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ABSTRACT The unmanned swarm system (USS) has been seen as a promising technology, and will play an
extremely important role in both the military and civilian fields such as military strikes, disaster relief and
transportation business. As the ‘‘nerve center’’ of USS, the unmanned swarm communication system (USCS)
provides the necessary information transmission medium so as to ensure the system stability and mission
implementation. However, challenges caused by multiple tasks, distributed collaboration, high dynamics,
ultra-dense and jamming threat make it hard for USCS to manage limited spectrum resources. To tackle
with such problems, the machine learning (ML) empowered intelligent spectrum management technique
is introduced in this paper. First, based on the challenges of the spectrum resource management in USCS,
the requirement of spectrum sharing is analyzed from the perspective of spectrum collaboration and spectrum
confrontation. We found that suitable multi-agent collaborative decision making is promising to realize
effective spectrum sharing in both two perspectives. Therefore, a multi-agent learning framework is proposed
which contains mobile-computing-assisted and distributed structures. Based on the framework, we provide
case studies. Finally, future research directions are discussed.

INDEX TERMS Unmanned swarm system, spectrum sharing, machine learning, multi-agent learning, game
theory.

I. INTRODUCTION
With the advance of artificial intelligence (AI), small
unmanned robotics and internet of things (IoT), wirelessly
connected unmanned swarm systems (USS) are extended
from the military and public safety fields to the daily civil-
ian applications [1]–[3]. At present, the intelligent USS has
begun to emerge in many military and civilian fields such
as collaborative reconnaissance, joint strike and emergency
communication [4]–[6].

The unmanned swarm communication system (USCS) pro-
vides the necessary information transmission medium for

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiankang Zhang .

crowd sensing, collaborative control and collective intelli-
gence excitation, which is considered as the ‘‘nerve center’’
of the USS. Spectrum resource is regarded as a key com-
ponent affecting the communication quality. First, due to
the dense deployment of a swarm, neighbor communication
nodes need to frequently exchange control information to
coordinate behaviours and avoid physical collision. Second,
the data collected by agents, such as videos and pictures,
rely on high-rate communication techniques to realize fast
information fusion and timely backhaul. Last but not the least,
when USCS is attacked by malicious radio jammers, a robust
anti-jamming communication mechanism is needed. There-
fore, the spectrum resource management plays a vital role in
the USCS. In summary, an efficient, flexible and adaptable
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spectrum resource sharing method is distinctly important,
which ensures a reliable network connection and satisfies
the great demand for communication resources in a local
area. Research in this field is currently a hotspot and has
been highly valued by governments, associations, industry
and academia.

FIGURE 1. Illustration of characteristics of the unmanned swarm
communication system. The comparison of the similarities and
differences with other communication systems is presented in a radar
chart. Note that, the radar chart makes a qualitative comparison which is
suitable for most cases. In some extreme cases, there may be
discrepancies in the ordering.

However, spectrum resource sharing in USCS is a very
complex and challenging problem. In Fig. 1, we illustrate
the typical characteristics of USCS and make a qualitative
comparison with several communication systems, i.e., the
fifth-generation (5G) communication network, vehicle ad
hoc network (VANET) and wireless sensor network (WSN).
Compared with the 5G communication network [7] and
VANET [8], there is no reliable infrastructure such as base
station and roadside access point in USCS. Agents in USCS
intelligently and autonomously collaborate instead of being
controlled by the central station. What’s more, when USCS
faces the threat of radio jamming attack, agents need to adjust
their communication strategy on their own, which cannot be
found in the 5G systems. Compared withWSN [9], the USCS
is highly dynamic in the three-dimensional space due to
the mobile nodes such as unmanned aerial vehicles (UAVs).
In addition, the characteristic of ‘‘swarm’’ of USCS also
makes the spectrum resource sharing more complex. Besides,
the main goal of these agents in the USS is to collaboratively
complete tasks. Thus it can be seen that, most of the existing
spectrum resource management methods cannot be directly
applied to USCS.

