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ABSTRACT Grayscale image colorization is known as an ill-posed problem because of the imbalanced
matching between intensity and color values. Even given prior hints about the original color image, existing
colorization methods cannot recover the original color image from grayscale faithfully. In this paper,
we propose to embed color information into an invertible grayscale, such that it can be easily recovered
to the original color. However, a vanilla encoding-decoding network cannot produce rich representations
of color information and thus the reconstruction quality is limited. Moreover, due to the neglect of the
discrimination of color information, it cannot embed color information into visually inconspicuous patterns
located in the grayscale. In this paper, we propose a novel color-encoding schema, dual features ensemble
network (DFENet), for the effective embedding and faithfully reconstruction. In particular, we complement
the residual representations with dense representations, to integrate the ability of local residual learning
and local feature fusion. Furthermore, we propose an element-wise self-attention mechanism that highlights
the discriminative features and suppresses the redundant ones generated from the dual path module.
Extensive experiments demonstrate the proposed method outperforms state-of-the-art methods in terms of
reconstruction quality as well as the similarity between the generated invertible grayscale and its groundtruth.

INDEX TERMS Decolorization, colorization, dual features ensemble, convolutional neural network.

I. INTRODUCTION
Color-to-gray conversion is widely applied to aesthetic styl-
ization, monochrome printing and so on. However, the con-
verted grayscale cannot be recovered back to its original color
image due to color information loss during channel reduction.
Existing colorization methods either learning from a large
amount of data [1] or introduce additional priors (e.g., user
strokes [2]), they cannot recover the original color faithfully.
Data-driven colorization learns mapping from grayscale to
color image directly, but this is a one-to-many mapping,
the learned mapping function can never recover the original
colors. On the other hand, leveraging external complemental
information is too sparse for faithful color restoration.

Instead of applying external information, we convert colors
into internal knowledge within the grayscale image. Intu-
itively, we utilize a encoder-decoder structure, to embed
color information in the grayscale image, referred as invert-
ible grayscale, while reconstructing the original colors using
a decoder. We summarize the differences between our
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FIGURE 1. Different pipelines of the proposed method and existing
approaches. Traditional methods need to introduce various kinds of
user-guided hints, while our method automatically generates an
invertible grayscale containing color information for reconstruction.

approach and existing colorization methods in Fig. 1. Though
Xia et al. [3] use a vanilla U-net [4] for the same purpose as
ours, it shows limited embedding and reconstruction perfor-
mances.

To enrich the discriminative representations of the embed-
ding patterns, we propose a novel unified networks to imple-
ment invertible color-to-gray conversion, referred as dual
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features ensemble network (DFENet). The proposed DFENet
consists of a sequence of dual features ensemble blocks
(DFEBs) that are designed to fully explore image features.
Each DFEB is divided into two modules: dual path mod-
ule and ensemble inference module. To distill features with
affluent expressions of color information, the former one
is composed of a series of assembled residual blocks and
dense blocks in a dual path manner. While the latter is
introduced to investigate and exploit the implicit discrimi-
native correlation between the generated features via a com-
bined spatial-wise and channel-wise attention strategy. Such
a design allows to highlight the discriminative features and
suppress the redundant ones generated from the dual path
module, which is more effective for the colorization of invert-
ible grayscale. Meanwhile it could help to produce a more
natural grayscale that owns unrecognizable differences with
ground truth grayscale. Extensive experiments over a large
amount of images demonstrate that the proposed DFENet
outperforms state-of-the-arts in terms of the recovered image
quality, as well as the similarity between grayscale and its
groundtruth.

The main contributions of our work can be summarized as
follows:
• We propose a novel encoder-decoder network, i.e., dual
features ensemble network, for effectively implement-
ing an invertible color-to-gray conversion. It is able to
learn an invertible grayscale with rich and discriminative
color information in the encoding stage, while faithfully
recovering its original colors during decoding.

• Wepresent to incorporate a dual features ensemble block
in our DFENet, which is constructed by a dual pathmod-
ule and an ensemble inference module. By assembling
both types of residual blocks and dense blocks in a dual
path, the dual pathmodule enables the richer color repre-
sentations embedding and decoding. On the other hand,
the ensemble inference module is conducive to highlight
important integrated features while suppressing redun-
dant ones, and thus assures the similarity between the
generated grayscale and its groundtruth. Such a design
makes the invertible grayscale more feasible in practical
applications.

