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ABSTRACT Tunnel engineering is one of the typical megaprojects given its long construction period, high
construction costs and potential risks. Tunnel boring machines (TBMs) are widely used in tunnel engineering
to improve work efficiency and safety. During the tunneling process, large amount of monitoring data has
been recorded by TBMs to ensure construction safety. Analysis of the massive real-time monitoring data still
lacks sufficiently effective methods and needs to be done manually in many cases, which brings potential
dangers to construction safety. This paper proposes a hybrid data mining (DM) approach to process the real-
time monitoring data from TBM automatically. Three different DM techniques are combined to improve
mining process and support safety management process. In order to provide people with the experience
required for on-site abnormal judgement, association rule algorithm is carried out to extract relationships
among TBM parameters. To supplement the formation information required for construction decision-
making process, a decision tree model is developed to classify formation data. Finally, the rate of penetration
(ROP) is evaluated by neural network models to find abnormal data and give early warning. The proposed
method was applied to a tunnel project in China and the application results verified that the method provided
an accurate and efficient way to analyze real-time TBM monitoring data for safety management during TBM

construction.

INDEX TERMS
underground structure.

I. INTRODUCTION

Tunnel boring machines (TBMs) have been widely used as an
effective tool for tunnel construction which is characterized
by its large scale, high cost and long project lifecycle, and
the construction process is always associated with complex
technical problems and potential risks [1]. Modern TBMs
usually integrate a large number of sensing and monitoring
methods and record a series of operation parameters [2]
such as stress, current, flow and gas pressure, etc. These
monitoring data indicate the working state of TBM, and can
be used to reduce construction risks, optimize construction
operations and ensure construction safety. With the develop-
ment of sensing technology, some cyber-physical platforms
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have been built to achieve effective data management [3],
[4], including automatic data collection, storage and visual-
ization. However, manual analysis falls short of consistent
standards and poses risks for tunnel construction. In fact,
some tragic construction accidents have occurred due to the
lack of timely and accurate data analysis. A serious water
inrush accident occurred in a tunnel project in Guangdong,
China on February 2018, resulting in more than 10 fatali-
ties and major economic losses. The cause of the accident
was that the TBM entered into a permeable layer that had
not been identified by geological investigation. This could
be avoided if the formation anomalies were recognized in
advance, for example, by analyzing the real-time monitoring
data. However, the real-time automatic analysis of data still
faces many difficulties due to the following characteristics of
TBM monitoring data.
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(1) Variables related to critical parameters are difficult
to determine. As megaprojects with enormous uncertainties,
tunnel construction needs to record data from every aspect
and subsystem to reduce risk. The number of monitoring
parameters can be more than one hundred, and the rela-
tionships among them are difficult to understand and model
manually [5]. When critical parameters need to be predicted
and analyzed, it is difficult to determine all related variables
from the set of massive parameters. As a result, the accuracy
of data analysis is affected.

(2) The heterogeneity of soil makes the data not accurate.
Compared to projects above the ground, the geological infor-
mation plays an extremely important role in underground tun-
nel construction. However, the geological data are obtained
through the borehole sampling and the formations between
the sampling points are usually calculated by linear fitting.
The fitting results often differ from the actual situation and
affects the accuracy of data analysis. Some weak formations
may also not be sampled and discovered, bringing hidden
dangers to the tunnel construction process.

(3) The complex nonlinear relationship between monitor-
ing variables is challenging for data analysis and modeling.
When a TBM is working, soil, shield and internal machin-
ery interact with each other, making the correlation between
parameters complicated and difficult to be described in a sim-
ple mathematical formula [6]. As a result, those commonly
used statistical analysis methods do not perform well.

The aim of this study is to conquer the above problems
and achieve automatic and efficient analysis of TBM mon-
itoring data to ensure the construction safety. To solve this
problem, DM techniques are introduced in this paper. DM is
a data-driven analysis method which is especially suitable for
extracting the required patterns from massive, fluctuating and
complex data [7]. It has been validated that DM methods can
promote the value of monitoring data in engineering projects
[8]. However, the application of DM in the field of TBMs has
encountered challenges due to strict efficiency and accuracy
requirements. A novel hybrid DM method is proposed in this
paper to overcome these challenges. The originality of this
paper contains the following 5 aspects. (1) Association rules
are extracted to supplement people’s experience and assist
in judgement of anomalies. (2) Formation data is refined by
classification analysis to support the decision-making process
of TBM operators. (3) The performance of TBM is evaluated
by ANN models and abnormal conditions can be discovered
by comparing the evaluation value with actual value. (4)
Improvements have been made to existed DM algorithms
based on TBM characteristics to improve performance. (5)
The three DM algorithms are not only designed to solve single
problems, they are also combined to form a hybrid DM frame-
work to improve data mining process. The extracted asso-
ciation rules are used for parameter selection in subsequent
algorithms, and the classified formation is applied to improve
data quality in rate of penetration (ROP) prediction. Verified
by a case study, the efficiency and accuracy of algorithms is
improved by the proposed hybrid DM framework. The min-
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ing results, including construction laws, refined formation
and reviewed ROP, are combined to provide support for safety
management in tunnel engineering.

The remainder of this paper is organized as follows.
Related studies of TBM data analysis are first reviewed. The
framework of the proposed hybrid DM method is then intro-
duced. The following three sections investigate three different
data mining methods. The association rule algorithm is used
to model the relationship between monitoring parameters.
The classification algorithm is then introduced to estimate the
formation where TBM is located. Finally, the artificial neural
network (ANN) is applied to predict the ROP. The last two
sections discuss and conclude main findings of the study.

II. LITERATURE REVIEW

A. DATA ANALYSIS IN TBM AND TUNNEL ENGINEERING
When it comes to the field of shield tunneling, how to assess
the performance of TBMs accurately remains one of the most
challenging issues for both practitioners and researchers.
Accurate judgement of the TBM performance can assist
selecting machine and forecasting project duration, leading
to a reduction in project costs [9]. In general, to predict
the performance of TBMs is to estimate certain parame-
ters which include ROP and advance rate (AR), while input
variables include rock properties and machine parameters
[10]. Typically, the prediction methods can be divided into
three categories: theoretical methods, empirical methods, and
numerical methods. Rostami [10] elaborated theoretical and
empirical methods in a recent review.

The theoretical methods build models based on force bal-
ance among rock, cutters and internal machinery. One of
the most frequently used theoretical models is the Colorado
School of Mines (CSM) model developed by Rostami and
Ozdemir [11]. The model is based on basic principles of
rock cutting with disc cutters, and considers the influence of
rock mechanical properties, disc cutter geometrical parame-
ters and cutting parameters. Cheema [12] and Ramezanzadeh
et al. [13] modified the CSM model by introducing other rock
mass parameters.

The empirical models are based on engineering experience
involving a large number of laboratory tests, field measure-
ments and construction records. A commonly used empirical
model is the Norwegian University of Science and Technol-
ogy (NTNU) model [ 14]. Several revisions and improvements
have been made to the NTNU model, and the latest work
was done by Macias [15]. Field Penetration Index (FPI)
model is another popular empirical model to predict TBM’s
performance. Recent modifications to the model were done
by Hassanpour et al. [16] and Delisio and Zhao [17].

With rapid advancement of computation theory and
devices in recent years, utilization of the numerical simu-
lation method has drawn increasing attentions in the liter-
ature. Nonlinear regression analysis is a basic but effective
simulation method, by which a fitting formula between TBM
performance and input parameters can be obtained [18], [19].
In the field of artificial intelligence (AI) methods, artificial
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neural network (ANN) is a popular way to establish models
for its strong learning and nonlinear fitting ability [20], [21].
Meanwhile, fuzzy logic is also used in modeling [22] and has
been further combined with ANN to become a neuro-fuzzy
method [23]. The use of other algorithms, such as support
vector machines (SVM) [24], gene expression programming
(GEP) [25] and particle swarm optimization (PSO) [26], has
also been tried to predict the performance of TBM. . Isam and
Wengang [5] investigated the applications of soft computing
techniques in TBM performance prediction, and concluded
that soft computing methods shows good performance in
dealing with complex relationships among TBM parameters.