Recently, machine learning (ML) empowered spectrum
management techniques, for the powerful capabilities, are
gaining more and more attention. In this paper, we are moti-
vated to focus on the physical layer spectrum resources of
the USCS, and discuss the requirements, challenges and
solutions of the system from the perspective of ML. The
main contributions of this paper are summarized as follows.
First, we summarize five typical challenges within USCS
according to the characteristics of USS. To solve them,

we provide two requirements for the communication deci-
sion making of agents. Second, we propose two multi-agent
learning structures for the intelligent USCS, which conform
with the practical application scenarios of USCS. Third,
we introduce several case studies of the multi-agent learning
structures using existing methods that provide for possible
solutions to some of the challenges. In the end, we provide
several future research directions.

II. RELATED WORK
The problems of spectrum resource sharing in USCS has
drawn more attention due to the rapid development of the
wirelessly connected USS. In [10], M. J. Marcus pointed
out that while UAV technologies were attracting growing
attention, more efficient and effective protocols and meth-
ods of spectrum resource management are needed to satisfy
the requirements of emerging communication applications.
From this perspective, numerous research investigated prob-
lems of communication resource optimization in the UAV-
involved communication systems [11]–[14]. However, most
research considered the cross-system spectrum resource
allocation between UAVs and other communication sys-
tems such as cellular systems. The intra-system spectrum
sharing of UAV swarm communication network was not
considered.

Some research investigated distributed spectrum resource
sharing in USCS [15]–[18]. All of these works aimed to
realize spectrum collaboration for multi-UAV networks in
a distributed manner. There are several papers investigat-
ing the multi-UAV network in the presence of adversarial
jammers [19]. Several survey papers of multi-UAV com-
munication network can be seen in [20]–[22]. In [20],
a comprehensive survey of multi-UAV network is provided,
including network structures, routing and energy efficiency.
H. Wang et. al investigated UAV networks in the cyber-
physical-system perspective, and studied the relationship
of communication, computation and control in UAV net-
works [21]. In [22], the spectrum management for UAV
swarm networks in millimeter-wave perspective was studied.
However, the systematic study on the challenges of intelligent
USCS in the spectrum sharing perspective can rarely be seen
in these works.

ML-empowered spectrum resource management has
drawn a lot of attention recently [23]. It turns out that
ML techniques provide wireless communication systems
with excellent spectrum resource management capabilities
[24]–[28]. However, most of these works studied the spec-
trum resources management in 5G or IoT communication
systems. ML-empowered spectrum resources management
methods face new challenges in USCS.

III. CHALLENGES AND REQUIREMENTS OF INTELLIGENT
UNMANNED SWARM COMMUNICATION SYSTEMS
A. CHALLENGES
As shown in Fig. 2, compared with the current communica-
tion systems, the USCS has new challenges and features.
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FIGURE 2. Illustration of five challenges in unmanned swarm
communication system, where multiple UAVs collaborate to execute the
same task in a wide area. Jammers transmit radio jamming to interrupt
the communication system.

1) TASK-DRIVEN
The essential and inherent requirement of USCS is task-
driven. Different tasks correspond to different task priori-
ties, communication demands, resource utilization priorities
and so on. On one hand, tasks determine the USS forma-
tion control. To achieve good performance through efficient
coordination of multiple agents, accurate maintenance of a
task-oriented geometric swarm formation is needed. Hence,
periodically exchanging the control information between
agents is essential. On the other hand, traffic data trans-
mission, e.g., information dissemination and data collection,
also follows the task-driven characteristics such as through-
put requirements and delay tolerance. Therefore, compared
to other communication systems, different communication
demands of USCS are placed.

Different tasks require different utility functions and effec-
tiveness evaluation models. To satisfy the requirements
of tasks, USCS has to properly optimize communication
resource (such as spectrum, power and relay) according to
the effectiveness evaluation models. In the perspective of
mathematical formulation, the essence of task-driven is the
required constraints (e.g., delay, throughput and packet error
rate) when optimizing the spectrum sharing.

2) GROUP COLLABORATION
In order to complete the complex tasks such as post-disaster
search and terrain scanning, each agent has to work in a
collaborative and cooperative way. For USCS, group col-
laboration has three aspects. First, collaborative flight con-
trol information needs to be frequently exchanged with high
priority and robustness. Second, agents are required to dis-
seminate and fuse the task-related traffic information col-
laboratively such as topographic data, which usually needs
high transmission rate. Third, for communication decision
making such as spectrum access, transmission power control
and routing, information exchange to coordinate actions and
avoid conflict are needed. The process of finding effective
joint decisions of USCS can be accelerated by information
exchange. However, frequent information exchange yields

high communication overhead, which may decrease the effi-
ciency of USCS. The tradeoff between system efficiency and
overhead information exchange must be considered.