• Extensive experiments conducted on a large amount of
images have validated the superiority of the proposed
approach comparing to the state-of-the-art methods.

II. RELATED WORK
A. DECOLORIZATION
Decolorization converts color images to grayscale and it
is used for many applications, such as monochrome print-
ing, single channel image processing and stylization. Early
color-to-gray methods simply generate grayscale images by
acquiring the lightness channel in the specific color space
(e.g., CIELab color gamut, YIQ color gamut) or obtaining
gray values from linear computation in RGB color space.
However, these simple methods cannot precisely reflect
image details. Recent methods enhance the contrast in either

local-level [5] or global-level [6] features using various mea-
sures, such as high-frequency chromatic components [7],
consistent gradient field notion [8], saliency regions [9], color
orders with respect to the visual context [10], perceptually
important features [11] [8], and gradient correlation [12].
Ancuti et al. [13] propose a multi-scale approach to minimize
artifacts caused by the weight maps. In order to suppress the
artifacts introduced by local contrast conservation process,
Liu and Zhang [14] incorporate a local feature network to
focus on local semantic features. In global-level contrast
conservation process, [14], [15] and [16] propose to save
computational costs via specific designed optimization. But
none of them are invertible such that cannot be well recovered
to the original colors as we do.

B. COLORIZATION
Colorization has been studied for decades, which can be
categorized into two classes, user-guided colorization and
automatic colorization. User-guided colorization uses hints
such as scribbles [17] or histograms [18], aiming at control-
ling the generated color images. However, sparse scribbles
cannot produce vivid colors while histograms cannot produce
semantically correct colors. On the other hand, data-driven
methods free users from tedious annotations and obtain a
unified paradigm of colorization by learning parametric map-
ping from the grayscale to color image. However, as col-
orization is an imbalanced one-to-many problem, the gener-
ated colors tend to be average without enough diversity [1].
Liu and Zhang [19] propose amatching approach to align fea-
tures from both grayscale and referred color image, achiev-
ing correct color transfer in corresponding regions. Unlike
traditional colorization method, Xia et al. [3] propose an
invertible grayscalemethod, such that the generated grayscale
image can be easily converted back with the original colors.
However, they use a vanilla U-net for embedding and decod-
ing, preventing both the invertible grayscale and the recon-
structed color image from a high image quality. We address
this problem by proposing a dual features ensemble network,
achieving a high embedding and decoding performance.

III. APPROACH
In this section, we propose a novel method named DFENet,
which is devoted to generate a grayscale image that can
efficiently recover its original colors. Our framework involves
a fully convolutional encoder-decoder network with color
consistency. The overall architecture of the proposed DFENet
is illustrated in Fig. 2. In order to gain more informative
feature representations as well as considering the nonuniform
distribution of those features for generating more preferable
grayscale and high quality results, we particularly design the
dual features ensemble block (DFEB) as the basic unit in our
network architecture. To beginwith, we elaborate the network
architecture in Section III-A. Then, we present the DFEB
detailly in Section III-B. And the optimization function of the
whole system is discussed in Section III-C.
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FIGURE 2. The architecture of the proposed dual features ensemble network.

A. NETWORK ARCHITECTURE
Our network DFENet involves an encoder-decoder structure
that combines the decolorization and colorization procedures
in a closed loop. Given an input color image I in RGB color
space, the encoder network aims at generating an invert-
ible grayscale image G. Regarding the decoder network,
it attempts to recover the original colors of grayscale G
and the reconstruction is denoted as O. We divide each of
such subnetworks into four stages, that is: 1) Shallow feature
extraction; 2) Dual feature selection; 3) Multi-level feature
fusion; 4) Image reconstruction. Note that the encoder and
decoder adopt a similar architecture except for the channel
numbers of the entrance and exit of each subnetwork, i.e.,
color image is corresponded to 3, while grayscale is corre-
sponded to 1. Hence we mainly discuss the architecture of
our encoder for the sake of simplicity.