In addition to the evaluation of TBM performance,
the monitoring data also reflect some other working condi-
tions of TBMs which are worthy of attention. The calculation
of the interaction between soil and TBMs can predict the
risk of the machine and surrounding environment, and help
to optimize the design and selection of TBMs. Acaroglu [27]
developed a fuzzy logic model to determine the cutting forces
and energy cost for disc cutters. The model was based on
experience and linear cutting tests, and its input parameters
included rock properties and mechanical dimensions. Festa
et al. [28] established a prediction model to quantify the
magnitude of the driving force and its temporal and spa-
tial distribution by mining the TBM logged data. Moreover,
a dynamic load prediction model was proposed based on
the random forest algorithm [29]. Excavation in soft soil
can lead to ground settlements, affecting the surrounding
environment and buildings. Broere and Festa [30] proposed
a theoretical model which linked soil displacements to the
dynamic and geometrical characteristics of TBMs. And the
amplitude and spatial distribution of the soil displacement can
be then obtained with data records. Geological information
is a key factor in safety management of tunnel construction,
and different methods including ANN [31] and support vector
classifier (SVC) [32] has been proposed to predict geological
formation based on TBM operating data. Shi et al. [33], [34]
proposed a fuzzy c-means algorithm to cluster TBM mon-
itoring data. Formation information and operating behavior
can then be derived from data clusters. Besides, Salimi ef al.
[35] constructed a decision tree model to develop a rock mass
classification system. The system can provide a classification
criterion for geological data in TBM performance evaluation.
These studies were used in the process of automation in shield
tunneling, demonstrating the feasibility and practicality of
TBM monitoring data analysis.

B. APPLICATION OF DM IN AEC INDUSTRY

DM is a collection of data analysis technologies that are
designed to extract unknown knowledge from large data
sets. According to mining tasks, DM algorithms can be fur-
ther divided into several categories, such as classification,
regression, clustering, and discovery of associations [36]. The
general process of DM includes data selection, data prepro-
cessing, application of DM algorithms, and interpretation of
mining results.
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The Architecture, Engineering and Construction (AEC)
industry has accumulated a large amount of data for a long
time. The introduction of sensors and Internet of Things (IoT)
has further increased the amount of data [37]. Some important
reasons for practitioners to adopt DM include sustainability,
improving process, acquiring intelligence, identifying costs
and reducing costs [38]. Currently, DM has been applied at
all stages of the building’s lifecycle.

In the design phase, Kim et al. [39] used DM techniques to
evaluate building design options. Energy-related impacts of
multiple building components, including roofs, walls, heat-
ing, ventilation and air conditioning (HVAC) system and
building orientation were analyzed. The key patterns were
extracted to help the project team to improve building design.
Petrova et al. [40] also used DM methods to predict the energy
saving outcomes of the building. A semantic graph was con-
structed to extract information from textual design data. The
association rule algorithm was then applied to investigate the
connection between design options and building performance
after construction.

In the construction phase, DM was used to evaluate con-
struction risks, find construction defects and predict project
costs. Cheng et al. [41] used the decision tree model to predict
the probability of casualties. The involved parameters of the
model include accident type, project type, the age and gender
of the workers, etc. Ayhan and Tokdemir [42] used ANN
and Case-Based Reasoning (CBR) methods to evaluate the
risk of construction in megaprojects. Heterogeneous data and
multiple parameters were considered in model construction,
and a Latent Class Clustering Analysis (LCCA) process was
applied to reduce the data size. The model finally outputs the
risk degree of certain construction behavior. Lin and Fan [43]
used the association rule algorithm to analyze the relationship
between construction defects and inspection indicators. The
rules could help inspectors pay more attention to key indi-
cators. In the operation and maintenance (O&M) phase, DM
has shown promising results in the field of energy efficiency
analysis. Geronazzo et al. [44] applied the decision tree
model to explore what climate response strategies will create
a comfortable indoor environment. The structure of the gen-
erated decision tree could clearly explain the impact of each
factor. Ashouri et al. [45] used a hybrid data mining method
to give advisory on energy saving behaviors. Association
rules and cluster analysis were used to analyze occupants’
energy consuming records and give recommendations. ANN
was then involved to predict the amount of saved energy.
In addition to energy analysis, DM methods could be also
applied to maintenance records. Peng ef al. [46] and Wen
et al. [47] conducted an innovative research on extracting
hidden patterns in maintenance records of large public build-
ings using hybrid DM methods. The extracted rules could be
provided to building managers as recommendations.

C. DISCUSSION
A variety of models and algorithms has been applied to
tunnel construction data to model the complex nonlinear
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relationship of TBM parameters. These data-driven methods
have successfully improved tunneling efficiency and reduced
labor hours in many cases. However, there are still many
deficiencies in the current literature. Most research on TBM
performance prediction are not designed for real-time anal-
ysis. The data used in these studies are mainly limited to
the rock property and TBM geometry with few real-time
monitoring data involved. The analysis process also involves
a lot of manual participation and cannot meet the efficiency
requirements of real-time analysis. As a result, these studies
can only be used for evaluations before or after a project,
instead of real-time analysis of TBM status. Besides, tunnel
construction will record numerous parameters in real time.
But the selection of parameters is mostly based on expe-
riences and insufficient understanding of the meanings of
those parameters. It also happens that related parameters are
not considered, and thus the model accuracy is reduced. In
addition, the formation parameters of TBM have an important
influence on the tunneling performance. However, at present,
formation data can only be obtained by borehole sampling,
which makes formation information between sampling points
inaccurate. Since the performance of DM depends on the
quality of data, this inaccurate data will reduce the accuracy
of DM. Furthermore, these studies are mostly designed to
solve a specific predictable problem with a single method.
A systematical study on TBM parameters and their relation-
ships can seldom be found in the literature. The combination
of multiple analysis methods to solve complex problems
is also not common. Therefore, new methods need to be
designed to consider the influence of various parameters
based on real-time TBM monitoring data.

Many research literatures have demonstrated the effective-
ness of DM in AEC projects. However, DM is still considered
a semi-automated process because of the manual participa-
tion in the preprocess and postprocess steps [48]. Excessive
manual participation will reduce the efficiency of DM and
bring uncertainty to mining results. Some researchers have
proposed methods of using other DM techniques to replace
manual work in the current DM process, and this is the core
idea of hybrid DM approaches [49]. A typical hybrid DM
method uses one or more DM algorithms as preprocessors
to find useful sub datasets for the main DM algorithm [46].
These sub datasets have better data quality and more obvi-
ous features, and are expected to provide better results [50].
In fact, some studies have proved benefits from a hybrid
DM approach [42], [43]. Unsupervised algorithms, such as
association rules and cluster analysis, can be performed first,
followed by supervised algorithms including classification
and prediction. It is believed that early exploratory analysis
will help make sense of data patterns, identify data character-
istics, and point directions for in-depth analysis [44].

Therefore, a hybrid DM method is proposed in this paper
to solve the above problems and ensure the safety of TBM
construction. By introducing the hybrid DM approach, multi-
ple deficiencies can be addressed: (1) Analysis methods with
heavy labor participation cannot meet the efficiency require-
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ment of real-time data analysis. The hybrid DM method
replaces manual work in data preprocessing and postprocess-
ing with automated DM algorithms, which improves working
efficiency and enables real-time data analysis. (2) The param-
eter selection based on experience will reduce the accuracy
of analysis results. The proposed hybrid DM method replace
this process with an association rule discovery algorithm in
the preprocess step. Parameters can be then selected based
on association rules instead of experiences to get a better
result. (3) Inaccurate formation data will affect the effect
of DM. To solve this problem, a classification algorithm is
designed in the hybrid DM framework to calibrate formation
information. (4) Most studies are designed to solve single
specific problems. By applying the hybrid DM algorithm,
multiple safety management objectives in tunnel construction
is achieved. It should be noted that these objectives are not
independent. The results of the previous analysis tasks can
provide support for the subsequent DM processes. The pro-
posed approach benefits from the combination of multiple
DM methods and obtains better accuracy and efficiency of
data analysis.