3) HIGH DYNAMICS
In USS, highly mobile nodes such as drones cause that
the network topology changes rapidly, leading to dynamic
change of network connection relationship and interference
relationship. Besides, the geographical environment decides
the surrounding electromagnetic environment. Compared to
the conventional low-mobility ad hoc network, the USCS
needs more flexible and rapid reconfiguration capabilities.

4) ULTRA-DENSE
In some tasks the density of swarm is large, puting high
requirements on the resource management. First, compared
to the sparse distribution, ultra-dense agents have to exchange
control information more frequently to avoid collision.
Second, the ultra-dense scenario will cause the severe con-
flict of wireless resources and internal interference. How to
allocate the limited resources to large number of agents in a
local area is challenging.

5) JAMMING-RESISTANCE
If the physical strike is not considering, disabling the ‘‘neural
system’’ is the most effective way of destroying USS. One of
the most efficient and direct methods is using the physical-
layer radio jamming, which can ‘‘deafen’’ every agent in
USS. As a result, agents can not collaborate, and the swarm
control will fail. More severely, the USS may be destroyed
due to the physical collision. Jamming-resistant means that
even under jamming attack, the basic requirements for wire-
less communication can be satisfied. It requires the USCS
to not only coordinate the internal communication between
agents, but also confront the external jamming attack.

B. REQUIREMENTS
ML techniques can be used in many fields such as pattern
recognition, prediction, decision making and so on. In this
paper, we mainly study the ML-empowered spectrum shar-
ing methods in the aspect of intelligent decision making.
Based on the previous five challenges, we can summarize
the requirements for the communication decision making as
follows.

1) SPECTRUM COLLABORATION AND CONFRONTATION
From the perspectives of spectrum, we can summarize two
requirements for USCS as follows.

• Spectrum collaboration. Spectrum collaboration focuses
on exploiting spectrum resource collaboratively in order
to avoid resource conflict and waste. As described in
challenges, agents of the USCS need to coordinate the
usage of spectrum to realize high-efficiency commu-
nication. Although cognitive radio has promoted the
development of dynamic spectrum access and improved
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the utilization of spectrum, the current spectrum man-
agement of wireless ad hoc network is mainly in a
preplanned stage. In order to realize the dynamic spec-
trum sharing and task-driven resource allocation, more
flexible and adaptive spectrum collaboration is needed.

• Spectrum confrontation. Spectrum confrontation aims
to cope with external threats while exploiting the
spectrum. Due to the open nature of electromagnetic
spectrum, USCS is under serious threat of adversarial
jamming or unintended interference, which is one of
the fatal weaknesses of USS. While agents collaborate
the spectrum usage with each other, they also need to
cope with the external spectrum attack and ambient RF
signal. The methods of spectrum confrontation against
malicious jammer and background environment should
be designed.

Note that, we have proposed the concept of spectrum
collaboration and spectrum confrontation in [29]. The work
in [29] is from the perspective of anti-jamming communica-
tions, where a dynamic spectrum anti-jamming communica-
tion framework was proposed. In this paper, we reconsider
the spectrum problems in the perspective of USCS.

2) MULTI-AGENT COLLABORATIVE DECISION MAKING
In the perspective of problem formulation, it is intractable
to simultaneously optimize spectrum collaboration and
confrontation. Since all the agents have individual decision-
making ability, any agent’s decision (such as channel
accessing, routing or offloading) will affect the spectrum
environment and then impact the system performance. The
goal of multi-agent decision making in the USS is to find
the efficient joint actions. When an agent makes a decision,
it should consider others’ decisions in a collaborative way.
However, this may cause a huge combinatory action space for
the ultra-dense scenario, which will dramatically increase the
algorithm complexity. Therefore, suitable multi-agent collab-
orative decision-making algorithms are needed to realize the
spectrum collaboration and confrontation in USCS.