1) SHALLOW FEATURE EXTRACTION
As illustrated in Fig. 2, in the very beginning of our encoder,
two flat convolutional layers with a filter size of 3 × 3
are leveraged to extract shallow features of the input color
image I , which is formulated as follows:

F1
conv = E1

conv(I), (1)

where E1
conv(·) indicates the first flat convolutional layer in

our encoder. Note that we link the shallow featuresF1
conv with

the layer next to the output layer of encoder network. Such a
long-range connection design could facilitate the propagation
of low-level information, and benefits the optimization pro-
cedure from residual learning as well.

Then, the shallow features F1
conv is fed into the second flat

convolutional layer E2
conv(·), that is

F2
conv = E2

conv(F
1
E ). (2)

F2
conv is utilized as the input to subsequent encoding layers.

2) DUAL FEATURE SELECTION
The generated shallow features would then be fed into
several dual features ensemble blocks (DFEBs). In each
DFEB, we assemble several residual blocks [20] and dense
blocks [21], and highlight more discriminative features via
a self-contained attention mechanism. The detailed architec-
ture of the proposed DFEBwill be explained in Section III-B.
The benefits of the dual feature selection stage are two-folds:
first, the dual path design facilitates the re-exploration and
re-usage of the features; Second, the attention mechanism
provides a more reasonable distribution of the features such
that the redundant features are suppressed and the discrimi-
native features can be better exploited.

3) MULTI-LEVEL FEATURE FUSION
During this stage, we fuse the multi-level features gener-
ated from different DFEBs for the reconstruction of the
final results. Compared with single-level features, such a
strategy could help to excavate a more comprehensive fea-
ture representation and thus improve the performance of our
approach. Specifically, those hierarchical features are first
concatenated and then fed into two consecutive convolu-
tional layers E3

conv(·), E
4
conv(·), respectively with filter sizes
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FIGURE 3. Illustration of the proposed dual features ensemble block.

of 1× 1, 3× 3. That is,

Ffused = E4
conv(E

3
conv([F

1
DFEB, · · · ,F

J
DFEB]))+ F

1
conv, (3)

where [·] denotes concatenation operation, and J indicates the
total number of DEFBs.

4) IMAGE RECONSTRUCTION
Once the fused features are obtained, the encoder network
would generate the grayscale G (or colorize the grayscale in
regard to decoder) by the following formation:

G = Tanh(E5
conv(Ffused)). (4)

B. DUAL FEATURES ENSEMBLE BLOCK
Conventional encoder-decoder network are extensively uti-
lized in many image processing tasks and usually constructed
in a single path topology. On the contrary, we are interested
in exploring a different network topology for a better feature
representation. Inspired by ensemble learning, we investigate
a dual path design of basic blocks in our model, namely Dual
Features Ensemble Block (DFEB). Each DFEB is consist of
two modules, i.e., dual path module and ensemble inference
module. The former one is constructed by two types of blocks,
that is, residual blocks and dense blocks, while the latter is uti-
lized for the inference of the ensembled features. The detailed
structure of the proposed DFEB is illustrated in Fig. 3. And
the output of the jth DFEB is formulated as follows:

FjDFEB = A · [FQres,F
K
dense]+ F

j−1
DFEB, (5)

where Q is the total number of the adopted residual blocks,
K is the number of dense blocks. Thus FQres and FKdense denote
the feature maps generated from the last residual block and
dense block in the DFEB respectively. Note that when j = 1,
F0
DFEB indicates the feature maps F2

conv. And A is generated
by our attention mechanism.

From a perspective of feature representation, the supe-
riority of residual blocks is that achieves a reuse of the

preceding low-level features, due to a residual connection.
Dense blocks, on the other hand, could keep exploring novel
features because of the dense connection. To exploit different
advantages of these two types of blocks, we attempt to arrange
them in a single DFEB via a dual path manner.

