME 8, 2020 90067



M. Morante et al.: IADL for fMRI Data Analysis

YANNIS KOPSINIS (Member, IEEE) received the
Ph.D. degree from the Department of Informatics
and Telecommunications, University of Athens,
in 2004.

He is a Co-Founder of Libra MLI Ltd. He has
gained a number of prestigious personal research
grants.Moreover, he has worked for more than five
years as a Senior Research Fellow of the School
of Engineering and Electronics, The University
of Edinburgh, U.K. He has published more than

50 articles in technical journals and conferences, and he has coauthored
three book chapters. His work has received more than 1200 citations. He has
worked on signal processing and machine learning theory for more than two
decades in applications ranging from telecoms to audio and medical. His
current research interests include in the areas of online machine learning,
cooperative and federated learning, deep learning theory and methods, con-
strained optimization, and robust predictive analytics. He has received the
Marie Curie IEF Fellowship and the Ramón y Cajal Fellowship from the
University of Granada, Spain.

SERGIOS THEODORIDIS (Life Fellow, IEEE)
is currently a Professor of signal processing and
machine learning with the Department of Infor-
matics and Telecommunications, National and
Kapodistrian University of Athens, and he is the
holder of a part-time Chair of The Chinese Uni-
versity of Hong Kong, Shenzhen. He has authored
the bookMachine Learning: A Bayesian and Opti-
mization Perspective (Academic Press, 2015), and
coauthored the best-selling book Pattern Recog-

nition (Academic Press, Fourth Edition, 2009), the book Introduction to
Pattern Recognition: A MATLAB Approach (Academic Press, 2010), and
three books in Greek, two of them for the Greek Open University. His
research interests include in the areas of adaptive algorithms, distributed
and sparsity-aware learning, machine learning and pattern recognition, signal
processing, learning for biomedical applications, and audio processing and
retrieval.

Dr. Theodoridis has served as a Distinguished Lecturer for the IEEE Sig-
nal Processing as well as the Circuits and Systems Societies. He is a Fellow
of the IET and the EURASIP, and a Corresponding Fellow of the Royal
Society of Edinburgh (RSE). He currently serves as the Vice President of
the IEEE Signal Processing Society. He was Otto Monstead Guest Professor
with the Technical University of Denmark, in 2012, and holder of the Excel-
lence Chair of the Department of Signal Processing and Communications,
University Carlos III, Madrid, Spain, in 2011. He has served as the President
of the European Association for Signal Processing (EURASIP), a member of
the Board of Governors for the IEEE Circuits and Systems (CAS) Society,
a member of the Board of Governors (Member-at-Large) of the IEEE SP
Society, and the Chair of the Signal Processing Theory andMethods (SPTM)
Technical Committee of the IEEE SPS. He was a recipient of the 2014 IEEE
Signal Processing Society EducationAward, the 2014 EURASIPMeritorious
Service Award, and the 2017 EURASIP Athanasios Papoulis Award. He has
coauthored seven articles that have received the Best Paper Awards, including
the 2009 IEEE Computational Intelligence Society Transactions on Neural
Networks Outstanding Paper Award and the 2014 IEEE Signal Processing
Magazine Best Paper Award. He has served as an Editor-in-Chief for the
IEEE TRANSACTIONS ON SIGNAL PROCESSING. He was the Co-Editor of the book
Adaptive System Identification and Signal Processing Algorithms, (Prentice
Hall, 1993). He is the Editor-in-Chief of Signal Processing book series
(Academic Press) and the Co-Editor-in-Chief of the E-Reference Signal
Processing (Elsevier).

ATHANASSIOS PROTOPAPAS was born in
Athens, Greece, in 1969. He received the B.S.
degree in physics from The University of Patras,
Greece, in 1993, and the M.S. degree in cognitive
science and engineering and the Ph.D. degree in
cognitive science from Brown University, Provi-
dence, RI, USA, in 1995 and 1997, respectively.

From 1996 to 1998, he was a Research Scien-
tist at Scientific Learning Corp., San Francisco,
CA, USA. From 1999 to 2010, he was a Principal

Researcher at the Institute for Language and Speech Processing, Athens, and
an Associate Professor of cognitive science at the National and Kapodistrian
University of Athens, Athens, from 2010 to 2016. Since 2016, he has been
a Professor with the Department of Special Needs Education, University of
Oslo, Norway. His research interest focuses on the development of reading
skills. He is an Associate Editor of the Journal of Experimental Psychology:
Human Perception and Performance and an Academic Editor of PLoS One.

90068 VOLUME 8, 2020


