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ABSTRACT Fourier descriptors are classical global shape descriptors with high matching speed but low
accuracy. To obtain higher accuracy, a novel framework for forming Fourier descriptors is proposed and
named as MSFDGF (multiscale Fourier descriptor using group feature). MSFDGF achieves multiscale
description by generating coarser contours. Then, a group of complementary features are extracted on
the generated coarser contours. Finally, Fourier transform is performed on the features. MSFDGF-SH is
a new global descriptor using the MSFDGF framework and shape histograms. Experiments are conducted
on four databases, which are MPEG-7 CE-1 Part B, Swedish Plant Leaf, Kimia 99 and Expanded Articulated
Database, to evaluate the performance of MSFDGF-SH. The experimental results show that MSFDGF-SH
is an effective and efficient global shape descriptor. This new descriptor has a high accuracy of 87.76%,
which exceeds the Shape Tree on the MPEG-7 CE-1 Part B dataset. This is the first Fourier descriptor that
surpasses the Shape Tree method in terms of both accuracy and speed on this dataset.

INDEX TERMS Fast 2D shape retrieval, fast shape matching, MPEG-7 CE-1 Part B, shape descriptor.

I. INTRODUCTION
Shape is an important feature in plant leaf retrieval [1], trade-
mark retrieval [2] and object recognition in blurred images.
Shape descriptor is an important tool for extracting shape
features of objects in 2D images.

Although the researches on post-processing met-
hods [3]–[13] in the field of shape retrieval have been exten-
sive for years, many scholars are still working on design-
ing better shape descriptors because they can provide the
original dissimilarity/similarity between shapes, which is
the basis of shape matching. A ineffective shape descriptor
cannot obtain high accuracy in shape retrieval, no matter
how advanced a post-processing method is combined with.
Therefore, the study of shape descriptors has never stopped
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and a large number of excellent descriptors [14]–[34] have
been proposed.

These local descriptors, such as SC (shape context) [35],
IDSC (inner-distance shape context) [36], TAR (triangle-
area representation) [37] and Shape Tree [38], have achieved
highly accurate experimental results on the MPEG-7 CE-1
Part B shape database, but they all perform poorly in
terms of matching efficiency. The matching efficiency of
global descriptors MDM (multiscale distance matrix) [39],
FD (Fourier descriptor) [40] and WD (wavelet descrip-
tor) [41], is very high, but their performance in terms of
accuracy is poor. The shape descriptor AP&BAP (angular
pattern and binary angular pattern) [42] has thus been pro-
posed to achieve both matching accuracy and efficiency with
multiscale description and efficient distance metrics.

Inspired by AP&BAP, researchers then focus more on
designing gloabal descriptors that are efficient in the match-
ing process. However, the design of this type of descriptors
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is extremely difficult. Among new global descriptors only
HSC (hierarchical string cuts) [43] is at the same level of
discriminability as AP&BAP.

To this end, a novel framework for forming global Fourier
descriptors and a new descriptor based on this framework are
proposed in our study. Using the Fourier transform, we pro-
posed various approaches to improve the discriminability of
the global descriptor as much as possible. These approaches
include constructing multiple scales and improving structure
of the spatial signature. The performance of this descriptor on
accuracy and speed is as good as that of the excellent global
descriptors HSC [43] and AP&BAP [42]. It performs even
better than Shape Tree [38] on MPEG-7 CE-1 Part B in terms
of both accuracy and speed.

The rest of this paper is organized as follows: Section 2 dis-
cusses related work. In Section 3, the new framework and
descriptor are introduced in detail. In Section 4, the com-
putational complexity of the proposed method is estimated.
In Section 5, a number of well-known databases are used
to evaluate the performance of the new method, in terms of
effectiveness and efficiency. Finally, Section 6 concludes the
paper.

II. RELATED WORK
In the last fifteen years, shape representation methods based
on contour sampling points have developed much faster than
the area-based ones. Usually, a contour is a set of uniformly
sampled points on the outline of a shape. In this section, these
contour-based methods are discussed in detail.

A. LOCAL DESCRIPTORS
The describing process of most local descriptors is to calcu-
late a feature for each contour point or segment. This feature
is typically a vector or matrix. Ignoring the relative order
between features, a shape is described as a feature set. The
matching process of local descriptors is to find the best corre-
spondence between two sets of elements (features). The opti-
mization algorithm is used to find the optimal correspondence
between the two sets of elements, and thematching cost under
the optimal correspondence is the dissimilarity (distance)
between two shapes.

