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ABSTRACT Terahertz (THz) communications recently attract significant attention and become an emerging
technology pillar for sixth generation (6G) wireless systems. Due to the serious path attenuation of THz
signals, THz communication is applicable for the short-distance indoor scenarios. However, the THz waves
are easily blocked by obstacles, leading to a communication interruption. To this end, an intelligent reflecting
surface (IRS), which interacts with incident THzwaves in a controlledmanner by adjusting the discrete phase
shifts of the IRS elements, is considered as a promising technology to mitigate blockage vulnerability and
enhance coverage capability for indoor scenarios. In light of graphene-enabled hardware structure of an
IRS, the IRS-assisted THz multiple-input multiple-output (MIMO) system model is developed. Moreover,
an iterative atom pruning based subspace pursuit (IAP-SP) scheme is developed for channel estimation.
Compared to the classical subspace pursuit (SP) scheme, the proposed IAP-SP algorithm can substantially
reduce the computational complexity while maintaining accurate channel recovery. With the estimated
channel, a data rate maximization problem is formulated, which can be converted to a discrete phase shift
search problem. The exhaustive search method is firstly proposed to obtain the optimal transmission rate but
endure extremely high computational burden. Then, a local searchmethod is proposed to decrease the number
of possible discrete phase candidates of IRSwhile undergoes obvious performance loss. Interestingly, a novel
feedforward fully connected structure based deep neural network (DNN) scheme is put forward, which has
the ability to learn how to output the optimal phase shift configurations by inputting the features of estimated
channel. Simulation results demonstrate that, in contrast with the exhaustive search scheme and the local
search scheme, the proposed DNN-based scheme achieves a near-optimal communication rate performance.
Meanwhile, the DNN-based scheme enormously alleviates the computational complexity and allows for
dynamic parameter adaption in rapid-varying channel conditions.

INDEX TERMS Terahertz (THz) communications, sixth generation (6G), intelligent reflecting
surface (IRS), channel estimation, deep neural network (DNN).

I. INTRODUCTION
With the explosive growth of the data traffic in diverse com-
munication scenarios, developing new spectrum resources
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for future sixth generation (6G) communication networks
is urgently demanded [1], [2]. To satisfy the bandwidth
requirements of the 6G application scenarios, such as
holographic communication, precise telemedicine control,
broadband local area network (LAN), wireless data center,
space communication networks and on-chip communication
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[3]–[6], terahertz (THz) band (from 0.1 THz to 10 THz) has
drawn more and more attention for 6G wireless networks.
Proverbially, THz frequency band bridges the gap between
millimeter wave (mmWave) band and optical frequency band.
Compared with mmWave communication, THz communi-
cation possesses more abundant spectrum resources and is
able to providemuch higher transmission rates from hundreds
of Gigabit-per-second (Gbps) to several Terabit-per-second
(Tbps). In terms of the optical communication, THz commu-
nication is more favorable to adapt the inconvenient climate
conditions including fog, dust, snow and so on. Besides, THz
frequency band has the possibility to employ the reflected
paths to enhance the communication performance in the
complex propagation environments. Stated thus, the THz fre-
quency band is envisioned as the most appropriate candidate
to enable the 6G communication systems.

Except for the advantages mentioned above, THz com-
munication still faces some challenges when it is applied
to the indoor application scenario. Due to the serious path
attenuation and strong directivity of THz waves, the line-of-
sight (LOS) THz path can be easily blocked by the indoor
obstacles (e.g., walls, doors, wardrobes, human bodies)
[7], [8]. Thus, the non-line-of-sight (NLOS) paths play a
main role in such a communication scenario. To tackle this
issue, an intelligent reflecting surface (IRS) is newly pro-
posed to improve the spectral efficiency and enhance the
coverage performance recently [9]–[16]. The IRS is a physi-
cal meta-surface consisting of a large number of small-unit
reflectors. In general, the IRS is equipped with a number
of passive elements and is controlled by a central processor.
Each element of the IRS is able to reflect incident THz
waves independently with an adjustable phase-shift. Differ-
ent from the existing candidate techniques, such as conven-
tional reflect-arrays [17], [18], amplify-and-forward relaying
[19]–[21] and backscatter communication [22]–[24], IRS
owns some distinct advantages. In contrast to reflect-arrays
and backscatter communication that require the radio fre-
quency (RF) chains to realize the phase shifts, the hardware
complexity of IRS is much lower due to the lack of RF chains,
and thus much more reflecting elements can be scaled up
in practice. Additionally, since IRS is designed with passive
reflecting elements, IRS is also an energy efficient technique.
Instead, the amplify-and-forward relaying system usually
works with high power consumption. Based on the inherent
characteristics, IRS has become a popular research priority
extensively.