The characteristics of TBMs are also considered in the
construction of the hybrid DM method. These characteristics
will be used as priori knowledge to improve the general DM
process. The framework of the hybrid DM method will be
detailed in the following section.

Ill. FRAMEWORK OF THE HYBRID DM APPROACH

The framework of the proposed approach is presented
in Fig. 1. Three objectives in different aspects of TBM safety
management were achieved by the proposed method. A uni-
fied database that integrated monitoring data and formation
information was first established. Three DM methods towards
different safety management goals were then performed to
carry out the analyses of real-time TBM monitoring data.
Each method followed the general process of DM including
data collection, data preprocessing, core algorithm applica-
tion and result interpretation [51].

In order to provide people with a better understanding of
TBM operating laws, association rule discovery was first per-
formed. Monitoring data with multiple parameters was input
into the model, and the association rules among parameters
were extracted as output. Meanwhile, the prior knowledge of
TBM parameters was considered to improve the calculation
efficiency. The mining results reveal the relationship among
TBM parameters, and could be used to give early warning
about abnormal changes as acquired experiences. When the
change of TBM parameters is inconsistent with association
rules, anomalies may exist and early warnings should be
given. The extracted rules can also be used for parameter
selection for the following procedures. Due to the complex
interaction between soil and TBM, factors affecting depen-
dent variables are hard to be fully considered. Association
rules reveal potential relationships among TBM parameters,
which can be used to select input parameters for DM models.
For example, when determining the input parameters of the
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FIGURE 1. Framework of the hybrid DM method.

formation classification model, the involved parameters only
need to be looked up in the association rules that contain the
formation.

Classification analysis of formation was subsequently per-
formed to address the problem of inaccurate formation infor-
mation. Input parameters of the classification model can be
determined by association rules to get a better classification
result. The trained classification model could then be used
to provide people with current formation information which
is essential in the decision-making process for TBM safety
management. When the calibrated formation differs from
borehole sampling results, operators should conduct careful
inspections to ensure safety and take corresponding construc-
tion strategies. The calibrated formation can also provide
more accurate data for ROP prediction, and is expected to
improve the performance of ROP prediction model.

Finally, an ANN was selected to carry out real-time ROP
prediction. The parameter selection of the model was also
based on association rules, and the calibrated formation data
was applied to improve the accuracy. During the modeling
process, the characteristics of monitoring data were consid-
ered, and a special network structure that considered two
adjacent monitoring records was designed. The predicted
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Hybrid DM method:
end

ROP could be used as a reference for the actual monitoring
data and help with construction decisions.

A comparison between the proposed method and some
related data-driven researches in the field of TBMs is shown

in Table 1. The contributions of the proposed approach
include: (1) Aiming at three objectives of TBM safety man-
agement, a hybrid DM method is proposed to improve mining
process and achieve multi-objective analysis (2) Both for-
mation data and real-time monitoring data were involved,
and the formation data were calibrated to improve accuracy;
(3) Association rules are adopted in the parameter selection
process to improve the accuracy of DM.

IV. CONSTRUCTION LAW EXTRACTION WITH
ASSOCIATION RULES

A. TBM PARAMETERS AND THEIR RELATIONSHIPS
During the excavation process, the soil, shield and machinery
interact with each other, resulting in a complex relationship
between TBM parameters. Some qualitative descriptions can
be given by experience although it is difficult to describe
these relationships in mathematical formulas. For example,
the thrust and the cutter torque will affect the ROP and the
cutter head speed as well. The strength of the soil formation
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TABLE 1. Comparison between the proposed method and related researches.

Objectives Data Types

Parameter Selection Models

Yagiz et al. [19] ROP prediction Formation data

Use nonlinear regression and

By simple regression ANN independently

Formation data and machine

Acaroglu [27]

Mahdevari et al.
[24]

Zhang et al. [52]

Load prediction .
properties

ROP prediction .
properties

Fault diagnosis

Broere and Festa
[30]

Sun et al. [29]

Settlement prediction

Load prediction data

Association extraction,
formation classification
and ROP prediction

P d method itori
roposed metho monitoring data

Failure and maintenance records

Real-time monitoring data

Formation data and operation

Formation data and real-time

Selected manually Fuzzy logic regression

Formation data and machine

Not mentioned Support vector regression

Integrate DFT and Bayesian

Selected manually network as a hybrid model

Selected manually Force Analysis Model

Not mentioned Random forest

Integrate association rule,
decision tree and ANN as a
hybrid model

By association rules

determines the required thrust and torque to maintain a con-
stant tunneling speed. And the mud circulation will change
the nature of the formation, making the soil softer and easier
to cut through. These experiences have been validated by a
large number of engineering practices, and are correct in most
cases. TBM operators can use this knowledge to judge the
safety status of the machine and warn about abnormal situa-
tions that are not compliant with experiences. In fact, there are
many hidden unknown construction laws that have not been
discovered and summarized. Similar to people’s experience,
these laws can be applied to judge anomalies and assist in
the safety management of tunnel construction. Therefore, an
improved association rule discovery algorithm is developed
in this section to discover hidden relationships among param-
eters and extract construction laws. The extracted rules can
assist operators with risk identification and ensure construc-
tion safety.

The extracted association rules can also help with the
parameter selection process of the other two DM algorithms.
The complex interaction between soil, shield and internal
machinery makes it difficult to model the relationships among
TBM parameters. As a result, the factors affecting a parame-
ter are hard to be fully considered. In previous studies, input
variables for TBM data analysis are mainly based on people’s
experience, such as inherited from previous models or deter-
mined by domain experts. This method is quite useful with
a small number of parameters. However, when the number
of parameters is large, determining relationships between
parameters manually will become inefficient and error-prone.
A novel method for parameter selection based on association
rules is proposed in this paper. Parameters that exist in the
same association rule are considered relevant and selected as
candidates for parameter selection. The process of parameter
selection is detailed in the following two sections.

B. IMPROVED ASSOCIATION RULES FOR CONTINUOUS
DATA

The association rule algorithm is developed to find all the
strong association rules among the attribute combination,
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where both support and confidence requirements needs to be
met. Originally, the support requirement can be indicated as

(1):

X UY|
|D|

where X and Y are item sets with certain parameters taking
a specific value; X = Y is the association rule where X is
the result of Y; |X U Y| is the number of events where X and
Y occur simultaneously; |D| is the total number of events;
and S, s the minimum threshold for support set by user.
Similarly, the confidence requirement can be represented as

Q):

Support (X = Y) = x 100% > Spin (n

Support (X UY)

Confid X=Y)=
onfidence (X = Y) Support (X)

x 100% > Cyin
@

where X and Y have the same meaning as in (1), and C,,;,, is
the minimum threshold for confidence determined by user.