The SC [35] has been one of the most important descrip-
tors in the field of shape matching. It sets each point in
the contour as a reference point in turn, then calculates the
distance of other points relative to the reference point, and
builds a shape histogram (distance histogram) to describe
the corresponding reference point. Finally, N (the number
of contour sampling points) shape histograms are obtained.
These shape histograms are put together to form a set (SC fea-
ture), which describes the shape. The matching process of
two shapes is to compute the distance between their SC
features. Therefore, shape matching becomes matching of
two sets of shape histograms. The χ2 distance is used to
measure the difference between two histograms. Matching
two sets of shape histograms is to calculate the minimum
sum of χ2 distances between two sets of shape histograms.

Finally, the minimum sum (matching cost) is the dissimilarity
between two shapes. Dynamic programming [3] can be used
in the process to find the optimal correspondence between
two sets of shape histograms.

SC has an enhanced version IDSC [36], which performs
better than the original SC in representing articulated shapes.
The IDSC uses inner-distance instead of Euclidean distance
used in the original SC when describing the relationship
between two contour points. Inner-distance refers to the
shortest path connecting two points inside the shape. Another
major advantage of IDSC is its strong compatibility. Many
post-processing algorithms based on learning [3]–[9] use
IDSC to obtain the matching results between shapes as basis
of learning.

The SC and IDSC are two important local descriptors,
as they all achieve high retrieval rates on MPEG-7 CE-1
Part B and they are complementary to obtain higher retrieval
rates. The complementarity between IDSC and SC is
described in detail in [4]. However, SC and IDSC still have
shortcomings. In terms of practice, they run too slowly to
meet the practical requirements as they all use DP (dynamic
programming).

In [38], Felzenszwalb et al. describe a hierarchical rep-
resentation for shapes that captures shape information at
multiple levels of resolution. Usually this method is called
Shape Tree, and it achieves very high retrieval rate (87.70%)
on MPEG-7 CE1 Part B. This high retrieval rate had not
been surpassed by Fourier descriptors before our method was
proposed. Overall most local descriptors with DP perform
effectively in terms of accuracy. However, all of them have
high computational costs.

B. GLOBAL DESCRIPTORS
Generally, in a global descriptor, a shape is represented
by a feature vector (or matrix) extracted from the whole
contour, and matching is conducted by comparing such
representation vectors (or matrices) [42]. In the matching
process, a global descriptor is suitable for using efficient
distance metrics such as Euclidean distance and city block
distance.

FDs (Fourier descriptors) are classical global descriptors.
FD-CCD (Fourier descriptor based on centroid contour dis-
tance) [40] is taken as an example to introduce the character-
istics of such descriptors. The Euclidean distance from each
contour point to the centroid point is put into a sequence
in order. Then, Fourier transform is used on the Euclidean
distance sequence and the transformed result is the FD-CCD
feature. The dissimilarity is the city block distance between
two FD-CCD features belonging to two shapes respec-
tively. WDs (wavelet descriptors) [41], [44] are also global
descriptors, and they have similar effectiveness and efficiency
as FD-CCD.

MDM (multiscale distance matrix) [39], which captures
the shape geometry while being invariant to translation,
rotation, scaling, and bilateral symmetry, is an important
shape descriptor in global descriptors. It combined multiscale
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description and distance metrics to achieve high efficiency
and effectiveness in plant leaf retrieval. However, unfortu-
nately, MDM’s discriminability is limited, and its perfor-
mance on some important databases, such as the MPEG-7
CE-1 Part B, does not reach the level of local descriptors in
terms of accuracy.

In [42], Hu et al. propose two novel shape features,
AP (angular pattern) and BAP (binary angular pattern), and a
multiscale integration of them (AP&BAP) for shape match-
ing. AP&BAP is a much significant descriptor, which allows
many scholars to see the hope of the global descriptor in terms
of accuracy. The previous FD [40] and MDM [39] are still
inaccurate, relative to the local descriptors. Yet, AP&BAP
is both fast and accurate. The retrieval rate of AP&BAP
with χ2 distance (87.04%) even surpassed SC+DP (86.80%)
and IDSC+DP (85.40%) on MPEG-7 CE-1 Part B shape
database. In terms of speed, AP&BAP continues the advan-
tages of the global descriptor.

The HSC (hierarchical string cuts) [43] method is proposed
to partition a shape into multiple level curve segments of
different lengths from a point moving around the contour to
describe the shape gradually and completely from the global
information to the finest details. HSC continues the great
breakthrough of global descriptors. In the experiments, it gets
a higher retrieval rate (87.31%) than AP&BAP (87.04%),
on the MPEG-7 CE-1 Part B shape database with a faster
speed.

Kaothanthong et al. [45] propose a shape signature named
DIR (distance interior ratio) that utilizes intersection pat-
tern of the distribution of line segments with the shape,
and a histogram alignment method for adjusting the inter-
val of the histogram according to the distance distribution.
DIR is a recent attempt at global descriptors. Its speed
is as fast as FD, which is faster than HSC. Its retrieval
rate is 10% higher than FD on MPEG-7 CE-1 Part B
shape database. However, it still does not reach the level
of AP&BAP and HSC in terms of discriminability. This
result shows how difficult it is to design an effective global
descriptor.