IV. MULTI-AGENT LEARNING FRAMEWORK FOR
INTELLIGENT UNMANNED SWARM
COMMUNICATION SYSTEMS
In Fig. 3, a multi-agent learning framework for a USCS
is presented. Basically, there are two kinds of multi-agent
learning structures, i.e., mobile-computing-assisted structure
and distributed structure. For the agents in a USCS, mini-
mizing the inter-agent resource conflicts and maximizing the
anti-jamming performance are two coupled problems. It is
intractable to solve them simultaneously, especially when the
jamming is dynamic (e.g., the dynamic power or frequency
hopping). For the energy-limited and computing-power-
limited mobile agents, mobile-computing-assisted multi-
agent learning structure is a good candidate. However, the
distributed multi-agent learning structure is needed when the
mobile computing structure does not exist.

FIGURE 3. Multi-agent learning framework for the intelligent unmanned
swarm communication system with mobile-computing-assisted structure
and distributed structure. In the mobile-computing-assisted structure,
agents are assisted by the mobile edge or mobile cloud to do the
sophisticated computation and make joint actions. In the distributed
structure, agents do the distributed computation and make distributed
decisions to collaborate.

A. MOBILE-COMPUTING-ASSISTED MULTI-AGENT
LEARNING
The mobile-computing-assisted structure is considered to be
practical for a USCS. In a UAV swarm network, for exam-
ple, a powerful UAV with more power supply and com-
putation resource can act as the mobile edge server. Here,
the server serves as a computing center or a central controller.
The advantages are several-fold with the help of the edge
server. First, the delay of data processing is decreased. Low
delay is suitable for the highly dynamic scenario. Second,
the distributed collaboration between agents is facilitated.
Third, there can be multiple servers to manage the scarce
spectrum resource in the ultra-dense USCS, which forms a
hierarchical network structure. Fourth, some advanced but
computation-demanding anti-jamming algorithms such as
deep reinforcement learning can be used in the server to
enhance the anti-jamming performance [29].

Note that, the mobile-computing-assisted structure is dif-
ferent from the centrally controlled structure since agents
are intelligent to choose to whether be assisted by the
server or make decisions autonomously. However, to take
full use of the mobile-computing-assisted structure, two parts
should be designed and optimized.

1) FUSION AND DISSEMINATION
The information fusion and dissemination is the primary
feature of this structure. In terms of fusion, it can be separated
by task aspect and algorithm aspect. Task-related data such
as pictures are uploaded to the server for further processing.
In the algorithm aspect, agents upload some key information
such as spectrum state to feed the spectrum sharing algorithm
running in the server. In terms of dissemination, the server
disseminates the results of the data fusion and the outputs of
multi-agent collaboration algorithm. In the task aspect, agents
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can carry forward the tasks based on the fusion results. In the
algorithm aspect, agents take actions according to the algo-
rithm outputs to achieve high communication performance.
In the fusion and dissemination part, mobile edge computing
techniques [30] can be used to optimize the communication
cost of uploading.

2) MOBILE-COMPUTING-ASSISTED MULTI-AGENT
COLLABORATION
In the mobile-computing-assisted structure, the learning pro-
cess of the complex multi-agent collaborative algorithms can
be handed over to the edge server. As shown in the upper
part of Fig. 3, the server may have a deep neural network
(DNN) which is used to approximate the multi-agent collab-
orative decision-making function. The input of the DNN is
the algorithm-related information such as spectrum state and
communication resource availability. The output can be the
joint action of agents. Then, this DNN is trained according
to the feedback (i.e., obtained system communication perfor-
mance such as throughput, delay and so on). With the help
of the server, the difficulty of multi-agent collaboration is
significantly decreased compared to the no-server case.

B. DISTRIBUTED MULTI-AGENT LEARNING
As shown in the lower part of Fig. 3, agents are in a distributed
multi-agent learning structure, each of whom can be equipped
with a DNN. In this structure, each agent senses the spec-
trum state, makes decisions, obtains feedback, and then trains
the DNN. In order to realize the multi-agent collaboration,
it is important to study and model the multi-agent decision-
making relationship. Game theory is a powerful mathematical
tool to study and model the interactions of a group of decision
makers. It has been widely applied in wireless communica-
tions [31]–[34]. Using game theorywe can analyse the impact
of decision-making interactions of the agents and predict the
outcome.

