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ABSTRACT The electrical contact resistance of cambered surface contact is systematically studied by
analytical solution and finite-element simulation. Two representative cambered surface contacts, namely
sphere-plane contact and cylinder-plane contact are built and the distributions of electrical current lines
profile and isopotential are compared explicitly. Subsequently, the effects of size parameters of cambered
surface and mechanical load on contact resistance are evaluated over a large range of aspect ratios.
Furthermore, dissimilarity between sphere-plane contact and cylinder-plane contact is deduced.

INDEX TERMS Electrical contact resistance, cambered surface, finite-element (FE) method, electrical
current line.

I. INTRODUCTION
Electrical contact, namely a current transferring from one
metal to another member through the interface, has always
been an important part of the electro-mechanical devices,
including but not limited to electromagnetic relays [1],
automotive connectors [2], circuit-breakers [3],
micro-electro-mechanical systems (MEMS) [4], thin-film
devices [5], and switchgears [6]. The electrical current lines
would be sharply distorted and bundle together to pass
through the contact interface due to the limited contact
region[6]. Thus, the additional resistance causing by the
shrinking current lines is called constriction resistance, which
is a main component of electrical contact resistance between
mental contact pairs. Low and stable contact resistance is
a fundamental requirement of any electrical and electronic
engineering [7]–[10].

The size-dependent contact resistance contains Holm
resistance and Sharvin resistance for the large and small
contact sizes relative to themean free path of electron, respec-
tively [11]. When the radius of constriction region a is larger
than average electron mean free path λ, Holm has shown that
the constriction resistance between two semi-infinite bodies
separated by a single circular a-spot could be written as [12]

RH =
ρ1 + ρ2

4a
(1)
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where ρ1 and ρ2 are the electrical resistivity of the contacting
conductors. On the other hand, when the radius of constric-
tion region a is comparable or even smaller than the aver-
age electron mean free path λ, the constriction resistance is
dominated by the Sharvin mechanism and could be expressed
by [11]

RS =
pF

Nπe2a2
(2)

where pF , N , and e are Fermi momentum of electrons, elec-
tron density, and electron charge, respectively. It is noted
that the contact resistance is closely related to the contact
radius no matter for which conductive mechanism. And the
contact radius is directly determined by the mechanical stress
and deformation between two solid surfaces during contact
process.

Contact bodies which have dissimilar profiles are
said to be non-conforming. The non-conforming con-
tact, including sphere-sphere contact, sphere-plane contact,
cylinder-cylinder contact and cylinder-plane contact, is
universal and practical in electrical contact application
[13], [14]. Many researchers and research institutions have
devoted much effort to studying the contact stress distribu-
tion [15]–[18], electrical contact resistance [19], [20] and
thermal contact resistance [21]–[25] of non-conforming con-
tact. Hertz presented the earliest results about the contact
radius calculation for such non-conforming contact [26],
which could greatly facilitate the practical application of
constriction resistance model. Many valuable works focus on
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the effects of contact asperity shape and paralleled multi-spot
on contact resistance [27]–[33].

Meanwhile, the stresses are highly concentrated in the
region close to the contact zone, and the limited contact zone
could further increase the constriction resistance. When the
profiles of the contact bodies are conforming in one direction
and non-conforming in the perpendicular direction, the con-
tact form would evolve into the line contact and the contact
zone changes from circular shape to rectangular, which could
considerably ease the concentrated stress and effectively
enlarge the contact area. Johnson [13] and Hamrock [34]
originally analyzed the elastic cylindrical case and provided
explicit solutions in their context. Sano deduced the constric-
tion resistance of cylindrical contact and analyzed the effects
of space angle [35]. Aichi and Tahara found that the contact
resistance of rectangular a-spot is in inverse proportion to the
0.7th and 0.3th power of the contact area with parameters
of contact width and length, respectively [36]. Jackson also
presented a finite element model of elasto-plastic cylindrical
contact and carried out simulations for a range of material
properties [37], [38]. However, what condition could min-
imize the contact resistance of two typical non-conforming
contacts remains unexamined.