III. METHOD
A. GROUP FEATURE
Fourier transform is a commonly used technique in fast shape
matching. It usually transforms a spatial feature vector of a
shape into a sequence of coefficients in the frequency domain.
An element of the spatial feature vector is determined by its
corresponding contour point. These elements are arranged in
the same order as the contour points in the closed contour.
An obvious problem is that different starting point positions
in the closed contour will result in different spatial feature
vectors. In the Fourier transform, the operation of abandoning
phase information solves this problem (see Eq. (1)). This
special Fourier transform can get the starting point position
invariance, thus it avoids the computation process of finding
the best starting point. This is the reason why the Fourier

transform technique is widely used for fast shape matching.

f (k) =
1
N

∣∣∣∣∣
N−1∑
i=0

vs(id )exp(
−j2π idk

N
)

∣∣∣∣∣ ,
k = 0, 1, . . . ,N − 1 (1)

where vs is the spatial feature vector, N is the length of the
vector and f is the output frequency sequence.

With the uniqueness of transforming result of Eq. (1),
distance metric is used to measure the difference between
frequency coefficients sequences of two shapes. This match-
ing process has very low computational consumption. But
the discriminability of most previous Fourier descriptors is
not so effective. This is mainly because the previous Fourier
descriptors often rely on a single spatial feature, such as
FD-CCD (Fourier descriptor based on the centroid contour
distance) [40] and FD-FPD (Fourier descriptor based on the
furthest point distance) [46]. Therefore, it is a feasible method
to improve the discriminability of the Fourier descriptor that
more and better spatial features are used together in trans-
forming.

Such a combination of spatial features is called Group
Feature (GF), and the GF-based Fourier descriptor is named
as FDGF. For example, CCD and FPD can form a GF, which
is named GF-CCD&FPD. The experiments can prove that the
discriminability of FDGF-CCD&FPD is better than FD-CCD
and FD-FPD, but still can not reach the level of a local
descriptor (such as TAR [37]). In terms of discriminability,
in order to reach the level of local descriptors, it is necessary
to design an effective GF. The combination of CCD and FPD
is a simple GF containing two feature units. An ideal GF
should contain some feature units, which are highly comple-
mentary and lowly correlated. These feature units preferably
have the ability to describe any contour points in various
shapes. This is like the orthogonal basis in an Euclidean
space.

B. BIN VECTOR
Shape histogram can be used as a GF, although it always
appears in local descriptors [35], [36]. A histogram is rarely
used in FD, probably because scholars are accustomed to use
a single spatial feature vector. The histogram hids describes the
distribution of the remaining points in the contour cd relative
to cd (id ).

hids (ib) = #{cd (jd ) : jd 6= id , cd (jd )− cd (id ) ∈ bin(ib)},

id , jd = 1, 2, . . . ,N , ib = 1, 2, . . . ,B (2)

where hids is the shape histogram of the id th contour point
cd (id ). h

id
s (ib) is the value of the bth bin in hids . These

B bins uniformly divide the log-polar plane centered
on cd (id ). cd is a contour represented by a sampling points
sequence. cd (id ), id ∈ Z , is the id th point in the contour
cd that has N sampling points. Since the contour is closed,
cd (id ) = cd (id + N ). cd (id − 1) and cd (id + 1) are two
adjacent points of cd (id ) on the contour. Therefore, shape his-
togram is a set of feature units that describe a contour point.
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The feature units in this set are highly complementary and
lowly correlated. In other words, the shape histogram is an
excellent GF.

The Fourier descriptor based on the GF of shape his-
togram is called FDGF-SH. In the process of extracting the
FDGF-SH feature, a new feature Bin Vector (BV) is required
as Fourier transform cannot deal with N shape histograms
directly. vibb (a BV) is a column vector generated by Eq. (3).
BV is the key that is used to transform a local feature to a
global feature.

vibb (id ) = hids (ib), id = 1, 2, . . . ,N , ib = 1, 2, . . . ,B (3)

Setting vibb as vs, f ib is generated by Eq. (1). This Fourier
coefficient sequence is still a column vector, just like the
previous Fourier descriptor. Subsequently, f 1, f 2, . . . , f B are
used to form a feature matrix F .

F =
[
f 1, f 2, . . . , f B

]
(4)

Since the lower frequency components are more stable
than higher frequency ones in FDGF-SH, only a few low
frequency coefficients are used in the matching process with
weighted city block distance. The weighted city block dis-
tance between two contours C1 and C2 in the FDGF-SH
feature space are represented as D(C1,C2) in

D(C1,C2) =
B∑

ib=1

K∑
k=0

wk
∣∣∣f ibC1

(k)− f ibC2
(k)
∣∣∣ (5)

where f ibC1
and f ibC2

are the f ib sequence ofC1 andC2. In Eq. (5)
K is far smaller than N . Usually, K < 3log2N .
FDGF-SH can surpass local descriptors easily in terms of

efficiency. However, in terms of accuracy, FDGF-SH may be
still not at the level of local descriptors. Therefore, FDGF-SH
should continue to be improved.