To the best of our knowledge, the initial concept about IRS
is an intelligent wall, which is regarded as an autonomous
part of a smart indoor environment to control radio coverage
by make use of active frequency-selective surfaces [25]–[27].
In [28], the reconfigurable reflect-array which has the abil-
ity to enhance the strength of received signal and eliminate
interference simultaneously, is proposed to increase the spec-
trum sharing capacity for indoor environments. Recently, the
IRS-enhanced multiple-input single-output (MISO) wireless
systems are explore to maximize the total received power at

the user side by jointly optimizing the active beamforming
at the base station (BS) and passive beamforming at the
IRS [29]–[31]. However, these research contents consider
that the phase shifts of the IRS elements are continuous, and
the IRS with continuous phase shift results in high fabrica-
tion cost and complex hardware design. Later, in [13], [32],
the IRS with only a limited number of phase shifts is adopted
optimize the energy efficiency and sum-rate performance for
both the discrete phase shifts of IRS elements and transmit
power allocation. It is worth noting that all the prior work
assumes that the channel status information (CSI) is available
at the BS side. In other words, we need to solve the channel
estimation problem firstly. The main challenge of the channel
estimation in IRS-assisted communication system is that the
IRS elements are passive and are unable to process the inci-
dent signals. Given this, the authors in [33] propose a novel
IRS structure that combines the passive elements with a few
active elements. These active elements are connected to the
baseband processor, and then are used to obtain the whole
phase shifts of IRS elements by training a small number of
active elements. Except for the low channel estimation accu-
racy, these active elements increase the power consumption of
the IRS-assisted communication system. Instead, the authors
present a cascaded channel estimation method with only pas-
sive reflecting elements [34]. Nevertheless, this method does
not consider the channel characteristics (e.g., sparsity, path
loss) in THz band, and it is unable to estimate the BS-IRS
channel and IRS-user channel simultaneously. Through the
above discussion, the IRS-assisted THz communication sys-
tem is still worthy of further exploration.

In this paper, we present an IRS-assisted THz multiple-
input multiple-output (MIMO) communication system for
6G indoor application scenarios. Considering the hardware
design of IRS in THz band, the tunable graphene, which
is a two-dimensional carbon material, is selected to achieve
a wide phase response range of IRS elements by control-
ling the applied voltage. With the given hardware structure
of graphene-based IRS, the IRS-assisted THz communica-
tion system is modeled firstly. Next, before the data trans-
mission, it is necessary to acquire the CSI according to
the system model where the geometric channel model is
adopted that contains few limited scattering paths [35]–[37].
Then, by exploiting the sparsity feature of the THz channel,
the compressed sensing (CS) technique [38] can be utilized to
estimate the channel parameters, including path gain, angle
of arrival (AoA) and angle of departure (AoD) [39]. With
the estimated CSI, we then optimize the communication
rate maximization problem by searching the optimal phase
shift combination of the IRS elements. Furthermore, three
different phase shift search methods are investigated, such
as exhaustive search method, local search method and the
deep neural network (DNN) based method. Finally, the com-
munication rate performance and the complexity analysis
of diverse phase shift search methods are also provided in
this paper. The major contributions can be summarized as
follows:
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• To begin with, to obtain a wide phase response range of
reflecting elements, the electric properties of graphene
at THz frequency band is investigated by using the
CST Microwave Studio which confirms that the tunable
graphene is an effectivematerial to design IRS. Based on
the electric characteristics of the graphene, the hardware
structure of graphene-based IRS is creatively proposed
in this paper, where the phase shift of each reflecting ele-
ment belongs to a discrete phase set. With the designed
IRS architecture, the IRS-assisted THz communication
model is derived in detail.

• To realize the CSI acquisition of the IRS assisted THz
system, an iterative atom pruning based subspace pur-
suit (IAP-SP) scheme with low complexity is proposed.
Compared with the classical subspace pursuit (SP)
method [40], the proposed IAP-SP is able to reduce the
dimension of the sensing matrix without any recovery
performance loss, where the columns (atoms) of the
sensing matrix that least correlate with the signal resid-
ual tends to be eliminated in the iterative process.