Instead of simply concatenating the generated feature
maps, we subsequently consider to delve into a better distri-
bution of them for improving the performance. Specifically,
we introduce an attention mechanism into the DFEB for bet-
ter evaluating and exploiting the different importance of the
concatenated feature maps. The proposed attention technique
contains two parts: spatial-wise attention and channel-wise
attention. And Eq. (5) can be reformulated as

FjDFEB = Conv1×1[As · [FQres,F
K
dense],Ac · [FQres,F

K
dense]]

+Fj−1DFEB, (6)

where As indicates the spatial-wise attention, and Ac indi-
cates the channel-wise attention. Regarding the calcula-
tion of spatial-wise attention, the concatenated feature maps
[FQres,FKdense] are first fed into a stride-2 convolutional layer
with a filter size of 3 × 3, and then upsampled by a cor-
responded deconvolutional layer for a size match, which is
formulated as follows:

As = Sigmoid(Deconv(ReLU(Conv3×3([FQres,F
K
dense])))).

(7)

Note that for alleviating the computational burden, we use
a combination of stride-2 convolutional and deconvolu-
tional layers here rather than a general choice of several
stride-1 convolutional layers to obtain the spatial-wise atten-
tion. Applying spatial attention to deconvlutional layers can
further regularize the features response in the upsampling
process.

To aggregate the spatial information and gain the channel-
wise attention Ac, we first use average pooling to shrink each
channel of the feature maps [FQres,FKdense] along the spatial
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TABLE 1. Ablation study with respect to different components of the proposed dual features ensemble block.

dimension, and then fed it into two consecutive convolutional
layers. That can be written as

Ac = Sigmoid(Conv1×1(ReLU(Conv1×1(Avgpool

([FQres,F
K
dense]))))). (8)

C. OPTIMIZATION FUNCTION
The whole optimization function is defined by three parts,
that is, luminance consistency loss Ll , color consistency loss
Lc and perceptual loss Lp. Ll forces a similarity between the
generated grayscale and the groundtruth one. Lc constrains
the color accuracy. And LP serves for ensuring a better visual
perception of the colorized results. Hence, the overall objec-
tive L is formulated as

L = λ1Ll + λ2Lc + λ3Lp, (9)

where λ1, λ2, λ3 respectively denote the balance factors.

1) LUMINANCE CONSISTENCY LOSS
We first consider that the invertible grayscale should be
highly similar to the groundtruth. In this case, the embedded
color information are more unrecognizable, and thus be more
feasible for practical applications. Given a groundtruth lumi-
nance image Y , we introduce a luminance consistency loss
to confine the generated grayscale G, which is formulated as
follows:

Ll =
1
M

M∑
i=1

‖G(i)
− Y (i)

‖1, (10)

where G(i) denotes the ith generated grayscale image, and
Y (i) denotes the corresponded groundtruth. M indicates the
total number of the training samples, ‖ · ‖1 represents the L1
norm. Note that we obtain the groundtruth Y by extracting
the luminance channel from the corresponded color image in
a CIELab color space.

2) COLOR CONSISTENCY LOSS
To faithfully recover the original colors, we then utilize a
color consistency loss in our objective that constrains the
restored results O via utilizing the input color image I , that is

Lc =
1
M

M∑
i=1

‖O(i)
− I (i)‖1. (11)

Such a pixel-wise similarity constraint can effectively
improve the color accuracy of the outputs.

3) PERCEPTUAL LOSS
Another problem we concern about is that just keeping a
pixel-wise consistency could not guarantee a fine visual
perception of the recovered results. To exploit the visually
important information for a better reconstruction, we also
adopt a perceptual loss [22] Lp, which is defined by

Lp =
1
M

M∑
i=1

‖V (O(i))− V (I (i))‖F , (12)

where V (·) indicates the specified layers of VGG [23] net-
work, and ‖ · ‖F denotes the Frobenius norm.

D. IMPLEMENTATION DETAILS
In the proposed DFEB (see Fig. 3), three convolutional layers
followed by the ReLU activation function are utilized to con-
struct each dense block. And the cascaded dense blocks that
considered multi-level information are beneficial for feature
reuse. In regard to each residual block, we leverage three
bottleneck-based residual layers [20] to refine features. The
structure of the decoder is similar to the encoder, except for
the number of input and output channels. As a result, when the
generated grayscale is fed into the decoder, the number of the
input channel is set to 1 whereas that of output channels is
set to 3.