1) GAME MODELING
Generally, a game can be expressed as G = {N ,An, un},
where N = {1, · · · ,N } is the set of participant agents, An
is the available action set of agent n (e.g., available channel,
transmit power, etc.), and un denotes the utility function of
agent n. In terms of an agent, the utility function is the
evaluation of the decision. The goal of agents is to maximize
un by adjusting their decision-making policy. The reasons to
adopt game theory are twofold:
• Distributed collaboration: In conventional wireless net-
works, users are mostly self-interested and whose goal is
to maximize their own utilities. However, selfish actions
will result in poor performance in the USCS. To realize
spectrum collaboration, the spectrum-involved actions
must be restrained by some collaborative rules. For
example, if the action of each agent considers not only
the payoff it can get but also the punishment of the
negative effects on other agents, then the collaboration

of the network can be realized spontaneously. According
to this idea, the collaborative rules of the spectrum shar-
ing games can be designed so as to reach the effective
equilibrium.

• Confrontational decision-making: Game theory can also
model the behaviors of jammer and analyse the interac-
tions between the USCS and the jammer. By predicting
the equilibrium of the confrontational game, the anti-
jamming strategies are obtained.

There are many mature game models that are widely used
in wireless communication problems and appropriate for the
USCS.
• Coalition formation games: The coalition formation
game is a kind of cooperative games [35], [36]. Themain
idea of coalition formation games is to realize the effect
of ‘‘1+ 1 ≥ 2’’. Generally, if the utility after forming a
coalition is larger than the sum of the individual utility
of each member, the coalition is formed. The coalition
formation principles can be designed by considering task
factors. Therefore, the coalition game is an alternative
method which enables the agents to achieve task-driven
collaboration. In the next section, a case study based on
the coalition game is introduced.

• Evolutionary games: The evolutionary game is a useful
method for its ability to model dynamics in wireless
communication as an evolving game, which is widely
used in communication resources management [37].
This game model may be helpful for the highly dynamic
challenge of USCS.

• Mean-field games: The mean-field game is suitable for
the large-scale network. In a mean-field game, the effect
of other agents’ decisions on an agent is approximated
by a mean effect which is assumed to be caused by
a virtual agent. In this way, each agent only needs to
consider a virtual agent when it is making decisions, thus
significantly decreasing the complexity of multi-agent
decision making. This game model is promising in the
ultra-dense network [38].

• Confrontational games: As discussed in [29], Stack-
elberg games [34] and zero-sum games [39] are two
mostly used game types to model the confrontational
interactions between legitimate agents and malicious
jammers. However, in practice, the accurate information
of jammers is unavailable. Bayesian games can be used
to estimate the jammers’ strategies and improve the anti-
jamming performance.

• Markov games: Markov games are the extension of
Markov decision process in a multi-agent problem.
As shown in [29], confrontational games have to model
jammers’ strategies, which are usually unknown to the
agents in practice. By treating the jamming as the envi-
ronment, Markov games enable agents to find the
optimal anti-jamming policies in an unknown jam-
ming environment. In the next section, a case study is
presented.
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Generally, game theory investigates the internal interactions
(such as collaboration and competition) and the external con-
frontation. It theoretically analyses the existence and proper-
ties of stable outcomes of a game. But beyond that, algorithms
in the framework of game theory are needed to guide agents
how to reach the equilibrium of the game.

2) GAME-THEORETIC LEARNING
Game-theoretic learning algorithms are designed to enable
the agents to autonomously find the effective solutions of the
game. The game-theoretic learning model can be expressed
as [40], [41]:

an (k + 1)

= Fn [an (k) , a−n (k) , un (k) , · · · , an (1) , a−n (1) , un (1)]

(1)

where an (k) and a−n (k) denote the action of agent n and
the action profile of all the rest of agents at the kth decision-
making period, utility function un (k) is related to an (k − 1)
and a−n (k − 1), and Fn (·) is the policy function. As can be
seen, the decision-making at the (k + 1)th period is adjusted
according to the previous action and received reward that has
happened. This kind of online learning method can overcome
the disadvantages of dynamic and unknown environment.
In the framework of game theory, the learning algorithms
must at least guarantee the system converge to an equilibrium.
More than that, there may exist multiple equilibrium solu-
tions. It is the best for the algorithms to achieve the optimal
equilibrium [40], [41].