• With the estimated channel information, we note
that the communication rate maximization problem of
IRS-assisted THz system is a non-convex problem, and
then we convert this NP-hard problem to the phase shift
search problem. Although the exhaustive search method
achieves the optimal performance, it inherits the really
high complexity. Fortunately, the local search method
is proposed to decrease the computational burden by
searching the partial phase shift combinations.

• Moreover, in order to fully explore the relationship
between the channel features and the phase shift selec-
tion of IRS elements, the DNN-based phase shift search
method is employed in this paper to optimize the com-
munication rate. Concretely, the proposed DNN-based
search method has the ability to unveil the mapping
between the channel features and the phase shift selec-
tion. Thus, the DNN-based search method can realize
the near-optimal communication rate performance with
extremely low complexity.

The rest of this paper is organized as follows. In Section II,
we introduce the hardware structure of tunable graphene-
based IRS, and the simulation analysis of tunable graphene
properties are also presented. In Section III, the IRS-
assisted THz communication system and channel model are
presented. Also, the channel estimation problem is settled.
In Section IV, the communication rate maximization prob-
lem is formulated and three different solutions are pro-
posed to search the optimal phase shift combination. Then
the simulation results are presented in Section V to verify
the proposed algorithms. Finally, we conclude this paper
in Section VI.

In this paper, we use the following notation: A is a matrix,
a is a vector, a is a scalar. ‖A‖F is the Frobenius norm,
whereas AH , A∗, AT , A−1, A† and rank (A) are conjugate
transpose, conjugate, transpose, inverse, pseudo-inverse and
the rank ofA, respectively.A⊗ B is the Kronecker product of

A and B. diag (a) is a diagonal matrix with elements of a on
its diagonal. Tr (A) is the trace of matrix A. E [·] is used to
denote the expectation.< {·} is the operation to extract the real
part of a vector, and = {·} is the operation to extract the image
part of a vector. supp (a) denotes the set of non-zero elements
in vector a. vec (A) is the column-ordered vectorization of
matrix A, and vec−1 (A) is the reverse operation of vec (A).
A [�] represents the sub-matrix of A that only contains those
columns contained in the index set �. � = supp (a) denotes
the index set corresponding to non-zero elements of vector a.
M (a,K ) is a index set that corresponds to the largest K
elements of a.Z (a) is a index set that corresponds to the zero
elements of a, and Z−1 (a) is the reverse operation of Z (a),
respectively.

II. HARDWARE PRELIMINARIES OF IRS
In this section, the design theory and working principle of
IRS will be explained, and an achievable structure of IRS is
proposed, which is suitable for THz communication systems.
From the perspective of hardware structure, IRS employed
in THz communication scenarios is a kind of tunable meta-
surface, which refers to a series of artificial structures with
special physical properties, such as negative refractive index,
near-zero index and so on [41]. The IRS are composed of peri-
odically arranged IRS elements (also namely meta-atoms),
and each element can control the amplitude and phase of the
reflected waves. It is worth noting that the size of each IRS
element is at a subwavelength level, and thus the propagation
state of the reflected waves can be controlled through the
arrangement of IRS elements. In general, the structure of
each IRS element is designed first to attain the amplitude and
phase control of reflected waves, and then these reflecting
elements will be arranged properly to construct the reflective
wavefront.

A. ELECTRIC PROPERTIES OF GRAPHENE IN THz BAND
As previously discussed, we know that IRS is a kind of
tunable metasurface. In order to actively control the reflected
waves, the existing devices (e.g., varactor [42], transis-
tor [43]) can be integrated with the structure design. However,
due to the short wavelength of the THz waves, the size of
each IRS element becomes much smaller and it is difficult
to combine those semiconductor devices with IRS elements.
In this case, adopting the novel tunable materials, such as
graphene, is a feasible choice.