IV. EXPERIMENTS
A. TRAINING DETAILS
We implement the proposed method in Pytorch on a PC
with a Nvidia Geforce GTX 1080Ti GPU and a Intel(R)
Core(TM) i7-6859K CPU @ 3.60GHZ. We use the Pascal
VOC 2012 dataset [24] for training and testing following [3].
This dataset contains 17125 color images with different con-
tents. We divide the dataset randomly into training part con-
taining 13758 color images, and the remained images are
used for testing. Input images are resized to 256× 256× 3
resolution during training. However, arbitrary sizes of images
can be processed during testing.

In our experiments, we train the proposed network from
scratch with a batch size of 8 in 200 epochs, and the Adam
solver is adopted to optimize model. The learning rate is set to
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FIGURE 4. Evaluation on the generated invertible grayscale. Our method encodes color information into grayscale image with inconspicuous
patterns (i) (comparing to (g)), while it can recover faithful colors (e). Feeding the raw grayscale image to the network generates random
colors (c).

FIGURE 5. Qualitative comparisons with state-of-the-arts in color-encoding patterns and recovered image quality. The second row shows the
grayscale results, the third row shows the reconstructions, and the last row displays the different maps. PSNR/SSIM are shown in subtitles.

0.0001 and unchanged in the first 100 epochs. Then it decays
to zero linearly in the following 100 epochs. This setting
contributes to find the sub-optimal solution space fast at the

beginning and then fine-tunes the parameters in a smaller
step. For the hyper-parameters in the loss function, we empir-
ically set λ1 = λ2 = λ3 = 1 in all of our experiments.
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FIGURE 6. Qualitative comparisons with state-of-the-arts in color-encoding patterns and recovered image quality. The second row shows the
grayscale results, the third row shows the reconstructions, and the last row displays the different maps. PSNR/SSIM are shown in subtitles.

In practice, we observe that the value ofLp is about one order
of magnitude higher than the ones of Lc and Ll . As a result,
the optimization of the whole system is more influenced by
Lp under this parameter setting. This implies the importance
of a fine visual perception of the reconstructions.

B. METRICS
To measure the similarity between two images, three metrics
are widely used: mean absolute error (MAE), peak signal
to noise ratio (PSNR), structural similarity (SSIM). These
three metrics are used for quantitative evaluations between
the recovered color image and original color image (color
consistency), and between the generated grayscale image and
L-channel of the original image (luminance consistency).

C. ABLATION STUDY
1) DUAL FEATURES ENSEMBLE BLOCK ANALYSIS
To demonstrate the effectiveness of our DFEB, we break
down the proposed DEFB into different components, the Res-
Block and DenseBlock in the dual path, and the spatial-
and channel-wise attention modules. We compare different

combinations of these components in Table 1. We can see
that ResBlock and DenseBlock show different responses for
the task of color recovery, and particularly ResBlock per-
forms poorly in this task. However, our dual path ensem-
ble demonstrates superior performance over the individual
path. By introducing attention mechanism, structures #4, #5,
#6, #7 obtain higher scores in PSNR and SSIM. Both two
attention mechanisms show effectiveness to luminance and
color consistencies. Note that in Section III-B (Eq. (7)) we
apply spatial attention in deconvolutional layer rather than
convolutional ones to regularize the features response in the
upsampling process. We compare to the traditional spatial
attention on the convolutional layers (structure #7), and our
design indeed brings superior performance (structure #6) over
the traditional design as regularizing the upsampling process
is vital for image reconstruction.

2) OBJECTIVE FUNCTION ANALYSIS
We further examine the contributions of different loss func-
tions. As shown in Table 2, adding the color consistency loss
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FIGURE 7. Comparisons with user-guided and automatic colorization methods. [1], [18] and [27] are data-driven colorization methods, while [17]
involves user-guided hints. Both methods cannot restore the original colors faithfully as we do. Image (d), image (i), image (n) and image (s)
respectively visualize indistinguishable embedding patterns of our invertible grayscale.

TABLE 2. Ablation study with respect to different loss functions.

Lc only leads to the best recovery result, since it is a simple
reconstruction task that ignores the intermediate grayscale
image. By adding a luminance consistency loss Ll , the gen-
erated grayscale achieves a high similarity to the GT lumi-
nance, while the performance of the recovery drops by 2.7dB
of PSNR. This implies that ensuring a proper intermediate
form introduces difficulties in the color recovery. The per-
ceptual lossLp helps achieving a good balance between color
consistency and luminance consistency. All these results also
demonstrate the effectiveness of our network design, and we
can perform well without complex loss functions.