Note that, the mentioned distributed multi-agent learning
methods can also be used in the mobile-computing structure
in a manner of centralized learning with decentralized exe-
cution. With the advantages of the mobile-computing struc-
ture and advanced algorithms, the well-designed multi-agent
learning framework is promising to address the challenges of
the USCS.

V. CASE STUDY OF MULTI-AGENT LEARNING
EMPOWERED SPECTRUM SHARING
In this section, we provide case studies of multi-agent learn-
ing empowered spectrum sharing for the USCS.

A. MOBILE-COMPUTING-ASSISTED
MULTI-AGENT LEARNING
For a dynamic and unknown environment, the online learning
algorithms such as reinforcement learning enable USCS to
adapt to the environment in an ‘‘action-feedback-adjustment’’
manner, as shown in Fig. 3. Specifically, the USCS first
explores the unknown spectrum environment by repeating the
reinforcement manner and accumulates experiences. Then
the agents of USCS gradually learn the decision-making
policy which can bring high rewards. However, the online
learning process is time-consuming. High dynamics charac-
teristic will cause the learning algorithm to fail to converge
on the effective decision-making policy.

An ‘‘offline-learning online-planning’’ decision-making
framework was proposed in [42], which was applied to order
dispatch in a on-demand ride-hailing platform. In order to
optimize the long-term accumulative rewards in stead of
focusing on the immediate reward, authors proposed to first
process the historical data produced by extensive offline
experiments to derive the future expected value being in a
particular state. Then, the sequential order dispatch decisions
with high future accumulative rewards were made in real-
time by taking into account both the immediate reward and
the future expected value. For more details of the algorithm,
the reader is referred to [42]. An obvious advantage of
this decision-making framework is that a large amount of
time-consuming and power-wasting operations to deal with
the complex problem can be completed offline. However,
the effectiveness of this framework is based on the premise
that the historical data can simulate the data obtained in the
actual environment.

Fortunately, particular tasks have particular requirements
for USCS. For example, the deployments and formations of
a UAV swarm are relatively fixed due to the requirements
of tasks, i.e., topologies and interference relationships are
relatively fixed. Based on this fact, we can utilize the charac-
teristics to optimize the spectrum-involved decision making
with the help of server. Specifically, for those commonly used
formations and other requirements, we can solve offline the
spectrum resource allocation problems using mathematical
methods, such as dynamic programming, game-theoretical
learning, and store the obtained schemes in the server. When
executing tasks, the USCS can match the optimal resource
allocation schemes based on current formation, task and loca-
tion, which guarantees the effectiveness and timeliness.

B. DISTRIBUTED MULTI-AGENT LEARNING
1) TASK-DRIVEN DYNAMIC SPECTRUM ACCESS
In the task-driven USCS, control channel (CCH) and traf-
fic channel (TCH) are critical to the quality of the task
which convey control information (such as formation control
commands) and task-related information (such as pictures),
respectively. The transmission of control information is
required to be periodical and reliable, while that of data infor-
mation required to be high rate. As discussed in Section III-A,
the design of CCH and TCH depends on the task. Most
existing approaches only focused on either CCH or TCH,
while ignoring the coupling relationship between them.
Spectrum collaboration between the CCH and TCH can also
improve the spectrum efficiency. Partially overlapping chan-
nels (POCs), the channels sharing within their own channel
boundaries, can solve the intractable coupling problem [43].
On one hand, the interference can be reduced when two
agents work on different channels. On the other hand, the con-
trol information exchange between agents can be performed
using overlapping area so long as the signal-to-noise ratio
(SNR) between them is above a threshold. Therefore, without
channel switching, the data transmission under formation
keeping can be achieved.
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When considering task-driven in the aspect of swarm for-
mation control, the control information exchange link is a
two-way choice, i.e., the link can be established when agents
reach a consensus. To capture the two-way choice feature,
two-way consensus game is a good candidate [44]. In this
game, when two agents choose each other at the same time,
the communication link between them can exist. It is inves-
tigated in [45] that different formation control method cor-
responds to different communication topology. Hence, joint
channel and link selection applying two-way consensus game
is a meaningful study in the task-driven USCS.