In addition, the cambered surface contact also exactly
exists between the rough surfaces. For the sake of simplicity,
many researchers utilize the spherical contact to simulate the
single asperity contact. Greenwood and Williamson [39] first
presented the contact model for rough surfaces and assumed
that all asperities whose heights conform to the Gaussian
random distribution have identical curvature radius. And
many meaningful works make the asperities equivalent to the
spheres with different curvature radius to simulate accurately
and analyze the contact situation [40]–[43]. However, there
are not only spherical contact but also cylindrical contact in
the real contact between rough surfaces according to other
researches [44], [45]. Therefore, it is necessary to investigate
the effects of aspect ratios and mechanical load on spherical
contact and cylindrical contact in the micro scale, which
is also the basis of accurate equivalence for rough surface
contact.

In a previous paper by the present authors, variations in
contact resistance as a function of contact load between rod
and spring contacts are investigated explicitly [46]. There
is also a remarkable transition stage from spherical contact
to cylindrical contact before stable contact. And this could
be attributed to the rough surfaces of contact pairs. If the
problems mentioned above are solved, then the profile of
asperities could be easily estimated in the contact process
according to the relationship between contact resistance and
contact load. In order to avoid the probable mixture of con-
tact forms caused by the rough surfaces under low contact
load, the theoretical solution and finite-element method are
employed to further investigate the similarity and difference
between cambered surface contacts.

In this paper, the classical sphere and cylinder are
selected as two contact bodies with cambered surface,
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FIGURE 1. The schematic front view for both the sphere-plane contact
and cylinder-plane contact.

and then the theoretical solution of contact resistance (only
including Holm resistance) for sphere-plane contact and
cylinder-plane contact under elastic deformation are pre-
sented. Next, the corresponding simulation models for the
electrical field analysis by using COMSOL Multiphysics
commercial software are built. Then, the isopotential and
electrical current lines distribution are obtained for evaluating
the conductive ability. Finally, the effects of size parame-
ters and mechanical load on contact resistance are compared
explicitly.

II. THEORETICAL SOLUTION
The system of interest and associated size parameters are
described schematically in relation to Fig.1. We consider the
simple situation of cambered surface with curvature radius
r contacting with the plane under mechanical load F , and
the indentation depth is d and contact width is 2a. Then,
the current flows inside the half circle, converging toward the
center of the joint region with contact radius (half-width), and
feeds into the half space connected with electrical ground.
For sphere-plane contact, corresponding to the case where the
pattern in Fig.1 rotates on the vertical center axis z, the con-
striction area is a circle shown in Fig.2(a). According to clas-
sical Hertz theory, when an elastic semi-sphere is in contact
with an elastic plane, the relationship between mechanical
load F and indentation depth d could be expressed by [14]

F =
4
3
Er1/2d3/2 (3)

where E = [(1− v21)/E1 + (1− v22)/E2]
−1 is a constant con-

sisting ofYoung’smodulus and Poisson’s ratio of the involved
materials. And the critical indentation depth dc−sphere at the
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FIGURE 2. 3-D contact models. (a) Sphere-plane contact.
(b) Cylinder-plane contact.

end of the elastic deformation is [17]

dc−sphere = r(
πKH
2E

)2 (4)

where K = 0.454 + 0.41v is the hardness coefficient and
H is the hardness of the softer material. When d ≤ dc,
the deformation between contact pairs is purely elastic. The
relationship between contact radius a and curvature radius r
of the sphere is shown as r2 = a2+ (r−d)2. And the contact
radius could be estimated to be a ≈ (rd)1/2 due to the ratio of
d/a � 1. Substituting this into (3), the contact radius a for
sphere-plane contact could be written as

a = (
3Fr
4E

)1/3 (5)

Substituting (5) into (1), the relationship between contact
resistance Rc−sphere of sphere-plane contact and mechanical
load F is as follows

Rc−sphere = ρ(
E
6r

)1/3F−1/3 (6)

As for cylinder-plane contact, corresponding to the case
where the pattern in Fig.1 is symmetrical about the verti-
cal center axis z, the constriction area is a rectangle with
contact length L in the third, ignorable dimension which is
perpendicular to the paper shown in Fig.2(b). When an elastic
semi-cylinder contacts with an elastic plane, the relationship
between mechanical load F and indentation depth d during
elastic deformation could be described by [14]

F =
π

4
ELd (7)

Similarly, the critical indentation depth dc−cylinder for
cylinder-plane contact at the end of the elastic deformation
could be expressed by

dc−cylinder = 2r(
KH
E

)2 (8)

And the contact half-width could also be estimated to be
a ≈ (rd)1/2. Substituting this into (7), the contact half-width
a for cylinder-plane contact is obtained

a = (
4Fr
πEL

)1/2 (9)