Association rules are originally designed to describe rela-
tionships among parameters with discrete values. However,
most of the TBM monitoring data is time series data with
continuous values. To apply the association rule algorithm to
these data, an improved association rule is proposed in this
paper. Suppose A and B are two time series parameters with
n records:

A={a,a,---a1,0a;, - a} 3)
B:{b17b25"'b[717bt7“'bn} (4)
where a; and b, is the data recorded at a certain moment. At

the moment 7, parameter A or B taking a specific value i is
defined as

i Xt — Xomin i+1
. true, — <
f (xs,1,m) = m Xmax — Xmin m 5)
false, other conditions

=<

where x; stands for a; or by, and m is a manually specified
value which is set to 3 in the proposed method. X and Y are
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events that A and B takes a specific value i and j. The support
value of parameter X and Y is calculated as:

If (ar. i, 3)f (br. ), 3)I
DI

Support X = Y) = x 100% > Syin

(6)

Concisely, the support value of X = Y is the proportion
of records where A and B are in the specified value range.
The calculation of confidence is still based on (2). Similarly,
the improved association rules can be further extended to
relationships between continuous values and discrete values.
Assuming X is the event that a continuous variable A takes
value i, and Y represents a discrete parameter taking a specific
value, the support value can be calculated as:

If (a;,1,3) UY|
D

In this case, support is the proportion of records where

A is in a certain value range and Y takes a certain value.

In brief, the support requirement guarantees the frequency of

association rules, and the confidence requirement ensures the
reliability of association rules.

Support (X = Y)= x 100% > Spin (7)

C. IMPROVED APRIORI ALGORITHM
According to the definition, the association rule algorithm can
be divided into the following two steps:

(1) Mining process 1 is to find all item sets which meet sup-
port requirement, and those item sets are called the frequent
item sets.

(2) Mining process 2 is to generate association rules in
all frequent item sets with confidence requirement as the
criterion.

Specifically, the Apriori algorithm [53] is a classical algo-
rithm in association rule extraction. The flow of the algorithm
is shown in Fig. 2. The Apriori algorithm uses an iterative
method to generate candidate item sets with k + 1 parameters
from frequent item sets with k parameters. The frequent item
sets with k + 1 parameters will be output after support test.
And association rules with k 4+ 1 parameters can then be
obtained by applying confidence test.

The efficiency of the original Apriori algorithm is rela-
tively low. During the generation of frequent item sets with
k + 1 parameters, the data set needs to be scanned for every
combination of parameter item, which leads to a large amount
of time consumption. Therefore, an improved Apriori algo-
rithm is proposed to improve computing efficiency. As shown
in Fig. 2, the improved algorithm uses prior knowledge to
filter candidate item sets and reduce the combination of
parameter items. Specifically, TBM parameters are divided
into groups based on experiences. There is no relationship
between the parameters of different groups, and the asso-
ciation rules where parameter come from different groups
cannot meet the confidence requirements. Candidate item sets
with parameters from different groups can then be filtered.
For example, there may be a potential relationship between
the jack thrust in different directions and the orientation
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FIGURE 2. Mining processes of the improved Apriori algorithm.

parameters. But the total thrust of the machine, which is the
sum of all jack thrusts, must not be related to its orientation
due to the spatial symmetry. Therefore, the total thrust and
the orientation parameters can be divided into two different
groups, and frequent item sets with total thrust and orientation
can be filtered.

The two key parameters of the algorithm are the support
and confidence threshold. Generally, the higher the support,
the higher the frequency of association rules, indicating that
the rules are more universal. The higher the confidence,
the higher the accuracy of the association rules, indicating
that the rules are more accurate. Increasing the support and
confidence thresholds will result in higher quality of associa-
tion rules, but the number of rules that meet the requirements
will be reduced. A trial and error process were carried out
in this paper to ensure that sufficient quantity and quality of
association rules are generated.

V. REAL-TIME REFINEMENT OF FORMATION BY
CLASSIFICATION ANALYSIS

The formation property is one of the most important con-
struction parameters during the shield tunneling process,
affecting a series of construction processes such as cutter
head cutting, mud circulation and simultaneous grouting.
As a result, the formation properties are associated with
many parameters in TBM monitoring data, and become a
key factor in the safety management of tunnel construction.
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Almost all studies in the literature have considered geological
parameter as input variables to the analysis model. However,
the accuracy of the formation is still low because at present,
the common approach to obtaining geological information is
drilling exploration before construction. The method samples
boreholes at a certain distance to obtain the geological infor-
mation of a point, and linearly interpolates between sampling
points to estimate the geological conditions of all locations
[29]. Due to the lack of direct survey data, the exploration
results between sampling points are relatively rough, and
there are often unexplored formations encountered during
construction. The accuracy requirements of the construction
and monitoring data analysis are often difficult to meet in
complicated formation. Therefore, a classification method
was proposed in this section to estimate the current formation
through the real-time monitoring data of TBM. The refined
formation can improve the accuracy of geological data and
help constructors adopt the correct safety management strat-
egy. The calibrated formation data can also be integrated into
the hybrid DM framework to improve the performance of
subsequent mining algorithms.

A. PARAMETER SELECTION

In the literature, formation parameters have only been used
for independent variables rather than dependent variables in
the analysis model. One of the main reasons is that there are
so many parameters related to the formation properties. Many
parameters can be affected by the properties of the formation,
and the formation parameters can be thus used as influencing
factors to participate in the analysis. However, the estima-
tion of the formation needs to determine all the important
parameters related to the formation properties, which is rather
difficult considering the large number of TBM parameters.
The application of association rules could provide a solution
to the problem. The relationship between variables can be
explained through the association rules, and the parameters
related to the stratum can be then determined.

In this study, the association rules containing the formation
data is selected. The other attributes in the association rules
were used as candidates. Further sensitivity analysis was
conducted to improve the efficiency of model training, while
the remaining parameters were used for formation evaluation.
In addition, since the TBM monitoring data and the geolog-
ical data are heterogeneous, a data integration process needs
to be carried out before the algorithm starts, which will be
detailed in the case study.

B. CLASSIFICATION AND REGRESSION TREE

A decision tree is selected as the formation classification
model in this approach. The model is a tree-based classifi-
cation structure, where the internal nodes are classification
criteria based on the monitoring data, and the leaves are
the predicted formation results. The classification model is
constructed based on the classification and regression tree
(CART) algorithm [54]. The CART model could map input
data to multiple values and is suitable for multi-result forma-
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tion classification. In general, three following steps are taken
to construct a CART model:

1) DECISION TREE GENERATION

A decision tree is built with the training set, and each node
in the decision tree is expected to be as pure as possible. The
purity here means that all samples belong to the same class
and can be judged by the Gini index as defined in (3):

ity ="y _ p(ilt)p(le) ®)
i#]
where ¢ is a given node, and p(i|t) and p(j | ¢) are proportions
of records belonging to class i and j in node ¢ respectively.

2) DECISION TREE PRUNING
The nodes of the generated tree are sequentially pruned to
avoid overfitting. The pruning order is calculated based on
the complexity cost:

_CoH-CcT)

IT:] —1

where ¢ is a given node, T; is the sub-tree rooted at t, C(T)
is the sum of Gini index of all nodes in tree T, and |T}| is
the number of nodes in 7;. Nodes with smaller complexity
cost will be preferentially pruned. The final pruning result is
an ordered sub-tree sequence with a decreasing number of
nodes.

&)

3) DECISION TREE EVALUATION
The validation set is used to find the tree with the best
classification result.

The key parameters of the CART model include maximum
tree depth, minimum number of samples required for node
partition, maximum number of leaf nodes, and minimum
number of leaf nodes samples. These parameters are used to
control the tree generation process. If the tree is generated
without restriction, the model will become very complicated
and take a large amount of training time. At the same time,
there is a high probability that the performance of the model
will deteriorate due to overfitting. In this paper, a grid search
method was applied to exhaustively search each combination
of the preset parameter values. For each parameter value com-
bination, a ten-fold cross validation process was performed.
The parameter combination with the best performance will be
used to generate the final decision tree.