C. FEATURE ON A GENERATED COARSER CONTOUR
Human eyes sometimes automatically filter some local details
and preserve coarser features to reduce interference caused
by noises, when recognizing shapes. This approach can be
used in the design of shape descriptors. In our study, three
approaches for obtaining variable-level coarser contours are
proposed.

1) MEDIAN FILTERING TO A CONTOUR
Median filtering is used to generate the level t coarser con-
tour. It is characterized by a linear increase of filtering core
scale as t increases. The FDGF-SH feature on level t coarser
contour is represented as FDGF-SH-MFtC in this median
filtering approach. The level t coarser contour is generated
with

ctmf (i) =
1

t + 1
(
i+t∑
i0=i

c0(i0)), i = 1, 2, . . . ,N ,

t = 0, 1, 2, . . . ,N − 1 (6)

FIGURE 1. ct
mf and its corresponding shape when t = 0 or N/4. c0/c0

mf
are in the first row. cN/4

mf and its corresponding shape are in the second
row.

where the level 0 coarser contour c0 is the original con-
tour containing N sampling points. It can be seen that the
number of sampling points for the level t coarser con-
tour ctmf is still N . FDGF-SH-MFtC feature is extracted
from contour ctmf using FDGF-SH method. The weighted
city block distance is still used in the matching process of
FDGF-SH-MFtC. DMFtC (C1,C2) is the distance (dissimilar-
ity) in FDGF-SH-MFtC feature space between two shapesC1
and C2.

In practice, when t is large, for example t = N/4,
the adjacent points in ctmf may overlap each other. Even if
they don’t overlap, sampling points are excessive as shown
in Fig. 1. A large number of sampling points are used for
describing a very simple shape, and they are nonuniformly
distributed as shown in Fig. 1. It is not conducive to reduce
the computional cost of the large scale features in extracting
and matching processes. The advantage is that the variation
of coarser contours between adjacent levels is small, so there
are many levels to use. Enough levels makes it is easy to find
a tacit combination of levels for more effective description.
Theoretically, 0 ≤ t ≤ N − 1 and t ∈ Z . When t = 0, ctmf is
still c0. When t = N − 1, ctmf is only one point. The shapes
at different scales are shown in Fig. 2.

2) DOWNSAMPLING TO A CONTOUR
In this downsampling version N is required to be in the
power of 2. The number of points in the downsampled con-
tour decreases exponentially, as t increases. In this approach,
there are fewer (log2 N + 1) levels of coarser contours. The
level t coarser contour using downsampling approach is gen-
erated by

ct,n0ds (i) =
1
2t

i·2t+n0−1∑
i0=(i−1)·2t+n0

c0(i0), t = 0, 1, 2, . . . , log2N ,

n0 = 1, 2, 3, . . . , 2t , i = 1, 2, . . . ,N/2t (7)
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FIGURE 2. The shapes of ct
mf when N = 512 and t = 0, 4, 8, . . . , 116

respectively. The shapes in the first row are corresponding to c0, c4
mf , c8

mf ,
c12
mf and c16

mf from left to right respectively. The shapes in the second row
are corresponding to c20

mf , c24
mf , c28

mf , c32
mf and c36

mf in the same order as the
first row. Other rows are in the same rules as the first and second rows.

FIGURE 3. The shapes of c1,1
ds and c1,2

ds .

The physical meaning of Eq. (7) is to downsample 2t

points, which are consecutive from the ((i − 1) · 2t + n0)th
point in c0, to form a new point ct,n0ds (i). However, a new
problem has arisen. Though when t is small shapes of ct,n0ds
with different n0 are so similar (see Fig. 3), when t is larger,
the geometric features of the contour ct,n0ds are influenced by
what the variable n0 is.
When t = 6 and n0 = 4, 8, 12, . . . , 2t , the shapes of ct,n0ds

are shown in Fig. 4. It is clear that the difference between
them is large. The difference makes the FDGF feature of ct,n0ds
unstable. There is a solution for this problem. At first, each
ct,n0ds is computed out for n0 = 1, 2, 3, . . . , 2t respectively.
Then, the shape histograms of these contours are used to
calculate the average shape histogram h

id
s with

h
id
s (b) =

1
2t

2t∑
n0=1

hid ,n0s (b) (8)

where hid ,n0s is the shape histogram of ct,n0ds (id ) in the contour
ct,n0ds . Finally, the FDGF-SH-DStC feature is calculated base
on the set of these average shape histograms. The weighted
city block distance is still used in the matching process. The
distance between two shapes C1 and C2 in the FDGF-SH-
DStC feature space is expressed as DDStC (C1,C2).