The contact resistance of a rectangular a-spot could be
written as [35]

Rc−cylinder =
2ρ
πL

ln
2r +

√
a2 + (2r)2

a
(10)

When considering the ratio of a/2r � 1 in the normal case,
(10) could be simplified by

Rc−cylinder =
2ρ
πL

ln
4r
a

(11)

Substituting (9) into (11), the relationship between contact
resistance Rc−cylinder of cylinder-plane contact and mechani-
cal load F is as follows

Rc−cylinder =
ρ

πL
ln

4πELr
F

(12)

According to (5) and (9), the contact radius in the contact
region is not only related to the size parameters of contact
bodies, such as curvature radius and contact length, but also
dependent on the contact load between contact pairs. And the
conductive mechanism is directly determined by the magni-
tude of contact radius. It has been experimentally validated
that the conductive mechanism is Sharvin-type dominantly
at low load, and transits to Holm-type with the load increas-
ing [47], [48]. In this paper, only the Holm resistance is
considered and investigated under different combinations of
size parameters and contact load. Thus, the analytical model
mentioned above and the following conclusions are more
suitable when the actual contact radius is larger than the
average electron mean free path comprehensively.

III. FINITE ELEMENT MODELING FOR
ELECTRICAL FIELD ANALYSIS
To visualize the isopotential and electrical current lines distri-
bution of sphere-plane contact and cylinder-plane contact for
various combinations of a, r and L, the commercial program
COMSOL Multiphysics 5.3a version is used to perform sim-
ulations by solving electric field equations through FEM. The
contact pairs are set as pure copper material whose electrical
resistivity is 1.65 × 10−8�·m, typical Young’s modulus is
E1 = E2 = 115 × 109 Pa, hardness is H = 900 N/mm2

and Poisson’s ratio is v1 = v2 = 0.33 [6]. Both the 3D
contact problem of sphere-plane and cylinder-plane could be
simplified to the 2D plane strain problem as shown in Fig.3(a)
according to the symmetry property. And the selected space
dimensions in COMSOL Multiphysics 5.3a are 2D axisym-
metric and 2D for sphere-plane and cylinder-plane contacts,
respectively. Then, in Solid Mechanics interface, the z-axis
is defined as the symmetry axis for sphere-plane contact,
while two vertically left edges are defined as symmetry
boundaries for cylinder-plane contact with an extension in the
perpendicular direction. Thus, a quarter of cambered surface
with curvature radius r0 = 1mm and a square with size of
1×1mm2 and L0 = 2r0 = 2mm in the perpendicular direction
specially for cylinder-plane contact are built and meshed
with traditional triangular elements in Fig.3. The meshes,
presented in Fig.3, are graded radially outward from the
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FIGURE 3. 2-D model with COMSOL Multiphysics. (a) Illustration of model
with mesh. (b) Zoomed-in view of the mesh around the contact region
and contact half-width a is 10µm.

initial point of contact, with the densest mesh in the contact
region. A series of mesh convergence studies are conducted
and the maximal size of the mesh around the contact region
is determined as 0.07µm. This means that the simulated
contact resistance results are not affected with the size of
the mesh further decreasing. And the contact surfaces are
assumed smooth. Electrically, a prescribed constant current
10mA is applied to the top-most surface and the bottom-
most surface is electrically grounded. Axis symmetry on the
leftmost boundary results in electrical insulation. The lateral
surfaces of both bodies are also considered electrically insu-
lated. For better description, the Laplace equation and bound-
ary conditions for sphere-plane and cylinder-plane contact
are described with the cylindrical and Cartesian coordinates,
respectively. The corresponding distribution of the potential
ϕ for sphere-plane and cylinder-plane contact are written as

1
r
∂

∂r
(r
∂ϕ

∂r
)+

∂2ϕ

∂z2
= 0 (13)

∂2ϕ

∂x2
+
∂2ϕ

∂z2
= 0 (14)

And the boundary conditions for sphere-plane and
cylinder-plane contacts both could be described as follows

∂ϕ1

∂z
= ρ1J0, 0 ≤ r ≤ r0, z = r0 (15)

∂ϕ1

∂l
= 0, l =

√
(z− r0)2 + x2, a ≤ r ≤ r0, 0 ≤ z ≤ r0

(16)

ρ2
∂ϕ1

∂z
= ρ1

∂ϕ2

∂z
, 0 ≤ r ≤ a, z = 0 (17)

∂ϕ2

∂z
= 0, a ≤ r ≤ r0, z = 0 (18)

∂ϕ2

∂x
= 0, r = r0, 0 ≤ z ≤ r0 (19)

ϕ2 = 0, 0 ≤ r ≤ a, z = 0 (20)

where the current density are J0 = I0/(πr20 ) and J0 =
I0/(2r0L) for sphere-plane and cylinder-plane contacts,
respectively, due to the circular and rectangular top-most
surface.