C. IMPROVED CART MODEL WITH ENSEMBLE RESULTS

The proposed classification model made improvements to the
CART model based on the characteristics of TBMs and the
idea of ensemble learning. An ensemble process is designed
to get more accurate results. Specifically, data from the same
“ring” are grouped together and vote for the final result.
As shown in Fig. 3, the ring is the basic unit for construction
progress in tunneling, and the position of the TBM can be
determined by the ring number. It takes several hours for a
TBM to install a ring piece, and hundreds to thousands of
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FIGURE 3. Ring in tunnel construction.

data can be recorded during the period. Each piece of ring is
less than one meter in length, and within such a short distance,
the formation change can be ignored in most cases.

The ideal situation is that all data points of the same
ring are classified into the same formation for classification
results, but there will always be a misclassification. There-
fore, the dominant formation results in the data set are taken
as the ensemble results of the ring to avoid the influence of
some erroneous data points, and the final estimation results
are presented in ring segments.

A quantitative indicator to measure the quality of the
ensemble classification results is proposed. The proportion
of the dominant formation result, which indicates the number
of misclassified data points, can be used to judge the quality
of classification results. The proposed indicator applies the
Gini index shown in (3), where ¢ is the set of all the data
in a ring piece, and p(i | t) and p(j | t) are proportions of
classification results in formation i and j respectively. Ideally,
a perfect model has all data in the same result, where the
Gini index is 0. A large Gini index value means the dominant
classification result is weak and there are many misclassified
data, which indicates that the classification model is not fully
trained. In this case, the data from this ring can be added to
the training set and the model needs to be retrained.

VI. ROP EVALUATION BY ARTIFICIAL NEURAL NETWORK
As illustrated in the section of literature review, the evaluation
of ROP is one of the most important topics for a tunneling
project. Various methods have been proposed to estimate the
ROP. However, most of these studies made their predictions
before construction begins for machine selection and con-
struction scheme optimization, and the data involved were
mainly incomplete or inaccurate rock properties explored
by borehole sampling. In fact, evaluation of the real-time
tunneling speed is also important. Although the TBM records
its actual ROP during tunneling, the judgement of whether
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In the tunnel project of case study,

D=6.0m
L =0.8m

this value is normal or not still needs manual participation.
Usually this process is carried out by the TBM operator, and
there are no quantified indicators for reference, bringing risk
and uncertainty to the tunnel construction. A threshold of
ROP can be preset for consulting, but it is too complicated to
determine and consult the value for every working condition.
Therefore, an ANN method was proposed in this section to
review the real-time ROP. Historical monitoring data under
normal construction conditions are applied to develop the
ANN model. And real-time ROP can be then used to eval-
uated real-time ROP through real-time monitoring data. The
evaluated ROP can be applied as a reference for the actual
monitoring parameter, providing assistance for construction
personnel to make decisions.

A. ANN IN TUNNEL CONSTRUCTION

ANN is a kind of mathematical model that imitates the struc-
ture of human brain and performs distributed parallel cal-
culations. With strong learning and nonlinear fitting ability,
ANN has been widely used in various disciplines as one
of the most effective tools for solving numerical simulation
problems [55]. There are also many applications of ANN
in the field of TBM data analysis. Several kinds of neu-
ral networks have been developed in the literature such as
backpropagation (BP) neural networks, Hopfield networks,
Kohonen networks, Elman networks, etc. Among them, BP
neural network is most widely used for its simple structure
and strong adaptability.

Recently, the concept of deep learning has emerged and
greatly improved the learning ability of ANN [56]. Deep neu-
ral networks usually have multiple hidden layers to improve
prediction ability, and has been successfully applied in multi-
ple disciplines. Some typical deep neural networks include
the Convolutional Neural Network (CNN) [57], Genera-
tive Adversarial Network (GAN) [58] and Recurrent Neu-
ral Networks (RNN) [59]. In tunnel engineering, RNN has
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FIGURE 4. Mining processes of the association rule algorithm.

been applied to evaluate TBM performance [60] and pre-
dict TBM operating parameters during next period [59].
Erharter et al. [61] compares the performance of two ANNs
including multilayer perception (MLP) and RNN in TBM
data classification, and concludes that both models are capa-
ble of classifying TBM data. Besides RNN, CNN also has
strong fitting ability and realizes automatic feature extrac-
tion through hidden convolution layers, which is expected to
achieve good performance in ROP evaluation.

In this section, two network models for ROP evaluation
including BP neural network and CNN are constructed sepa-
rately. In the case study, modeling results of the two models
are compared, and the usage of predicted ROP is discussed.

B. FEATURE ENGINEERING BASED ON TBM
CHARACTERISTICS

The network model was integrated into the hybrid DM frame-
work to improve its performance. Mining results of Apriori
and CART were involved in the data preprocessing process
of ROP evaluation. To determine the input variables from
numerous monitoring parameters, association rules were used
for parameter selection. The extracted rules reveal hidden
relationships among TBM parameters, and those parameters
related to ROP were selected as input variables. And the geo-
logical parameters were modified by the classification results
and represented by three mechanical indicators. The clas-
sification results refined inaccurate formation data between
boreholes, and was expected to improve the accuracy of the
ROP evaluation model. In this study, six parameters were
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(10 neurons) (12 neurons) (1 neuron)

determined as the input parameters for the model, as shown
in Fig. 4.

To improve the training effect of ANN, feature engineering
is carried out based on the characteristics of TBMs. Feature
engineering is the process of extracting features from raw data
to improve algorithm performance. Specifically, the actual
ROP and its influencing factors of the last record are selected
as features and input to the model to calculate the current
ROP, as shown in Fig. 4. The feature is designed to consider
the influence of unquantified factors such as the operation of
the TBM operator. ROP cannot be perfectly evaluated due
to these factors. But the prediction errors of adjacent records
can be considered roughly unchanged because some of these
factors, such as operating patterns of the same TBM operator,
rarely change. Therefore, features from the previous record
can be designed to estimate the errors caused by unquantified
factors. And the performance of model can be improved by
these features.

C. STRUCTURE OF BP NEURAL NETWORK

There are 10 input parameters including parameters from raw
data and designed features. The number of neurons in the
input and output layers was equal to the number of variables,
which were 10 and 1 respectively. And the structure of the
hidden layer was carefully designed for its crucial impact
on the prediction results., A simple hidden layer will lead to
reduction in fitting ability, and a complex layer will result in
overfitting and long training time. In the case study, the neural
network structure (10 x 12 x 1) was selected after parameter
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adjustment, as shown in Fig. 4. Other factors determine learn-
ing outcomes include learning rate and activation functions.
Low learning rates can reduce neural network training effi-
ciency, while excessive rates may lead to fluctuation. Thus,
the adaptive moment estimation (Adam) [62] optimizer with
adaptive learning rate is applied in this study. The hyper
parameter B; and B in Adam follow the default values
0.9 and 0.999 which are suggested in the original paper. The
original learning rate is determined by a parameter adjust-
ment process. Some alternative activation functions include
Sigmoid, Tanh and Relu. These functions are all tested in a
trial and error to determine the best parameter.

D. STRUCTURE OF CNN
CNN is a typical deep neural network with multiple con-
volutional layers to achieve automatic feature extraction.
The most common and successful application of CNN is
image recognition. However, ROP evaluation has different
characteristics with image recognition. Image recognition is
a classification task with two-dimensional input data, while
ROP evaluation is a regression task with one-dimensional
data. Therefore, the structure of CNN needs to be carefully
designed.

As illustrated in Fig. 5, the proposed CNN model has
6 weight layers with 39,425 weight parameters. The input
parameters are also determined by association rules and are
the same as the BP neural network. Four convolution (conv.)
layers are designed to extract high-dimensional features from
the input data. Different from image recognition, the convo-
lution kernel here is one-dimensional to adapt to the format of
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monitoring data. As the dimensions of monitoring data are not
high, small convolution kernels with size 2 x 1 are adopted.
A max pooling layer with 2 x 1 filters is added after the
convolution layers to down-sample the features. The dropout
layer is subsequently added to solve overfitting problems
caused by deep layers. Then, two fully connected (FC) layers
with 128 and 1 channels are applied to the model.