The number of contour sampling points at each level is
different from each other, the larger the t , the fewer the
contour sampling points. In addition, there are fewer levels

FIGURE 4. The shapes of c
6,n0
ds when n0 = 4, 8, 12, . . . , 26 respectively.

These shapes are arranged in the same rule as in Fig. 2.

FIGURE 5. The shapes of c
t,n0
ds when n0 = 1, N = 512 and

t = 0, 1, 2, . . . , 8 respectively. These shapes are arranged
in the same rule as in Fig. 2.

in this downsampling approach than in FSCtS-mf. The
above characteristics make the FSCtS-ds more favorable for
acceleration.

Theoretically, in downsampling approach, 0 ≤ t ≤ log2N
and t ∈ Z . When t = 0, ct,n0ds is still c0. When t = log2N − 1,
ct,n0ds is a line segment. When t = log2N , ct,n0ds is a point. ct,n0ds
at each level is shown in Fig. 5.

3) SPATIAL FILTERING TO A SHAPE
Inspired by [5], spatial filtering is also incorporated. Closing
operation, which is defined as a dilate operation followed by
an erosion operation using the same SE (structuring element),
is used to generate coarser contours, as it can reduce some
finer features and reserve coarser features of a shape. In this
spatial filtering approach, the FDGF-SH feature of the level t
coarser contour is represented as FDGF-SH-SFtC. To gener-
ate the level t coarser contour the original image is processed
by a SE of level t size. The ‘disk’ SE is used in this approach.

imt = im · set = (im⊕ set )	 set (9)
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FIGURE 6. The shapes of ct
sf when t = 1, 2, 3, . . . , 30 respectively. The

size of SE at level t equals 4t . These shapes are arranged in the same rule
as in Fig. 2.

The level t coarser shape is extracted from imt . Then,
N sampling points are uniformly extracted from the contour
of the level t shape to form ctsf . The FDGF-SH-SFtC feature
is extracted from ctsf . The weighted city block distance is
still used in the matching process. The distance between two
shapes C1 and C2 in the FDGF-SH-SFtC feature space is
expressed as DSFtC (C1,C2). Different levels coarser shapes
are shown in Fig. 6.

D. MULTISCALE FOURIER DESCRIPTOR
FDGF-SH features on multiple generated coarser contours
can be used to generate the multiscale Fourier descriptor. It is
obvious that the higher the level, the coarser the feature, and
the lower the level, the finer the feature.

To achieve the goal of multiscale description, mul-
tiple FDGF-SH features are used together. FDGF-SH-
MFtC, FDGF-SH-DStC and FDGF-SH-SFtC features
are used to form multiscale features MSFDGF-SH-MF,
MSFDGF-SH-DS and MSFDGF-SH-SF respectively.
MSFDGF-SH-MF is used as an example to illustrate how
to integrate. The minimum distance (MD) and the sum
distance (SD) are two common approaches. In Eq. (10),
Dmfm is the MD between the MSFDGF-SH-MF features of
two shapes.

Dmfm = min
t∈Sv

αtmDMFtC (10)

Since the range of the distance at each level of the coarser
contour is different from each other, αtm (αtm increases when
t increases) is used to normalize the distances. Sv is a set of
the used values of t , which denotes the level of the coarser
contour. Only a few levels are used in the matching process.
Dmfs is the SD as shown in Eq. (11). Since the importance

of the distance at each level is different from each other,
αts (α

t
s decreases when t increases) is used to normalize the

distances.

Dmfs =
∑
t∈Sv

αtsDMFtC (11)

How to generate Sv is a problem. For consideration of
training speed, the Sequential Forward Selection method
in [42] is used in selecting the combination of scales Sv. First,
30% images in dataset are randomly selected as a training
subset. The single scale with the highest accuracy is set as
the starting point of the scale combination, and the remaining
scales are set as candidates. Nextly, each single candidate is
put into the combination by turn in order to find the best can-
didate, which makes the new combination obtain the highest
accuracy. Then, this best candidate is put into the combination
and removed from the candidates. This process of finding
best candidate is performed iteratively until no new scale is
put into the combination Sv, which means that integrating a
larger scale combination will damage the performance of the
descriptor in terms of accuracy.

When the MD metric approach is used with three descrip-
tors (MSFDGF-SH-MF+MD, MSFDGF-SH-DS+MD and
MSFDGF-SH-SF+MD), the αtm is computed by the Eq. (12).

αtm = (1+ difm · t)pwrm , t ≤ Tm, difm ≥ 0 (12)

where the Tm is the max level of the generated coarser con-
tour. In SD Eq. (13) is used. In MD difm ≥ 0, but in SD
difs ≤ 0 always.