FIGURE 4. Distributions of electrical current lines and isopotential of
sphere-plane contact. (a) Electrical current lines profile and isopotential
maps of the whole region. (b) Zoomed-in view of results around the
contact region.

FIGURE 5. Distributions of electrical current lines and isopotential of
cylinder-plane contact. (a) Electrical current lines profile and isopotential
maps of the whole region. (b) Zoomed-in view of results around the
contact region. (c) Zoomed-in view of (b).

The simulation results of isopotential maps and electrical
current lines profile at 10mA electrical current load are shown
in Fig.4 and Fig.5 for sphere-plane contact and cylinder-
plane contact, respectively. As expected, the current lines are
orthogonal to the potential lines and shrink uniformly radially
toward the contact region. And the distribution of current
lines are densest around the vicinity of the contact region. It is
necessary to investigate the electrical potential distribution
on the top-most surface in order to illustrate whether the
half-sphere with limited height of r0 = 1mm in finite-element
model has influence on the constriction of current lines. The
height h is defined as the vertical distance from the horizon-
tal line to the contact region. And the potential distribution
on the horizontal lines with different heights from 0.5mm
to 1mm are shown in Fig.6. It is noted that the electrical
potential increases significantly from 8.25 µ V to 8.275 µ
V along the horizontal line away from the vertical z-axis for
h = 0.5mm. And the variations of electrical potential
becomes smaller with the height h increasing until all poten-
tial are equal for h = 1mm corresponding to the top-most
surface. This means that the top-most surface is an isopo-
tential surface even under limited height. For better descrip-
tion, the isopotential lines corresponding to 90%U , 75%U ,
50%U , 25%U and 10%U are drawn in Fig.4 and Fig.5,
where U is the electrical potential of the top-most surface.

93860 VOLUME 8, 2020
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FIGURE 6. The electrical potential distribution on the horizontal lines
with different heights h from 0.5mm to 1mm.

FIGURE 7. Variations of log(∂V /∂z) as a function of log [1/(a∗ − x/r0)]
with different normalized contact half-width a∗ of 0.01, 0.1, 0.5 and 0.8.
The dashed lines are the asymptotes.

It is obvious that the electrical potential decreases sharply
especially around the contact region for both two contact
structural configurations, which means that the decreasing
potential mainly concentrates around the interface.

Then a local analysis is used to investigate the singu-
larity in the partial derivative of voltage with respect to
the vertical axis along the edge of contacts, which is arose
due to the mixed boundary condition at (a, 0). To confirm
that finite-element analysis captures the singularity behavior,
log(∂V/∂z) against log[1/(a∗ − x/r0)] with different nor-
malized contact half-width a∗ of 0.01, 0.1, 0.5 and 0.8 are
plotted in Fig.7. When x/r0 is close to a∗ from the nega-
tive direction, log(∂V/∂z) increases along the straight line
asymptotically. This phenomenon conforms to the associated
singularity behaviormentioned in Ref [49]. And this indicates
that FEA correctly captures the singularity behavior at (a, 0).
The normalized height is written by h∗ = h/r to eliminate

the influence of the curvature radius of cambered surface.

FIGURE 8. The ratio of potential as a function of normalized height h∗ for
curvature radius r = 1mm, contact half-width a = 10um and contact
length L = 2mm for sphere-plane and cylinder-plane contact.

Fig.8. shows the results of the ratio of potential as a function
of the obtained normalized height h∗. As seen, when the per-
cent of potential drops from 90% to 75% then to 50%, the nor-
malized height h∗ decreases from 0.032 to 0.01 then to 0 for
sphere-plane contact and decreases from 0.46 to 0.09 then to
0 for cylinder-plane contact. Thus, the decreasing rate of the
potential of sphere-plane contact is always faster than that of
cylinder-plane contact. So the former has a slower decline rate
of potential along the arc profile than the latter and the same
isopotential line is closer to the contact region for the fixed
ratio of potential. The normalized relative height of the con-
striction region is defined as 1h∗ = 1h/r = (h90%U −
h10%U )/r for evaluating the ability to confine current for
different contact configurations. And the normalized relative
height1h∗ are 0.064 and 0.93 corresponding to sphere-plane
and cylinder-plane contacts in Fig.8. This indicates that the
sphere-plane contact has a narrower constriction region and a
stronger current crowding ability than cylinder-plane contact.