The size of the second FC layer is set to 1 to match
the format of output. The last layer replaces the commonly
used SoftMax function with the Sigmoid function to perform
regression tasks.

The Adam optimizer is also applied in the CNN model
to adjust learning rate with training process. The original
learning rate of the optimizer is determined by a trial and error
process. The activation function Relu is selected for convo-
lution layers and FC layers to solve the vanishing gradient
problem which is common in deep networks. The dropout
rate in the dropout layer are determined by the degree of
overfitting. The best value is derived from the parameter
adjustment process.

VII. A CASE STUDY

A. PROJECT OVERVIEW AND DATA PREPROCESSING

The tunnel project locates in Guangzhou, the capital city
of Guangdong Province in southern China. The tunnel is a
twin-tube tunnel constructed for public transportation with
a length of 16.1 km and a duration of 4 years. After the
construction, the quantity of daily passenger-flow is expected
to reach 1 million. Over ten TBMs work simultaneously to
ensure the progress of the project. Monitoring data from a
slurry TBM of the project was selected for data analysis.
A schematic formation profile of its construction section is
provided in Fig. 6. The diameter of the tunnel is 6m, and the
depth of the tunnel varies from 10 to 13m. The formation
in which the tunnel passed through consists of weathered
limestone, silty clay, and sand of various particle sizes and
densities (Fig. 6). The TBM is in a diameter of 6.26m and
can provide a maximum thrust of 46000 kN and a maximum
cutter torque of 5442 kN - m. Equipped with a sensing system,
the TBM can automatically record real-time monitoring data
with over 100 parameters at regular intervals and integrate
them into an online database, from which the monitoring data
used in this approach are derived in a spreadsheet form.

The database was established with the monitoring data of
the tunnel for over three months. The number of raw data
exceeds 40,000, and more than 10,000 valid data have been
retained after pre-processing. The criteria to select valid data
here is that the data should be recorded during the tunneling
process rather than stopping or segment assembling process
and without a sensor failure. A total of 26 TBM parameters
are selected, which include speed, mechanical properties, atti-
tude and current. The parameter selection process is carried
out with the help of TBM operators and managers. Only
parameters potentially involved in the safety management
process of tunnel construction are selected, because too many
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FIGURE 6. Geological profile of the south tube.

TABLE 2. Basic statistics of key TBM monitoring parameters.

Tunnel to be excavated '
e

20

L 25
1 1 | | length

- Coarse sand

- Medium weathered limestone

150 100 50 0 (m)
- Gravel sand

l:l Limestone residual soil

- Micro-weathered limestone

ROP Cutterhead speed Cutterhead torque Total thrust Cutter motor current Average earth pressure
(mm/min) (rpm) (kN'm) (kN) (A) (bar)
Maximum 55.67 1.84 3704.0 21270.0 1076.0 2.56
Minimum 1.00 0.81 92.0 320.0 329.0 1.40
Average 16.19 1.37 727.1 10861.2 411.3 1.85
Median 1533 1.36 595.0 10360.0 385.0 1.84
Standard 8.43 0.12 426.0 2282.0 70.1 0.12
deviation
TABLE 3. Parameters to be mined in association rules.
Parameters
No Geological Mechanical Operational Total
Cohesion, internal friction Total thrust, Cutterhead torque, ROP, Cutter total current, average earth pressure,
1 angle, hammer number of . 11
SPT Cutterhead speed grouting amount, slurry pump current
Jack thrust in 4 directions Front, middle and back horizontal deviation, front,
2 - > middle and back vertical deviation 18

Jack speed in 4 directions

Earth pressure in 4 directions

parameters will cause mining results of interesting parame-
ters hidden in a large number of irrelevant parameters, and
the efficiency of DM will also be reduced. The selected
parameters are considered as the major indicators to judge the
working status of TBM, and will be most concerned by TBM
operators. DM on these parameters is expected to provide
valuable information for safety management. Basic descrip-
tive statistics of some major and frequently used parameters
are given in Table 2. Besides real-time monitoring data, for-
mation data are also involved in this approach to take the
effects of formation into account.

Three numerical indices include cohesion, internal friction
angle, and hammer number of standard penetration test (SPT)
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were selected to measure the mechanical properties of forma-
tion. The distribution of rocks is obtained from the drilling
experiment on site. And the mechanical dataset of the rock is
established by both in-situ and laboratory tests. With a data
integration method, the monitoring data and formation data
are combined together to constitute the database for DM.
Data preprocessing was performed before DM. Specif-
ically, two types of preprocessing technologies, namely
data cleaning and data integration, were adopted in the
approach. The task of data cleaning was to clean up
invalid or erroneous data in the database. These data
accounted for a large part of the database since the TBM did
not always operate in the state of excavation. Data integration
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TABLE 4. Details of some typical association rules.

No. Condition =  Result Support Confidence
Total thrust = ROP 0.631 0.882

2 ROP =  Total thrust 0.631 <0.8

3 Cutter torque =  Total thrust 0.346 0.964
Cutter speed, Cutter torque, Cutter total current, Total

4 thrust, Average earth pressure, Slurry pump current, ROP 0.123 0.844

Cohesion, Internal friction angle, Hammer number of SPT

was required to integrate heterogeneous data into the same
database because the monitoring data was stored in spread-
sheets while the formation information was imported from
geological profiles. The process of data integration is illus-
trated in Fig. 7. The integration is based on the correspon-
dence in spatial position between the monitoring data and the
formation. The geological information is first obtained from
the profile and then recorded in the monitoring database. If a
formation is dominant on the excavation section, it will be
recorded separately, otherwise all formations on the section
will be recorded together. The mechanical properties of the
formation can then be derived from the formation code and
marked in the database.

B. MODELING AND RESULTS

The proposed DM methods were implemented in Python 3.6.
The toolbox scikit-learn [63] was applied to construct the
decision tree and BP neural network. Another toolbox Ten-
sorFlow [64] was used to train the CNN model. The python
programs are executed in a computer with the Windows
system. The computer has a medium hardware configuration
with a 2.8 GHz processor and 8 GB of RAM.

Association rule algorithm was first executed. A total
of 310 valid data points from mining database were taken
as input, with each dataset containing 29 attribute items to
be mined. Based on the characteristics of TBM data, those
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parameters to be mined were divided into two groups as
prior knowledge to improve mining process. As illustrated
in Table 3, the first group of data is the holistic data without
directionality, while the second group of data are the data
related to direction and spatial distribution. Due to spatial
symmetry, there is no correlation between the two sets of
parameters. The support and confidence threshold are deter-
mined by a trial and error process. As shown in Fig. 8, as the
support threshold increases, the mean support of associa-
tion rules increases, which indicates that extracted rules are
more universal, but the number of rules decreases. Similarly,
increasing the confidence threshold will increase the mean
confidence and improve the accuracy of association rules, but
the number of association rules will be reduced. In the pro-
posed approach, the support and confidence threshold were
setto 0.17 and 0.8 to balance the number of rules, universality
and accuracy. After calculating, a total of 102 strong associa-
tion rules were found by the program, indicating the complex
association between TBM parameters. Some typical mining
results are detailed in Table 4.