αts = (1+ difs · t)pwrs , t ≤ Tm, difs ≥ −1/Tm (13)

In weighted city block distance wk (computed out by
Eq. (14)) decreases linearly as k increases in both MD
and SD.

wk = 0.008((K + 1)/2− k)+ 1, k ≤ K , (14)

MSFDGF is a framework to form a multiscale Fourier
descriptor. In this framework, many GFs can be used
and SH is just one of them. Three approaches in GCC
(generated coarser contour) are used to implement multi-
scale description. MSFDGF-SH-MF, MSFDGF-SH-DS and
MSFDGF-SH-SF are three descriptors using SH (shape his-
togram) base on the MSFDGF framework.

IV. COMPUTATIONAL COMPLEXITY
Eqs (15)-(16) are two commonly used formulas in this
section.

Sn =
n∑

si=1

a1qsi−1 = a1 ·
1− qn

1− q
(15)

Sn=
n∑

si=1

siqsi=q(1−qn)/(1−q)2−nqn+1/(1−q) (16)

The computational complexities of MSFDGF-SH
(MSFDGF-SH-MF, MSFDGF-SH-DS and MSFDGF-SH-
SF) are divided into several parts. To generated all lev-
els coarser contours, MSFDGF-SH-MF spends O(N 2),
MSFDGF-SH-DS spends O(N logN ) (see Eq. (17)) and
MSFDGF-SH-SF spendsO(nsN 2) where nsmeans howmany
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levels there are in MSFDGF-SH-SF.
log2N−2∑
si=0

(N/2si · 2si ) =
log2N−2∑
si=0

N = N (log2 N − 1) (17)

To extract shape histograms of all coarser contours,
MSFDGF-SH-MF spends O(N 3), MSFDGF-SH-DS spends
O(N 2) (see Eq. (18)) and MSFDGF-SH-SF spends O(nsN 2)
respectively, as the shape histograms of one contour cost
O(N 2) [36].

log2N−2∑
si=0

((N/2si )2 · 2si ) =
log2N−2∑
si=0

N 2/2si

= N 2
log2N−2∑
si=0

(1/2)si

= N 2
·
1− (1/2)log2N−1

1− 1/2
= 2N 2

− 4N (18)

On Fourier transform, MSFDGF-SH-MF spends
O(BN 2 logN ), MSFDGF-SH-DS spends O(BN logN )
computed by Eq. (19), and MSFDGF-SH-SF spends
O(nsBN logN ).

log2N−2∑
si=0

B(N/2si )log2(N/2
si )

= BN
log2N−2∑
si=0

2−si (log2 N − si)

= BN log2 N
log2N−2∑
si=0

2−si − BN
log2N−2∑
si=0

2−sisi

= (2BN log2N − 4Blog2N )− (2BN − 4Blog2N )

= 2BN (log2 N − 1) (19)

Then, in matching stage, MSFDGF-SH-MF spends
O(BN logN ), MSFDGF-SH-DS spends O(B(logN )2) (see
Eq. (20)), MSFDGF-SH-SF spends O(nsB logN ) when all
the scales are used. In fact, only a few scales are used in this
stage.
log2N−2∑
si=0

Blog2(N/2
si ) = B

log2N−2∑
si=0

(log2N − si)

= B
log2N−2∑
si=0

log2N − B
log2N−2∑
si=0

si

= (B log22 N − Blog2N )

− (B log22 N − 3Blog2N + 2B)/2

= B(log22 N + log2N − 2)/2 (20)

The computational complexity in matching process plays
a decisive role in online large database retrieval [43], there-
fore the computational complexities of some state-of-the-
art descriptors in matching stage is used to compare with
MSFDGF-SH, as shown in Table 1.

TABLE 1. The computational complexities of some state-of-the-art
methods and MSFDGF-SH at the stage of dissimilarity measurement.

TABLE 2. The parameters of MSFDGF-SH-MF, MSFDGF-SH-DS and
MSFDGF-SH-SF when combined with MD and SD.

In Table 1, ns means how many levels are used in
MSFDGF-SH-SF and it is smaller than 7 in experiments.
B means how many bins in the shape histogram, and it is
smaller than N usually. Ba means how many bins in AP, and
it is 24 in [42]. Mb means how many bits the BAP festure
has at the largest scale. In the experiments in [42], Mb = 12.
In HSC Mh � N , and Mh = 7 in the experiments in [43].

V. EXPERIMENTAL RESULTS
The MSFDGF-SH-MF, MSFDGF-SH-DS and MSFDGF-
SH-SF are evaluated in terms of both effectiveness and
efficiency. These evaluating databases include MPEG-7
CE1 Part B, Kimia 99 [47], Swedish Plant Leaf [48] and
Expanded Articulation Database [36]. All the algorithms are
written usingMatlab and run on a PCwith Intel(R) Core(TM)
i7-7700K 4.20 GHz CPU and 16 GB DDR4 RAM under
Windows 10. As the DP part in SC+DP and IDSC+DP
consumes large computation, it is implemented in C in order
to be comparable to global descriptors like AP&BAP [42],
HSC [43] and MSFDGF-SH.
N is always 512 in all the experiments. In MSFDGF-SH-

SF, to make one SE is suitable to all shapes, shapes are
normalized to have a convex hull’s area near 5000 [5]. The
size of SE is 5t at level t coarser contour.