IV. RESULTS AND DISCUSSION
A. EFFECT OF NON-CONFORMING CONTACT WIDTH
The normalized contact resistance R∗c is defined uniformly as

R∗c =
Rc
ρ
2r

(21)

where Rc could represent the contact resistance for either
Rc−sphere or Rc−cylinder and ρ/2r is the reference value of
normalization.

Fig.9 shows the results of illustrative calculations of the
dependence of R∗c on the normalized contact half-width a/r
with curvature radius of r = 1mm and varied normalized
cylinder-plane length L/r from 0.01 to 100 by using (1),
(10) and (21) for sphere-plane contact and cylinder-plane
contact, respectively. The contact resistance drops linearly
and steeply for sphere-plane contact with a constant index
m = 1 in logarithmic coordinates. For cylinder-plane contact,
the contact resistance rises significantly with the shortening
of cylindrical length L. And the fitting results for different
contact length L in Fig.9 uniformly show that the relationship
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FIGURE 9. The normalized contact resistance R∗c as a function of
normalized contact half-width a/r (r = 1mm) with varied contact
length L/r. The continuous lines represent the theoretically calculated
contact resistance by (1) and (10). And the discrete crosses are the
simulated results for the given contact radius.

between the normalized contact resistance R∗c and normalized
contact half-width a/r could be taken as the power function
R∗c = K1(a/r)−m and the index m is calculated as 0.13 and
0.41, for the case of a/r ≤ 0.1 and a/r > 0.1, respectively.
The simulation results (crosses) of sphere-plane contact

and cylinder-plane contact are also included in Fig.9. It is
clear that the simulations are in excellent agreement with the
analytical calculations for the values of a/r from 0.00001 to
0.1. When a/r = 0.1, the absolute difference value between
simulation and analytical results for cylinder-plane contact is
only 0.23 m�. However, the appreciable deviation 0.87 m�
is observed for a/r ≈ 1. The larger deviation between the
analytical and simulation results when the normalized contact
half-width a/r is close to 1 could be attributed to the fact that
the ratio of a/r does not satisfy the application assumption of
a/r � 1. Then (1) and (10) would always overestimate the
constriction resistance for sphere-plane and cylinder-plane
contacts when the ratio of a/r tends to be 1. Thus, the ana-
lytical results of constriction resistance for sphere-plane and
cylinder-plane contacts are believable when a/r ≤ 0.1.

Fig.10 and Fig.11 show the electrical current lines pro-
file in the right half of circle (shown in Fig.1) with vari-
ous contact half-width a/r by using FEM for sphere-plane
contact and cylinder-plane contact, respectively. As shown,
the distributions of current lines are similar for two different
contact structures with the same a/r , which is determined
by the same shape feature in the non-conforming direction
(shown in Fig.1). The current lines are horizontally crowded
around the contact region when a/r = 0.01 correspond-
ing to a smaller contact half-width as shown in Fig.10(a)
and Fig.11(a), since in this limit most of current lines
are restricted and flow along the arc profile towards the
constriction region, which causes a larger contact resis-
tance. Then, the current lines become vertically crowded
as shown in Fig.10(d) and Fig.11(d) when a/r = 0.1,

FIGURE 10. Distribution of electrical current lines of sphere-plane contact
with (a) a/r = 0.01 (r = 1mm), (b) zoom in view of (a) for 0 ≤ z/r ≤ 0.2,
(c) a/r = 0.05, and (d) a/r = 0.1.

FIGURE 11. Distribution of electrical current lines of cylinder-plane
contact for L/r = 10 (r = 1mm) with (a) a/r = 0.01, (b) zoom in view of
(a) for 0 ≤ z/r ≤ 0.2, (c) a/r = 0.05, and (d) a/r = 0.1.

since the effectively conductive region increases with the con-
tact half-width lengthening and the current lines become less
dense, which is corresponding to a smaller contact resistance.