Consider a USCS under formation keeping operating on
POCs. The task time can be divided into slots. In each slot,
agents conduct information exchange to keep swarm for-
mation and then transmit traffic data. Two-way consensus
game is first proposed in [44], where dynamic spectrum
access in UAV communication networks when considering
leader-follower formation keeping was investigated. Each
agent chooses channel according to the mutual interference
as well as information exchange cost. To capture the tradeoff
between them, an experiment-dependent tradeoff factor β is
assumed. Then, the utility function of the proposed game is
defined as the combination ofmutual interference in TCH and
information exchange cost in CCH.

FIGURE 4. The illustration of the tradeoff between interference level and
information exchange cost [44].

In [44], a two-way consensus game and a distributed learn-
ing based dynamic spectrum access algorithm are proposed.
A USCS with 16 UAVs based on four finger squadron forma-
tion shape is considered. As can be seen in Fig. 4, different
tradeoff factors represent the emphasis of the utility function,
i.e., the importance of interference and exchange cost. Hence,
it is important to choose suitable factor by practical exper-
iments. Moreover, the performance comparison results are
depicted in Fig. 5. Note that best Nash equilibrium (NE) and
worst NE are obtained by applying best response algorithm,
which can be viewed as the upper and lower bounds of the
game. According to Fig. 5, some important results can be
observed:

FIGURE 5. UAV communication network utility versus the number of
available channels and UAVs, respectively, with different algorithms.

• As the increasing of the number of channels, the aggre-
gate utility shows an upward trend.

• As the formation scale increases, the aggregate utility
decreases. The reason is that the large number of UAVs
yields not only the serious mutual interference but also
the higher information exchange cost.

• The learning algorithm is close to the best NE and far
better than the random solution. The effectiveness is
validated.

2) TASK-DRIVEN DATA DISSEMINATION
For the sake of a task, agents in a USCSmay have overlapping
data requirements. Repeatedly transmitting the same data
and long-distance transmission will result in high transmis-
sion overhead. To solve this problem, a resource allocation
optimization method based on distributed data content in a
flying ad hoc network (FANET) was proposed in [46]. The
throughput maximization problem of resource allocation was
constructed as a coalition formation game framework in this
work.

FIGURE 6. Collaborative data multi-hop transmission considering
coalition formation in FANET [46].

Based on the formed coalitions, the task will be performed
more collaboratively and efficiently. As shown in Fig. 6,
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a scenario where a FANET executes reconnaissance and
surveillance tasks has been considered in [46], where UAVs
share the same spectrum resource. The central UAV dissem-
inates the required data of other UAVs. In order to maximize
the utilities, UAVs form coalitions according to their data
requirements and locations to increase the throughput and
decrease the overhead of transmission. The data transmis-
sion and coalition selection problem are modeled as graph
game and coalition formation game respectively. Through
the design of the utility function, it has been proved that
both games have stable solutions. A learning algorithm was
proposed to find these solutions. To show the effectiveness,
representative simulation results are given in this paper. More
results can be found in [46].

FIGURE 7. Throughput versus amount of UAVs with different algorithms.

Fig. 7 compares the throughput performance with differ-
ent algorithms [46]. Two criterions of coalition formation
are compared, i.e., coalition order/Pareto order based coali-
tion selection algorithm (CO-CSA/PO-CSA). Two bench-
mark algorithms are compared, i.e, onetime-CSA algorithm
which forms coalitions one time without considering the data
content, and no coalition formation algorithm in which all
data are transmitted directly by the central UAV.As the results
show, the coalition game based algorithms enable theUAVs to
collaboratively use the shared spectrum resource and achieve
high performance.

3) JAMMING-RESISTANCE
One of the most challenging parts in USCS is that agents
have to find a way to avoid collisions with others’ decisions
(spectrum collaboration) and simultaneously adapt to the
adversarial spectrum environment (spectrum confrontation).
As introduced in Section IV-B, game theory can be used
to model the internal conflict relationship between agents
and external adversarial relationship between agents and
jammers. Based on this, a Markov game based collabora-
tive Q-learning algorithm was proposed in [47] to solve the
multi-agent anti-jamming channel access problem, then a
followed work proposed by Xu et al. [48] applied this algo-
rithm in a multi-UAV communication network. As illustrated

in [47] and [48], the collaborative Q-learning algorithm
enables multiple agents to not only coordinate their channel
access decisions, but also avoid the dynamic jamming attacks
(swept jamming).