Graphene is a monolayer of carbon atoms arranged in a
honeycomb lattice, which has attracted tremendous attention
for its extraordinary properties. To verify that the conductivity
of graphene can be effectively tuned by applied voltage [44],
the complex conductivity of graphene needs to be considered
firstly. According to the [45], the complex conductivity of
graphene consists of interband and intraband transition con-
tributions, where the interband transition contribution can be
neglected and the intraband transition contribution plays a
primary role. Then, the intraband transition contribution of

VOLUME 8, 2020 99567



X. Ma et al.: Joint Channel Estimation and Data Rate Maximization

the complex conductivity of graphene can be given as

σ=
2e2

π h̄2
kBT · ln

[
2 cosh

(
EF
2kBT

)]
i

ω + iτ−1
, (1)

where ω is the angular frequency, e is the elementary charge,
h̄ is the reduced Planck constant, kB is the Boltzmann
constant, T is the temperature, EF is the Fermi level and
τ = 1× 10−12s is the relaxation time, respectively. In terms
of the THz frequency band, we know that the conductivity
of graphene is mainly dependent on intraband transition,
which is related to Fermi energy [46]. Furthermore, the Fermi
energy can be formulated as

|EF | = h̄νF

(
πεVg
ets

) 1
2

, (2)

where the νF = 1× 106 m · s−1 is the Fermi velocity, ε is the
dielectric constant of the substrate, ts refers to its thickness
and Vg is the applied voltage, respectively. From the formu-
lation above, it is clear that the conductivity of graphene can
be controlled by applying different voltages.

FIGURE 1. The hardware schematic of IRS. (a) The structure of each
reflecting element, where L = 200µm, w = 190µm,
ts = 80µm, tm = 0.2µm. The permittivity of SiO2 is 3.75; (b) The
theoretical principle of applying voltage to graphene; (c) An indicative
array of IRS elements.

B. HARDWARE DESIGN OF GRAPHENE-BASED IRS
Fig. 1 illustrates a typical hardware structure of graphene-
based IRS consisting of a array of reflecting elements. These
subwavelength elements are closely arranged and only a
single element is unable to realize the function of phase
control due to the scattering of THz waves. For example,
the size of IRS is 20mm×20mmwhile such an array contains
100×100 reflecting elements. From Fig. 1 (a) we can see that,
each reflecting element of IRS comprises the graphene patch,
the silicon dioxide substrate and the gold ground plane. This
hardware structure of an IRS can be considered as a Fabry-
Perot resonance cavity [47], and the reflecting phase can be
written as

ϕr = mπ − wk0Re
(
nsp
)
, (3)

where w is the width of graphene patch, k0 = 2π
/
λ0 is the

wave number of free space, ϕ is the phase shift of reflection
wave, m is an integer, nsp is the effective refraction index
of the surface plasmon, which is the function of graphene’s
effective permittivity εeff and the angular frequency ω. The
permittivity of the graphene can be calculated as

εeff = 1+
iσ
ωε0tg

, (4)

where tg is the thickness of graphene. According to
(3) and (4), we can obtain the relationship between the phase
response and graphene’s conductivity, that is, the phase shift
of each IRS element can be altered by changing graphene’s
conductivity through applied voltage. Fig. 1 (b) shows a
schematic diagram of controlling each reflecting element.
The attached material, termed ion-gel, is used to connect
graphene and the electrode, and the voltage V g is applied
between the electrode and the ground plane.

FIGURE 2. Simulation results of phase response with EF = 0.3 eV and
0.4 eV when the incident wave is at 0.22 THz.

To verify the effectiveness of the graphene-based hardware
structure, simulation results of each IRS element by using
CST Microwave Studio is shown in Fig. 2. Fig. 2 depicts the
phase response of the IRS elements along with the frequency
and the diverse Fermi level values. One may note that the pro-
posed IRS just work well at a narrow frequency band (about
3 GHz) once the hardware structure of IRS is fabricated. For
a normally incident wave at 0.22 THz, the controllable phase
shift range of each IRS element is able to reach the phase
range of 351.25◦ with EF = 0.3 eV producing a phase of
88.71◦ and 0.4 eV generating a phase of −262.54◦. More
importantly, by properly adjusting the parameters of hard-
ware structure, like the length of the substrate L and the width
of the graphene patchw, the available phase shift range can be
consistent with the interval [0, 2π ] [48]. Remarkably, we can
take any desired phase shift from the phase range by applying
the voltages continuously, which results in high complexity
hardware circuits and expensive system overhead in practice.