The height distributions of various isopotential with
90%U , 75%U , 50%U , 25%U and 10%U for sphere-plane
contact and cylinder-plane contact are shown in Fig.12. The
normalized height h∗ and the relative height of the constric-
tion region 1h∗ decrease significantly with the normalized
contact half-width a/r decreasing. This means that a smaller
contact half-width corresponds to a narrower conductive
region, and further prevents the electrical current to pass
through.

B. EFFECT OF CONFORMING CONTACT LENGTH
Fig.13 shows the relationship between normalized contact
resistance R∗c and normalized contact length L/r with var-
ied normalized contact half-width a/r from 0.01 to 0.1 by
using (1), (10) and (21). As shown, the normalized contact
resistance of cylinder-plane contact decreases linearly with
increasing L/r , i.e., with increasing value of L for a fixed
value of r , in logarithmic coordinates. This means that the

93862 VOLUME 8, 2020



W. Ren et al.: Electrical Contact Resistance of Contact Bodies With Cambered Surface

FIGURE 12. The ratio of potential as a function of normalized height h∗
with varied a/r = 0.01, 0.05 and 0.1 for sphere-plane contact and
cylinder-plane contact.

FIGURE 13. Variations of normalized contact resistance R∗c versus the
ratio of L/r with varied contact half-width a/r.

variation of contact resistance for cylinder-plane contact is
dependent on the normalized contact length L/r .
Interestingly, the distributions of the current lines pro-

file and isopotential are the same with identical contact
half-width a and varied contact length L. Thus, the curves of
current lines profile and isopotential in Fig.10 and Fig.11 con-
sist of many values of L/r . So distribution of field lines and
isopotential maps is independent of contact length L. When
the normalized contact half-width a/r ≤ 0.1, the normalized
contact resistance R∗c decreases with the index of 0.13 and 1
with increasing a/r and L/r , respectively. So the data from
the calculation results allow us to synthesize simple scaling
law for normalized contact resistance R∗c of cylinder-plane
contact as

R∗c = 3.85(
a
r
)−0.13(

L
r
)−1 (a/r ≤ 0.1) (22)

The maximum of relative difference is only about
9% between the calculations of (11) and (22). And the

FIGURE 14. Variations of contact resistance Rc/(ρ/2L) versus the ratio of
r/L (L = 0.5mm) with varied contact half-width a/L.

obtained (22) shows a concise relationship among normal-
ized contact resistance R∗c , normalized half-width a/r and
normalized contact length L/r for cylinder-plane contact.
As seen, (22) indicates that the influences of normalized
half-width a/r and normalized contact length L/r on con-
tact resistance are independent. And the variation of con-
tact resistance conforms to two power laws with varied a/r
and L/r for cylinder-plane contact compared with only one
for sphere-plane contact in (1). This difference is mainly
attributed to the fact that the sphere-plane contact is non-
conforming in any directions, while the cylinder-plane is
non-conforming along the contact half-width a only.

C. EFFECT OF CAMBERED CURVATURE RADIUS
It is conditionally correct for the simplified calculation of (1)
for the circular a-spot when the contact radius a is far smaller
than the curvature radius r . To study the influence of curva-
ture radius on the contact resistance for sphere-plane contact,
the contact resistance is accurately given as [50]

Rc−sphere = (
ρ

2a
)[1− 1.41581(

a
r
)+ 0.06322(

a
r
)2

+ 0.15261(
a
r
)3 + 0.19998(

a
r
)4] (23)

The calculation results of the dependence of Rc/(ρ/2L) on
the normalized curvature radius r/L with varied normalized
contact half-width a/L from 0.02 to 0.2 by using (11) and (23)
for cylinder-plane contact and sphere-plane contact are shown
in Fig.14. For sphere-plane contact case, the factor of a/L
and r/L entirely dominates the variations of Rc/(ρ/2L).
Specially, the contact resistance tends to be constant when
r/L > 10. For cylinder-plane contact case, it is noticed
that the increase of contact resistance mainly depends on the
factor of r/L. When the factor of r/L is larger than 30 and
a/L = 0.1, the resistance becomes increasingly higher than
that of sphere-plane contact.

Fig.15 and Fig.16 show the electrical current lines profile
in the right half of circle (shown in Fig.1) with various
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FIGURE 15. Distributions of electrical current lines of sphere-plane
contact for a/L =0.1 with (a) r/L = 0.1, (b) r/L = 1, (c) r/L = 10, and
(d) r/L = 100.