However, to apply to the USCS, several issues need to
be solved. First, this algorithm is only suitable for small-
scale networks. In order to optimize the global objective
(e.g., network communication throughput), every agent takes
the joint action of other agents into consideration, which
results in the problem that the computation complexity and
storage space (the dimension of Q-table) increase exponen-
tially with the number of agents, i.e., multi-agent combina-
torial explosion. What’s more, to achieve the collaborative
effect, the algorithm requires every agent to inform others
of the algorithmic information (Q-table). Due to the com-
binatorial explosion, the communication cost is significant
and impractical [29]. Second, this algorithm only considers
single-link anti-jamming communication. However, multi-
hop communication exists in the USCS to realize long-
distance transmission. Multi-hop anti-jamming mechanism is
needed.

VI. FUTURE RESEARCH DIRECTIONS AND CONCLUSIONS
A. FUTURE RESEARCH DIRECTIONS
1) LIGHTWEIGHT AND CUSTOMIZED ML ALGORITHMS
Many ML algorithms such as deep learning require pow-
erful computation capability and time-consuming training.
An ‘‘offline-training-online-using’’ manner is appropriate for
USCS. However, due to the high dynamics, agents have
to online adapt to the real spectrum environment. Hence,
lightweight and customized ML-enabled spectrum sharing
algorithms which also enable the agents to online learn the
spectrum environment are needed.

2) FAST AND ROBUST SPECTRUM DATA PROCESSING
The cognition of spectrum state is vital for the intelligent
spectrum sharing algorithms to obtain the effective policies.
However, due to the limited processing power of UAVs and
characteristics such as high dynamics, ultra-dense and jam-
ming attack, conventional spectrum sensing and spectrum
data processing methods may not satisfy the USCS’s require-
ments for the delay and accuracy.

3) TASK-DRIVEN INFORMATION TRANSMISSION
In Fig. 8, we categorize the information transmitted in USCS
into three kinds: network-related, traffic-related and algo-
rithmic. Network-related information is mainly responsible
for maintaining the network of USCS, such as formation
control information and routing information. Traffic-related
information represents the traffic data such as videos and
pictures. Algorithmic information is used to guarantee the
performance of the spectrum sharing algorithms.

In general, the network-related and traffic-related informa-
tion transmission are necessary for aUSCS. This process adds
constraint conditions to the spectrum sharing. But in turn,
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FIGURE 8. Categorization of information transmission in an intelligent
unmanned swarm communication system.

these algorithms can optimize the network-related and traffic-
related information transmission. In the multi-agent learning
framework, algorithmic information exchange can acceler-
ate discovery of successful collaborative spectrum sharing
policies.

However, it is noteworthy that optimizing the task-driven
information transmission is very challenging. First, these
three kinds of information transmission are interrelated. How
to allocate limited communication resource needs intensive
study. Second, excessive information exchange will signif-
icantly increase the communication overhead, which may
instead decrease the system performance. A tradeoff needs
in-depth investigation.

4) TASK-DRIVEN SPECTRUM SHARING STRUCTURE
In conventional ad hoc networks, the concept of cluster is
widely used for the reason that it can facilitate the man-
agement of communication resources and improve network
efficiency. Most of the clustering-based optimization meth-
ods are based on the principle of relative physical locations
of communication nodes. However, task-driven factors must
be considered in USCS problems if the cluster-like structure
is used. As the case study shows, the coalition form game
can realize the task-driven spectrum collaboration which
take both the physical location and task-related factors into
account. The coalition-based spectrum sharing structure in
USCS is a promising research direction.

B. CONCLUSIONS
The spectrum sharing problems for USCS were investigated
in this paper. From the perspective of spectrum collaboration
and spectrum confrontation, five challenges that USCS must
overcome were summarized. In the perspective of ML, two
requirements for the communication decision making of the
agents were proposed. Then, a multi-agent learning frame-
work has been proposed. Based on it, we have introduced
four case studies. Finally, future research directions were
discussed.
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