Based on the above analysis about the hardware charac-
teristics of IRS, we indicate that the phase-shift ϕ of each
IRS element can be adjusted within the range [ϕmin, ϕmax],
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FIGURE 3. IRS-assisted THz MIMO communication system.

where ϕmin is the controllable minimum phase shift and ϕmax
is the controllable maximum phase shift for a given IRS
structure. Since the power consumption and hardware cost
of IRS with discrete phase-shifts is much more practical than
the IRS with continuous phase-shifts, we therefore consider
discrete structure of the phase-shifts in our work. The phase
shift of each reflecting element ϕ belongs to a finite phase
setF =

{
ϕmin, ϕmin +1ϕ · · · , ϕmin +1ϕ

(
2b − 1

)}
, where

b is a bit quantization number and 1ϕ = (ϕmax − ϕmin)
/
2b

is the phase interval. For example, when b = 2 bits, ϕmin = 0,
and ϕmax = 2π , F =

{
0, π

/
2, π, (3π)

/
2
}
.

III. SYSTEM MODEL AND CHANNEL ESTIMATION
In this section, the IRS-assisted THz communication model
is introduced from a MIMO perspective. Then, the channel
estimation problem and the corresponding solution are for-
mulated in the following.

A. SYSTEM MODEL
Consider a downlinkMIMOTHz communication system and
the communication link is assisted with IRS that consists
of NIRS passive reflecting elements, as shown in Fig. 3. The
hybrid beamforming architecture is adopted, since we take
the hardware implementation and system cost into consid-
eration. Assume that a BS with NBS antennas and MBS RF
chains serves a single mobile station (MS) withNMS antennas
and MMS RF chains. In general, the number of antennas is
larger than the number of the RF chains due to the seri-
ous power consumption of the RF circuits, i.e. NBS > MBS ,
NMS > MMS . There are Ns data streams that are transmitted
between BS and MS. Due to the complex environment of
indoor communication scenarios, the LOS path between BS
and MS is usually blocked by the obstacles and NLOS paths
play a major role. Also, the NLOS paths that are just reflected
by an IRS for the first time are considered here. Furthermore,
a time-division duplexing (TDD) scheme can be used for the
downlink CSI acquisition by utilizing the characteristic of the
channel reciprocity.

For the channel training scheme in such a downlinkMIMO
system, we suppose that the BS uses P different precoding
vectors at P successive time frame. Each time frame contains
Q time slots, and a combining vector is employed by the MS
to detect the transmitted signal at each time slot. At pth time
frame, the transmitted beamforming vector at the BS side can
be expressed as

xp = Fpsp = FRFp FBBp sp, (5)

where sp ∈ CNs is the transmitted pilot symbol vector and Fp
is the NBS × Ns BS precoding matrix that combines the RF
precoding vector FRFp ∈ CNBS×MBS and the baseband precod-
ing vector FBBp ∈ CMBS×Ns . Note that the pilot vector satisfies
E[spsHp ] =

(
Ps
/
Ns
)
INs and Ps is the total transmitted power

of Ns pilot symbols.
At the receiver side, theMS successively adoptsQ combin-

ing vectors to detect the transmitted signal. For a given time
frame p, the MS employs a combining vector wq to combine
the received signal at time slot q, then the resulting signal
formulation is written as

yq,p = wHq Hxp + zq,p, (6)

where wq ∈ CNMS is the combining vector at qth time slot,
zq,p is the additive Gaussian noise and H ∈ CNMS×NBS is
the cascaded channel matrix, respectively. More importantly,
the cascaded channel H is composed of the BS-IRS channel
H1 ∈ CNIRS×NBS and the IRS-MS channel H2 ∈ CNMS×NIRS ,
which differs from conventional channel model without IRS
and will be later introduced in this paper. After collect-
ing the received signals processed by Q combining vectors,
the received signal vector at pth time frame can be formu-
lated as

yp = WHHxp + zp = WHHFRFp FBBp sp + zp, (7)

where

yp = [y1,p, y2,p, · · · , yQ,p]T

zp = [z1,p, z2,p, · · · , zQ,p]T

W = [w1,w2, · · · ,wQ] (8)
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With regard to the total P time frames, the MS utilizes
the identical combiner W ∈ CNMS×Q to detect the received
signals, and thus, the received matrix at the MS side can be
written as

Y = WHHX + Z, (9)

where Y = [y1, y2, · · · , yP] is a Q× P received matrix,
X = [x1, x2, · · · , xP] is a NBS × P hybrid beamforming
matrix, Z = [z1, z2, · · · , zP] is a Q× P noise matrix by con-
catenating the P noise vectors, respectively.