In the experiment on each dataset, the SFS technique is
used to find a good combination of scales Sv. K = 23,
pwrm = 1, pwrs = 2, and the values of difm and difs
(as shown in the Table 2) are set emperically.

A. RESULTS ON MPEG-7 CE-1 PART B SHAPE DATABASE
MPEG-7 CE-1 Part B shape database [35], [36], [43] is
widely used in shape matching research. This database con-
tains 70 categories, each containing 20 different shapes,
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FIGURE 7. Some examples of MPEG-7 CE-1 Part B shape database.

so this database contains 1400 silhouette images. Two exam-
ples in each category are shown in Fig. 7.

The test method is called ‘‘Bull-eye test’’ [35], [36], [43].
In Bull-eye test, a shape in the database is set as a query in a
retrieval and matched with all the shapes in the database. The
correct (that is the query shape and the retrieved one belong
to the same category) matches of the top 40 most similar
(smallest dissimilarity) shapes are counted. The number of
correct matches divided by 20 is the score of a retrieval.
The retrieval rate of Bull-eye test is the average score of
all retrievals where each shape is set as the query in a
retrieval.

Matching time is used to test the performance of each
algorithm in terms of efficiency. Matching time refers to the
time it takes to match the feature of the query to features of
all shapes in the database.

In Table 3, it can be seen that MSFDGF-SH-SF+MD and
MSFDGF-SH-SF+SD get the highest retrieval rate (87.76%)
among all the descriptors including Shape Tree (87.70%)
[38], HSC (87.31%) [43], AP&BAP (87.03%) [42], SC+DP
(86.80%) [3], [36], IDSC+DP (85.40%) [36] and so on. It is
the first time that a Fourier descriptor performs better than
Shape Tree [38] in terms of accuracy onMPEG-7 CE-1 Part B
shape database.

In terms ofmatching time,MSFDGF-SH-SF+MD (21ms),
MSFDGF-SH-SF+SD (41ms), HSC (23ms) and AP&BAP
(85ms) consume less time as global descriptors than
IDSC+DP (3829ms) and SC+DP (4837ms) as local
descriptors.

The Precision-Recall curves of some descriptors are shown
in Fig. 8. For quantitative analysis, the area enclosed by the
curve and the coordinate axis is used to determine which the
best is. The Table 4 shows that MSFDGF-SH-SF+SD has the
biggest area 0.847558.

TABLE 3. The retrieval rates and matching time of some state-of-the-art
methods and MSFDGF-SH on MPEG-7 CE-1 Part B shape database.

TABLE 4. The area enclosed by the Precision-Recall curve and the
coordinate axis.

TABLE 5. The recognition rates of some state-of-the-art methods and
MSFDGF-SH on Swedish Plant Leaf database.

B. RESULTS ON SWEDISH PLANT LEAF DATABASE
The Swedish Plant Leaf database is a plant leaf database that
contains 15 categories, each of which containing 75 shapes.
Some examples of this database are shown in Fig. 9. This
database is often used to test the classification ability of
a shape descriptor. The test method in [36] is used to test
the classification ability of the MSFDGF-SH descriptor.
25 images randomly selected from each species are used
as models and the remaining images are used as testing
images [43].
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FIGURE 8. Precision-Recall curves of some state-of-the-art methods and MSFDGF-SH-SF on MPEG-7 CE-1 Part B shape database.

FIGURE 9. Some examples of Swedish Plant Leaf database.

Matching time is also used to evaluate the performance of
each algorithm in terms of efficiency. In the experiment of
recognition, matching time refers to the time it takes to match
the feature of a testing image to features of all model images.

In Table 5, it can be seen that MSFDGF-SH-DS+SD
(95.47%), MSFDGF-SH-DS+MD (95.47%), MSFDGF-
SH-MF+MD (95.20%), MSFDGF-SH-MF+SD (95.07%),
MSFDGF-SH-SF+MD(95.20%) andMSFDGF-SH-SF+SD
(94.80%) perform better than IDSC+DP (94.13%) [36],

TABLE 6. The retrieval results of some state-of-the-art methods and
MSFDGF-SH on Kimia 99 database.

FIGURE 10. All the shapes of Kimia 99 database.