FIGURE 16. Distributions of electrical current lines of cylinder-plane
contact for a/L =0.1 with (a) r/L = 0.1, (b) r/L = 1, (c) r/L = 10, and
(d) r/L = 100.

curvature radius of cambered surface r/L by means of FEM
for sphere-plane contact and cylinder-plane contact, respec-
tively. The current lines are vertically crowded around the
contact region, which are almost parallel to the vertical center
axis, when r/L = 0.1 as shown in Fig.15(a). This is attributed
to the half sphere approaching to a cylinder whose center
axis is vertical to the contact region due to the curvature
radius decreasing. Therefore, the effect of confining cur-
rent becomes weaker and the current lines are vertical to
the contact region which decreases contact resistance. Then,
the current lines become horizontally crowded around the
contact region when r/L = 100 as shown in Fig.15(d), which
is caused by the current lines flowing along the profile of
the sphere due to the larger curvature radius. The distribution
of current lines of cylinder-plane contact is similar to that of
sphere-plane contact, which is also from vertically crowded
to horizontally crowded with increase of curvature radius of
cylinder.

The height distributions of various isopotential with
90%U , 75%U , 50%U , 25%U and 10%U with varied cur-
vature radius r/L from 0.1 to 10 for sphere-plane contact and

FIGURE 17. The ratio of potential as a function of normalized height h∗
with varied normalized curvature radius of cambered surface r/L = 0.1,
1 and 10.

cylinder-plane contact are shown in Fig.17. The normalized
height h∗ and the relative height of the constriction region
1h∗ both decrease significantly with the normalized curva-
ture radius increasing. For the fixed isopotential, the param-
eters h∗ and 1h∗ of sphere-plane contact are always lower
than that of cylinder-plane contact, which indicates that the
isopotential distribution of former is closer to the contact
a-spot than the latter. So the crowding ability for electrical
current of cylinder-plane is weaker than that of sphere-plane
contact, and there would be a lower potential difference for
cylinder-plane contact corresponding to a smaller contact
resistance. However, the potential decreases significantly for
cylinder-plane contact along the arc profile of cylinder, which
causes a larger bulk resistance. And the bulk resistance would
increase with the curvature radius of cylinder increasing. This
is the root reason for a larger resistance for cylinder-plane
contact with the curvature radius increasing than that of
sphere-plane contact.

D. ROLE OF MECHANICAL LOAD
To further probe into the variation law of contact resistance
versus mechanical load, the size parameters (contact
half-width a and contact length L) and mechanical load F are
normalized by the curvature radius r and all dimensionless
parameters are denoted with an asterisk. The relationship
between the normalized contact resistance R∗c and normalized
mechanical load F∗ for sphere-plane contact according to (1),
(5) and (21) is

R∗c-sphere = (
3
4
F∗)−1/3 (24)

where the normalized mechanical load is defined as
F∗ = F/(Er2). And for cylinder-plane contact, according
to (9), (21) and (22), when a/r ≤ 0.1, the relationship
between the normalized contact resistance R∗c and normalized
mechanical load F∗ could be written by

R∗c−cylinder = 3.79(L∗)−0.935(F∗)−0.065 (25)
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FIGURE 18. The normalized contact resistance R∗c as a function of
normalized mechanical load F∗ with varied normalized contact length L∗.
The continuous lines represent the theoretically calculated contact
resistance by (24) and (25). And the discrete crosses are the simulated
results for the given contact.

where the normalized contact length is defined as L∗ = L/r .
Fig.18 shows the results of illustrative calculations of the
dependence of normalized contact resistance R∗c on the nor-
malized mechanical load F∗ with curvature radius r = 1mm
and varied normalized cylindrical length L∗ from 0.01 to
100 by using (24) and (25) when the normalized contact
half-width a∗ ≤ 0.1. The normalized contact resistance
R∗c decreases with index m = 0.33 for sphere-plane con-
tact with the normalized mechanical load F∗ increasing.
However, for cylinder-plane contact, R∗c decreases with index
m = 0.935 and 0.065 with the normalized contact length L∗