B. CHANNEL MODEL
Before formulating the channel estimation problem, the chan-
nel model for the IRS-assisted MIMO THz communication
system should be described firstly. Different from the con-
ventional channel model [39], [49], [50], the channel model
of the IRS-based THz system includes the BS-IRS channel
H1, the IRS-MS channel H2, and the phase shift matrix

8 = diag
([
ejϕ1 , · · · , ejϕNIRS

]T)
, where 8 is a NIRS × NIRS

diagonal matrix to indicate the phase shifts of IRS elements.
Then, the cascaded channel of the IRS assisted system can be
expressed as

H = H28H1. (10)

Without loss of generality, in THz frequency band,
we assume that both H1 and H2 are able to be presented
by the geometric channel model with few scattering paths.
Furthermore, each scattering path is supposed to decide a
single propagation path. Based on the geometric channel
model, the BS-IRS channel H1 can be formulated as

H1 =

√
NBSNIRS

L1

L1∑
l1=1

αl1aIRS (γ
AOA
l1 )aHBS (φl1 ), (11)

where L1 denotes the scattering paths of BS-IRS link,
αl1 is the complex gain of l1th path, γ AOAl1

∈ [0, 2π ] is
the AoA and φl1 ∈ [0, 2π ] is the AoD of l1th path cor-
responding to BS and IRS, respectively. The complex
gains of the propagation paths are mainly influenced by
the path loss and molecular absorption, and more details
are recommended in [51]. For simplification, the uni-
form linear arrays (ULAs) are considered here. Hence,
we can get the array response vectors aBS (φl1 ) ∈ CNBS and
aIRS (γ AOAl1

) ∈ CNIRS at the BS and IRS. Specifically, the array
response vectors aBS (φl1 ) and aIRS (γ

AOA
l1

) can be written as
follow

aBS (φl1 ) =
1
√
NBS

[
1, ej(2π/λ)d sin(φl1 ), · · ·,

ej(NBS−1)(2π/λ)d sin(φl1 )
]T
, (12)

aIRS (γ AOAl1 ) =
1

√
NIRS

[
1, ej(2π/λ)d sin(γ

AOA
l1

)
, · · ·,

ej(NIRS−1)(2π/λ)d sin(γ
AOA
l1

)
]T
, (13)

where λ is the wavelength of the THz signals and d is the
distance between adjacent antenna elements or IRS elements,
which is usually defined as d = λ/2. Apart from the normal
expression (11), a more compact form of BS-IRS channel can
be formulated as

H1 = AIRS,1diag(α)AHBS , (14)

where α=
√
NBSNIRS

/
L1
[
α1, α2, · · · , αL1

]T , and the array
response matrices can be respectively given as

ABS =
[
aBS (φ1), · · · , aBS (φL1 )

]
, (15)

AIRS,1 =
[
aIRS (γ AOA1 ), · · · , aIRS (γ AOAL1 )

]
. (16)

Similar to the BS-IRS channel H1, the IRS-MS channel
H2 can be formulated as

H2 = AMSdiag(β)AHIRS,2, (17)

where

β =

√
NMSNIRS

/
L2
[
β1, β2, · · · , βL2

]T
,

AMS =
[
aMS (θ1), · · · , aMS (θL2 )

]
,

AIRS,2 =
[
aIRS (γ AOD1 ), · · · , aIRS (γ AODL2 )

]
. (18)

By substituting (14) and (17) into (10), the entire channel
model can be written as

H = AMSdiag(β)AHIRS,28AIRS,1diag(α)A
H
BS . (19)

C. PROPOSED CHANNEL ESTIMATION SCHEME
In this subsection, the channel estimation problem and the
corresponding solution of IRS-aided THz MIMO system is
to introduced in detail. The main challenge is to estimate
the BS-IRS channel and the IRS-MS channel simultaneously.
With the geometric channel model mentioned above, we dis-
cover that the channel estimation problem can be converted to
the sparse recovery problem by utilizing the poor scattering
characteristics of THz channel. Then, the CS technique is an
efficient tool to handle such a sparse problem.