3) EMBEDDING AND RECOVERY ANALYSIS
Our model embeds color information into inconspicuous pat-
terns within the invertible grayscale. As shown in Fig. 4,
the embedding patterns show grid-like structure that almost
invisible to human. Furthermore, the recovered results are
very similar to the original inputs. To demonstrate the unique
properties of our embedding patterns, we also feed the orig-
inal luminance channel to the network. Fig. 4 (h) shows that
given a clean grayscale, the proposed network will assign
random colors according to the grayscale distributions.

D. COMPARISON WITH STATE-OF-THE-ARTS
The work of Xia et al. [3] is the only one that shares the
same spirit to ours for generating invertible grayscale. This
work uses a vanilla U-net [4], and therefore cannot achieve
a high quality of color information embedding and recovery.
To better evaluate the proposed method, we further compare
to advanced feature extraction convolutional block designs,
i.e., ResNet [20], DenseNet [21], RDN [25], and RNAN [26]
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FIGURE 8. Applying lossy compression (JPEG compression with the quality rate of 70% is used in this example) on
our generated grayscale will destroy the embedding patterns.

TABLE 3. Quantitative comparison with state-of-the-art invertible
grayscale and other advanced feature extraction convolutional block
designs.

by using their blocks in the U-net structure. Quantitative
comparisons of these models are shown in Table 3. We can
see that the vanilla U-net used in Xia et al. [3] cannot
recover the color image well, and they also cannot embed
color information inconspicuously. Regarding ResNet, sim-
ilar observation of our ablation study can be found in here,
demonstrating that merely utilizing residual learning is not
suitable for color information embedding. DenseNet, RDN
and RNAN achieve better color consistency and luminance
consistency than the former two models. However, the pro-
posed method achieves superior performance against all
these competitors. Note that RNAN gains a better grayscale
but a worse reconstuction in contrast to DFENet, which
implies a lack of the color information in the generated
grayscale. Qualitative comparisons are shown in Fig. 5 and 6.
We can see that the proposed method can achieve the least
noticeable embedding patterns, meanwhile the highest recon-
struction quality.

E. COMPARISON WITH TRADITIONAL COLORIZATION
We also compare to traditional colorization methods. Fig. 7
shows the comparisons of user-guided and automatic col-
orization methods. Due to the one-to-many nature of auto-
matic colorization, existing methods [1], [18] and [27] tend
to produce average or over-saturated colors, which obviously

cannot satisfy the requirement of users. On the other hand,
user-guided method relies heavily on accurate and dense user
strokes. And it can be observed that though given an input
image with rather dense user hints [17], the result is still
unsatisfied. In contrast, the proposed method can achieve a
faithful color recovery.

F. LIMITATIONS
Despite of the effectiveness of the proposed DFENet vali-
dated in the above experiments, it is limited in recovering
color image from a lossy compressed grayscale. That is,
the generated grayscale cannot tolerate information damages
caused by lossy image compression methods such as JPEG.
Given a grayscale generated by our encoder, we first com-
press it with JPEG, and then feed the compressed grayscale
into our decoder, the visual results are shown in Fig. 8.
It can be observed that the reconstruction of the compressed
grayscale (see Fig. 8 (g)) suffers a lower recovery quality.
This may be concluded to the importance of the embedding
inconspicuous patterns in the grayscale for colorization, and
thus could not be damaged. In the future, we will explore
the potential improvements of our methods, in regard to the
resistance of the noises introduced by lossy compression
strategies.

V. CONCLUSION
In this paper, we propose an invertible color-gray conversion
method. In order to capture rich color and contextual repre-
sentations, we propose a novel color-encoding schema, dual
features ensemble network (DFENet). Specifically, we inte-
grate the residual representations with dense representations,
extracting features in the way of residual learning and local
feature fusion. Furthermore, we present an element-wise
self-attention mechanism that highlights the discriminative
features in both downsampling and upsampling processes.
Extensive experiments demonstrate the proposed method
achieves superior performance against state-of-the-art
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methods in terms of recovery of color consistency and embed-
ding luminance consistency.
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