The extracted association rules can provide people with
a better understanding of construction laws and assist in
safety management. The first association rule “‘total thrust
= ROP” showed that ROP tended to be large when total
thrust was large, which is a verification of people’s expe-
rience. However, the reverse rule “ROP = total thrust” is
not a strong association rule as the confidence is less than
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FIGURE 8. Parameter selection of Apriori algorithm.

the threshold. The reason is that other parameters, such as
formation property and grouting amount also have an effect
on ROP. The conclusion is contrary to people’s intuition, and
is a correction of misunderstandings. The third rule *“Cutter
torque = total thrust”’ shows relationships of two parameters
that are not directly related. The rule is reasonable because
TBM is often in hard formation when cutter torque is large.
And in order to keep penetration in hard formation, operators
need to increase the thrust. The rule reveals laws that has
not been grasped by people. These association rules verify
people’s experience, correct misunderstandings and reveal
new laws, which can be used for quick judgement in on-site
anomalies to ensure safety. Some complex association rules
may contain more potential information and could be used
for further numerical analysis. As shown in the third rule,
the ROP was associated with nine parameters simultaneously.
In fact, these parameters were the candidate parameters to be
input to the neural network model for the prediction of ROP.

Classification analysis was then carried out after the deter-
mination of the relationship between TBM parameters. Seven
parameters included ROP, cutter speed, cutter torque, total
thrust, total cutter current, average earth pressure, and slurry
pump current were selected as input variables according to
the association rules. The training dataset consisted of the
data in the location where strata appeared for the first time to
simulate the on-site construction conditions, and had a total
number of 1122. As shown in Table 5, a grid search process is
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TABLE 5. Parameter ADJUSTMENT of cart model.

Parameter Adjustment Range Best value
X {3,6,9,12, 15, not
Maximum tree depth o 12
limited}
Minimum number of samples {5, 10, 15, ..., 50, not 40
required for node partition limited}
Maximum number of leaf {50, 100, 150, ..., L
L Not limited
nodes 500, not limited}
Minimum number of leaf {5, 10, 15, ..., 50, not 10
node samples limited}

TABLE 6. Examples of formation CLASSIFICATION results.

Ring  Formation obtained =~ Formation obtained  Gini indicator

No. by classification by exploration of the ring
50 4N-29C-2 4N-29C-2 0.034
51 4N-29C-2 4N-29C-2 0.064
52 4N-29C-2 4N-2 9C-2 0.137
53 3-39C-2 4N-29C-2 0.149

The formation in the table is in the form of formation codes. The
correspondence between codes and formation is: 3-3: Gravel sand; 4N-2:

Silty clay; 9C-2: slight weathered limestone.

carried out to determine the best parameters for CART model.
The final tree is generated based on the best values. The depth
of the generated tree is 12, with a total of 153 nodes. And the
overall classification accuracy of the model reached 0.86.

The rest of the monitoring data with a number of 9025 data
points was used to review the formation. The estimated
results of these data were integrated into 126 ring slices.
Table 6 shows the classification results for several rings. Tak-
ing the first record as an example, it means that the formation
is a mixed formation of 4N-2 and 9C-2 when the TBM is in
the construction of the 49th ring, where 4N-2 and 9C-2 here
are the formation codes of silty clay and slight weathered
limestone respectively. In the 53™ ring, the reviewed forma-
tion is different from the explored formation, and the forma-
tion data will be calibrated based on classification results.
The Gini indicator is calculated to measure the quality of the
ensemble results. A smaller Gini index indicates that there
are more data voting to support the dominant result in the
ring, and the result is more credible. In the worst case, the
Gini index will reach a maximum value of 0.5. The gini
indicator in the table is relatively small, indicating a high-
quality classification result.

Further explanation of the mining results was performed
by means of data visualization. In this paper, building infor-
mation modeling (BIM) technology is adopted as a visu-
alization tool for its convenience of data integration and
good interactivity [65]. A plug-in was developed in a BIM
software Autodesk Revit to enable automatic modeling of
the estimated formation based on the geometric mapping
rules. Fig. 9a shows the geological model drawn by the Revit
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(b) Geological model based on drilling exploration.
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FIGURE 10. Model structure selection of BP neural network.

plug-in. The BIM geological model uses a visual approach
to transform the analysis results into 3D entities distin-
guished by color, which gives a more intuitive description
on formation compared with the DM results in Table 6. The
formation model based on the geological exploration was
synchronously drawn to verify the prediction effect of the
classification algorithm, as shown in Fig. 9b. The numbers
below represent the rings of the corresponding position of
the model. It could be concluded that the two models are
aligned with each other generally, but different in some local
parts. In the part where the model in Fig. 9b is processed by
linear interpolation, the formation of the classification model
is more detailed and varied, indicating that the classification
model can find formation that haven’t been discovered by
exploration due to the sampling interval of the borehole.
ROP evaluation was then carried out based on ANN. The
classification results of CART were applied to calibrate for-
mation data, and the calibrated data were expected to improve
performance of neural networks. The input variables of the
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FIGURE 11. Prediction error of ROP for each tunnel ring.

two model were determined by association rules, and have
been illustrated in Fig. 3. 80% of the data were selected
randomly to train the models and the rest of the data were used
as test set. The process of determining the model parameters
is shown in Table 7. Note that the training epochs of CNN
is set to 50 and the batch size is 128. The structure of BP
neural network is a key factor determining learning outcomes,
and the test results of some candidate structures are illustrated
in Fig. 10. The performance of the model increases with the
number of hidden neurons when the structure is simple. But
when the scale of the hidden layer reaches a certain size,
the performance will not be further improved. And increasing
the number of hidden layers does not significantly improve
the outcome of the model. Therefore, the structure with single
hidden layer (10 x 12 x 1) is selected to generate the final
model.

The prediction results of the two models are summa-
rized in Table 8. Three indicators, including R-squared value
(R?), mean squared error (MSE), and mean absolute error
(MAE) are selected to measure the performance of the model.
These indicators can be calculated according to the following
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TABLE 7. Parameter ADJUSTMENT of ANN model.

TABLE 8. Performance of the ANN models.

Models Parameter Adjustment Range Best value DM Models R? MSE MAE
BP Model {(10xix1), (10xixjx1)},  (10x12x1) BP neural network 0.762 3.109 16.792
neural structure i,j=2,4,6,..,20 CNN 0.745 3.295 18.687
network Learning {0.1, 0.01, 0.001, 1x10%,  0.001 BP neural network without ~ 0.713 3.464 20.50
rate 1x10°} formation calibration
Activation {Sigmoid, Tanh, Relu} Sigmoid BP neural network without ~ 0.618 4.019 26.724
function feature engineering
CNN Learning {0.1, 0.01, 0.001, 1x10%,  0.001 CNN without formation 0.736 3.302 18.587
rate 1x10°%} calibration
Dropout {0.1,0.2,0.3,04, 0.5} 0.2 CNN without feature 0.678 3.585 21914
rate engineering
formula: .
; an early warning could be send to the TBM operator. The
3 (i — yl.)Z prediction results of the BP neural network are selected to
R2—1_ =l (10) illustrate this process for it.s best perfprmance. The data is
i i — )2 grouped according to the ring which it belongs to, and the
= ! difference in ROP is measured by MAE. In general, the dif-
L ference between the predicted and actual rate is relatively
MSE = — Z (xi — yi)? (11) stable, which fluctuates around 4 mm/min. However, there is
L a significant peak at the 130™ ring, where the expected error
1 reaches 18 mm/min. The location of the 130 ring is between
MAE = - Z lxi — il (12) two boreholes, and formation information is obtained by

i=1

where x; and y; are the i actual and evaluated value in the
data group respectively, and x is the average of all actual
values. It can be concluded that the prediction effect of BP
neural network and CNN is approximately equivalent. The
reason why CNN does not work better than BP neural net-
work is that the dimensions of data are not high enough. The
convolution operations are designed to extract hidden features
from high-dimensional data. In the field of image recognition,
the input data is two-dimensional data with hundreds of pixels
in each dimension. However, TBM monitoring data is one-
dimensional data, and the number of involved parameters is
also small.