IDSC−wFW (93.71%), MDM (93.60%) [39], ASD&CCD
(93.08%) [27] and SC+DP (88.12%) [35], [36]. HSC
(96.91%) [43] obtains the highest recognition rate. The
matching time of each algorithm goes on with the same trend
as in MPEG-7 CE-1 Part B, and global descriptors have
absolute advantages.
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TABLE 7. The retrieval results of some state-of-the-art methods and MSFDGF-SH on expanded articulated database.

FIGURE 11. All the shapes of expanded articulation database.

C. RESULTS ON KIMIA 99 DATABASE
The Kimia 99 [47] database is a common database. This
database contains 9 categories, each containing 11 shapes,
as shown in Fig. 10. In this experiment, each shape is set
as the query and matched to the remaining shapes. Then the
correct matches of the top 10 most similar shapes of each
query are counted. The post-processing algorithm LP (label
propagation) [3] on shape retrieval performs well on this
database when used in combination with IDSC+DP. In order
to be fair, all algorithms are combined with LP.

In Table 6, it can be seen that MSFDGF-SH-DS+MD+LP
(990), MSFDGF-SH-MF+MD+LP (990), MSFDGF-SH-
MF+SD+LP (990), MSFDGF-SH-SF+MD+LP (990) and
MSFDGF-SH-SF+SD+LP (990) all get the perfect sum
of the correct hits (990). MSFDGF-SH-DS+SD (989) per-
forms a little lower. MSFDGF-SH performs best among all
methods.

In terms of matching time, the approaches using
MSFDGF-SH (less than 1 ms), HSC (2.89 ms) and AP&BAP
(9.57 ms) consume less time as global descriptors than
IDSC+DP (392.05 ms) and SC+DP (592.73 ms) as local
descriptors.

D. RESULTS ON EXPANDED ARTICULATED DATABASE
The Articulated database [36] is a database to test the artic-
ulation insensitivity of shape descriptors. It contains 8 cat-
egories, each containing 5 shapes. The Tools database [51],

which has the same function, contains 7 categories, each
containing 5 shapes. In our study, these two databases are
merged into a new database Expanded Articulated Database.
Obviously, Expanded Articulated Database contains 15 cate-
gories, each containing 5 shapes (see Fig. 11).

The test method is as the same as that in the experi-
ment on Articulated Database in [36]. In this test method,
each shape is set as the query and matched with other
shapes in the database. Then the correct matches of the
top 4 most similar shapes of each query are counted. The
combination (IDSC) of SC and ID (inner-distance) [36]
performs well on Articulated Database. ID can also be
used in combination with MSFDGF-SH, so this database
is also used to test the compatibility of MSFDGF-SH
with ID.

In Table 7, it can be seen that MSFDGF-SH-DS+SD
gets the largest sum of the correct hits (271) among all the
methods includingMSFDGF-SH-DS+MD(267),MSFDGF-
SH-MF+MD (260), MSFDGF-SH-MF+SD (263),
MSFDGF-SH-SF+MD (241), MSFDGF-SH-SF+SD (247),
IDSC+DP (246) [36], IDSC−wFW (237) [49], SC+DP (92)
[3], [35], HSC (111) [43], AP&BAP (35) [42] and so on.

In terms of matching time, the approaches using
MSFDGF-SH (less than 2.5 ms), HSC (2.69 ms) and
AP&BAP (7.52 ms) consume less time as global descriptors
than IDSC+DP (308.56 ms) and SC+DP (467.21 ms) as
local descriptors.
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E. DISCUSSION
Three versions (MSFDGF-SH-MF, MSFDGF-SH-DS and
MSFDGF-SH-SF) of MSFDGF-SH all exceed the
classical IDSC+DP in terms of both effectiveness and effi-
ciency on MPEG-7 CE-1 Part B shape database. Surpris-
ingly, one version MSFDGF-SH-SF exceeds HSC, AP&BAP
and even Shape Tree. This is the first time that a Fourier
descriptor exceeds Shape Tree on this dataset in terms
of both accuracy and speed. MSFDGF-SH performs bet-
ter than IDSC+DP, SC+DP and AP&BAP on Swedish
Plant Leaf. The performance show that MSFDGF-SH have
strong robustness for different application scenarios. On other
datasets MSFDGF-SH also performs effectively, especially
On Kimia 99, on which all three versions of MSFDGF-SH
achieve the perfect performance. On Expanded Articu-
lated Database, all the 3 versions of MSFDGF-SH exceed
IDSC+DP, which is so good at dealing with articulated
shapes.

VI. CONCLUSION
AP&BAP [42] is a milestone for global shape descriptors.
Many researchers have attempted to design effective global
descriptors, however it is difficult to achieve both effective-
ness and efficiency. The MSFDGF frame and MSFDGF-SH
descriptor proposed in this article is a new attempt.

Our experiments show that MSFDGF is a flexible and
effective framework to form a global descriptor. The descrip-
tors usingMSFDGF, such asMSFDGF-SH, are both efficient
and effective.
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