and normalized mechanical load F∗ increasing. This indi-
cates that mechanical load has slight influence on the contact
resistance compared with contact length for cylinder-plane
contact. In order to make the analytical results convincible
and validate the simplification of the Hertzian contact area
under the effect of mechanical load, the electro mechanical
coupling simulations are also conducted by COMSOLMulti-
physics 5.3a. And the vertical prescribed displacement is pro-
gressively applied on the top-most surface of the half-sphere
in Fig.3(a). The produced contact loads and contact resis-
tance are calculated after the whole simulation progress.
The simulation results (crosses) of sphere-plane contact and
cylinder-plane contact are also added in Fig.18. The decrease
of normalized contact resistance with the normalized contact
load increasing for simulation results in Fig.18 shows a simi-
lar trend with lower slope compared to the results in Fig.9.
This is caused by the nonlinear increase of contact radius
with the contact load increasing as described in (5) and (9). It
is obvious that the simulation results are in excellent agree-
ment with the analytical calculations for the values of F∗

from 10−11 to 10−7. After that, there are larger deviations
between analytical and simulation results, which is corre-
sponding to the case of larger contact radius in Fig.9. This
could also be attributed that the Hertzian contact radius a
derived from (5) and (9) for sphere-plane and cylinder-plane

FIGURE 19. Contact resistance comparison maps of contact bodies with
cambered surface based on normalized mechanical load F∗e and
normalized contact length L∗.

contacts are not valid with the contact radius increasing. Thus
a ≈ (rd)1/2 would underestimate the real contact radius
which further cause a larger constriction resistance. There-
fore, the electro mechanical coupling technique is necessary
to determine the difference in the contact radius and contact
resistance between the analytical and simulation results under
the mechanical load effect.

According to (24) and (25), the normalized mechanical
load F∗e , which make the contact resistance of sphere-plane
contact equal to that of cylinder-plane contact, could be
written into

F∗e = 9.97× 10−3(L∗)3.48 (26)

Fig.19 illustrates the variations in normalized mechanical
load F∗e as a function of normalized contact length L∗. It is
noted that the calculated critical normalized contact load F∗

is equal to 2.87 × 10−6 for the elastic sphere-plane contact,
corresponding to the critical indentation depth in (4). Though
the critical normalized contact load for cylinder-plane contact
varies with the contact length, it is always higher than the F∗e
for the fixed normalized contact length L∗. Thus, the contact
resistance map with different maximum normalized contact
load is similar for Fig.19. Therefore, the maximum F∗e is
selected as 2.87 × 10−6 in Fig.19 to guarantee the purely
elastic deformation and further compare two contact config-
urations. As shown, the contact resistance of sphere-plane
contact is exactly comparable to the resistance of cylinder-
plane contact. Such exponential demarcation curve indicates
that the resistance difference between sphere-plane contact
and cylinder-plane is closely dependent on contact length
and mechanical load. Furthermore, the cylinder-plane elec-
trical contact with large contact length is preferable in the
low mechanical load engineering application. For instance,
the Series J255 TO-5 (Transistor Outline Package) relay
could decrease the contact resistance to be lower than 50m�
under contact load of tens of milli-newton [51]. While the
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sphere-plane contact could improve the electrical perfor-
mance by increasing the mechanical load when the space is
limited. And the sphere-plane electrical contact has a great
advantage for miniaturization.

V. CONCLUSION
This paper mainly aims to systematically investigate the sim-
ilarity and difference between two typical cambered surface
contacts, i.e. sphere-plane contact and cylinder-plane con-
tact, under the elastic deformation based on the effects of
size parameters and mechanical load on the contact resis-
tance. Our results indicate that mechanical load is a sensi-
tive parameter to contact resistance of sphere-plane contact.
Meanwhile, the contact resistance of cylinder-plane contact
is significantly affected by contact length. This difference
is attributed to the fact that the specific conforming fea-
ture of cylinder-plane contact. The distributions of simulated
constriction region show that the sphere-plane contact has
a stronger current crowding ability. And the simplification
of the Hertzian contact area for both sphere- and cylinder-
plane contacts is limited with larger contact radius for a/r >
0.1. Furthermore, the conductive ability of non-conforming
contact is determined by the feature of cambered surface
and mechanical load comprehensively. And the superiority
of cylinder-plane contact would be performed even under
low mechanical load. This is a positive and beneficial con-
clusion in engineering applications for electrical contacts,
especially for the determination of contact structure in the
design process. And the dimensionless results of contact
resistance could be instructive to the stable electrical contact
for MEMS under smaller dimension and lower contact load.
In future, the detailed works on the plastic deformation will
be in schedule for comparison to the elastic deformation for
different contact structures.
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