To verify the effectiveness of the proposed hybrid DM
method, comparative experiments are conducted simultane-
ously. ANN models without formation calibration and feature
construction are trained, and performances of these model are
compared in Table 8. Without formation calibration, the per-
formances of the two models are both reduced, indicating
that the formation classification process in the hybrid DM
method improves data quality and model accuracy. The fitting
effect of models without feature construction is also reduced.
Revealing the necessity of feature engineering. The results
indicate that the accuracy of the ANN model can be improved
by combining hybrid DM method and considering the feature
of TBM dataset.

The ROP output by neural network can be further com-
pared with the actual ROP to evaluate the working state of
the TBMs. A big difference between the two values indicates
that the actual ROP exceeds the expected ROP threshold, and
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linear fitting. In fact, a solutional cave was explored at the
nearby borehole, which needs to pay special attention to in
tunnel construction. The large evaluation error indicated that
the TBM was in an abnormal working state which was later
proved to be caused by the scale of the cave exceeding expec-
tations. Early warnings were sent out based on unexpected
ROP, and operators suspended work and took inspection
measures to ensure construction safety.

C. DISCUSSION

In this study, three data mining methods were investigated
to analyze the real-time monitoring data of the TBM. Asso-
ciation rule mining was used to discover the relationships
among parameters. Classification analysis was applied to
determine the formation where the TBM is located. And the
ANN method helped evaluate the real-time ROP of the TBM.
The hybrid DM method is expected to contribute to tunnel
engineering, improving construction efficiency and ensur-
ing safety. Association rule discovery can help construction
managers better understand the relationship between tunnel-
ing parameters. The extracted association rules can verify
people’s experience and correct people’s intuitive misunder-
standings. Moreover, some hidden unknown relationships can
also be discovered. Formation classification analysis can be
used to supplement and refine formation information among
sampling boreholes, providing a more accurate decision basis
for tunnel construction. The ANN model can help operators
control real-time ROP and ensure construction safety. The
output ROP can be used as a reference for the actual monitor-
ing value, and abnormal conditions can be found in advance
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to avoid danger. These improvements are made based on
data-driven approaches, which is expected to have important
implications for current management methods.

In the case study, more than 40,000 pieces of data recorded
in a tunnel project were involved. Actually, this amount of
data is still far from the true amount of big data. Only data
recorded from one TBM was analyzed, while the megaproject
has over ten TBMs working together. This indicates that the
ability of the proposed approach to process massive data may
not be fully tested. However, the mining algorithms used in
this paper were designed for dealing with a large amount of
data, and they took only a few seconds to process such amount
of data. Furthermore, the purpose of the proposed method
is to get the working status for a specific machine. Even if
data from all TBMs are integrated together, algorithms for
eliminating heterogeneity need to be executed. Finally, data
from different TBMs need to be analyzed separately.

As mentioned in the literature review, the challenges of
applying DM to TBM data mainly comes from its strict effi-
ciency and accuracy requirements. The proposed approach
provides a solution to the problem by combining hybrid DM
methods and features of TBM monitoring data. During tunnel
boring process, TBM records large number of parameters,
resulting in numerous analytical works or domain experi-
ence in the parameter selection process. A novel parameter
selection method based on association rules was proposed in
this paper. An improved association rules discovery algorithm
was applied as a preprocessing process in the hybrid DM
system, and the range of related parameters to be determined
will be greatly reduced. The discovered rules can also can be
used in diagnosis of on-site anomalies to ensure safety. The
inaccuracy of formation information is an important factor
affecting the performance of TBM data analysis and safety
of tunnel construction. A formation classification model was
constructed in the hybrid DM method to solve this problem.
In addition, based on the characteristics of TBM data, some
modifications were applied to the general DM models for
improvement. An extended association rule is proposed to
apply association rule analysis to continuous values. And
prior knowledge based on TBM characteristics is involved
in the algorithm to reduce the amount of calculation. In for-
mation classification, ensemble results in rings is proposed
to improve the performance of the model. In the process of
ANN construction, a feature involving adjacent data records
was designed to improve the training effect. The proposed
hybrid DM model are expected to meet the actual construc-
tion requirements of the DM efficiency and accuracy.

The monitoring data involved in this study were collected
from a tunnel project, but in fact, massive data has been
recorded in different projects of building industry. These
data have different sources, formats, and practical meanings.
The specific means of processing and analyzing them are
also different. However, the characteristics of these data are
similar. They are large, heterogeneous and noisy, but con-
tain potentially valuable information for the project. Under
these characteristics, traditional analytical methods, such as
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manual processing or statistical analysis, will no longer be
accurate and efficient. DM is a kind of analysis methods for
processing large amounts of data, and is suitable for process-
ing data in megaprojects. Regardless of the types of projects,
the basic process of DM is following the same workflow. The
proposed methods in this paper will provide reference for DM
applications in other projects.

After careful design and adequate training, the DM system
is expected to achieve better accuracy than manual judgement
and meet the standards of practical applications. However,
there are still some limitations with the current methods.
On the one hand, the amount of data available for modeling
is insufficient. The systematic approach of recording con-
struction data in building industry has only begun in recent
years, and manual recording is still one of the main means of
data acquisition, thus DM in building industry lacks sufficient
high-quality data. This has been observed from error results
in DM such as obviously unreasonable association rules and
formation. On the other hand, manual work involved in the
current DM process is still too much. The data interfaces of
different TBMs and monitoring platforms are different, which
makes it difficult for automatic data collection. The inte-
gration of heterogeneous data is also done manually. These
labor-intensive tasks have increased the cost of data mining.
In addition, further explanation is needed for DM results.
The tabular results can only be understood for specialists
involved in the data mining process, and are obscure for TBM
operators. In the near future, the proposed method will be
improved in the following aspects:

(1) The time complexity of the algorithm should be opti-
mized and the model should be trained using more data.
A program for automatically collecting monitoring data can
be executed to obtain a steady flow of data.

(2) The TBM monitoring platform should be integrated.
The trained model can be applied to the platform where
the modeling data comes from. The integration is expected
eliminate the data transfer process and realize real-time data
analysis. In addition, the platform can visualize the mining
results and help explain the mining results.

(3) Other techniques can be combined to improve data
mining effects. Some data-driven platforms, such as BIM
and building automation systems (BAS), can provide massive
mining data and visualization paths. The Internet of Things
(IoT) technology is expected to provide solutions for data
collection and remote control. The cloud platform can be also
utilized to increase the computing ability of DM.

VIil. CONCLUSION

In this paper, a hybrid DM approach is proposed to achieve
accurate and efficient real-time TBM monitoring data mining
for safety analysis during tunneling construction. Three DM
methods are combined together to improve mining process
and extract useful patterns to support safety management: (1)
Association rule discovery are applied to extract relationships
among parameters, and the extracted rules are used for param-
eter selection for subsequent algorithms. (2) Classification
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analysis can be used to estimate the current formation, and
the refined formation is used to improve data quality for ROP
prediction. (3) ANN models are constructed to validate the
current ROP based on the classified formation and real-time
monitoring data. The proposed approach is validated by real-
time monitoring data from a tunnel project in China, and the
result shows its effectiveness in safety management. To pro-
vide people with a better understanding of TBM, 102 asso-
ciation rules are extracted by an improved Apriori algorithm.
These rules reveal construction laws and can be used for early
warning of anomalies as acquired experiences. To refine the
formation between exploration boreholes, formation is clas-
sified by an improved CART model. The refined formation
improves the accuracy of geological data and can help oper-
ators adopt corresponding strategies in different formation to
ensure safety. To review real-time ROP, two ANN models
are developed to evaluate ROP. The evaluated ROP can be
used as a reference of the actual value and give early warn-
ing in abnormal situations. The proposed method provides a
feasible way for analyzing real-time TBM monitoring data.
The analysis results can provide reliable assistance for project
decision, and lead to the improvements of construction meth-
ods. The proposed hybrid DM method shows good accuracy
and efficiency and meets the requirements of actual tunnel
projects. The analysis results can provide reliable assistance
for project decision and safety management in tunnel con-
struction.
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