To be specific, before formulating the spare problem,
we need to vectorize the received matrix Y in (9), which can
be expressed as

yv = vec (Y)

=

(
XT
⊗WH

)
vec (H)+ vec (Z) . (20)

For the sake of forming the CS problem, the grid quanti-
zation procedure is achieved necessarily [39]. Here, we con-
sider that the AoAs and AoDs of H1 and H2 are selected
from a uniform grid of N1 (N1 >> L1) points and a uni-
form grid of N2 (N2 >> L2) points, respectively. Once the
grid quantization procedure of azimuth angles is com-
pleted, the quantized AoAs and AoDs of H1 and H2 can
be described, i.e., φ̄l1 , γ̄

AOA
l1
= 2π l1/L1, l1 ∈ [0,L1 − 1],

θ̄1, γ̄
AOD
1 = 2π l2/L2, l2 ∈ [0,L2 − 1]. According to (15)
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and (16), the quantized array response matrices can be
defined as

ĀBS =
[
aBS (φ̄1), · · · , aBS (φ̄N1 )

]
,

ĀMS =
[
aMS (θ̄1), · · · , aMS (θ̄N2 )

]
,

ĀIRS,1 =
[
aIRS (γ̄ AOA1 ), · · · , aIRS (γ̄ AOAN1

)
]
,

ĀIRS,2 =
[
aIRS (γ̄ AOD1 ), · · · , aIRS (γ̄ AODN2

)
]
. (21)

Subsequently, the cascaded channel model (19) after the
grid quantization operation can be rewritten as

H = ĀMSG2Ā
H
IRS,28ĀIRS,1G1Ā

H
BS , (22)

where G1 ∈ CN1×N1 is the quantized path gain matrix of H1
and G2 ∈ CN2×N2 is the quantized path gain matrix of H2,
respectively. It is worth noting that the non-zero elements of
G1 are equivalent to the elements of α due to the grid quan-
tization principle [52]. Also, such a mapping relationship is
available for G2 and β.
Combining (20) and (22), the sparse formulation of CS

problem can be expressed as

yv =
(
XT
⊗WH

) [(
(vec (8))T

(
ĀIRS,1 ⊗ Ā

∗

IRS,2

))
⊗

(
Ā
∗

BS ⊗ ĀMS
)]
vec

(
GT1 ⊗ G2

)
+ vec (Z)

= Avgv + zv, (23)

where Av =
(
XT
⊗WH ) [((vec (8))T (ĀIRS,1 ⊗ Ā

∗

IRS,2

))
⊗

(
Ā
∗

BS ⊗ ĀMS
)]

is observed as PQ× N 2
1N

2
2 sensing

matrix, gv = vec
(
GT1 ⊗ G2

)
is a N 2

1N
2
2 × 1 vector with

L1L2-sparse and zv = vec (Z) is a PQ× 1 vectorized noise
vector, respectively. Based on structure properties of (23),
it can be treated as a sparse recovery problem, and thus dif-
ferent CS techniques are able to be leveraged to estimate the
channel parameters, such as SP, matching pursuit (MP) [53],
orthogonal matching pursuit (OMP) [54], [55], and iterative
hard thresholding (IHT) [56].

Proof: The detailed proof for the above (23) is provided
in Appendix A.

In terms of the sparse reconstruction problem (23), the CS
technique involves the unacceptably computational complex-
ity due to the high dimension of sensing matrix Av. For
instance, we supposeP = 6,Q = 12,N1 = 30,N2 = 30, then
the dimension of Av is 72× 304. It is worth noting that the
high-dimensional sensing matrix is caused by the double grid
quantization operation, where the double grid quantization
means that the grid quantization of H1 and the grid quanti-
zation of H2 are operated synchronously. Thus, the critical
objective is to reduce the dimension of Av as well as the
complexity.

In this paper, the SP algorithm is employed to perform the
better recovery performance, which is able to both remove
and add the elements in an active set. To efficiently strike
the computational difficulty, we propose a low complexity
IAP-SP algorithm. In recovery process of classical SP,

we find that plenty of columns of the sensing matrix Av
have no correlation with the signal residual. In other words,
partial elements of the resulting vector that combines the
sensing matrix and the residual are zero. Consequently, dur-
ing iterative process, it is redundant to make the columns of
Av with no contributions to the signal residual participate in
calculations. According to this phenomenon, the proposed
IAP-SP algorithm attains an attractive complexity reduction
by iteratively eliminating the redundant columns in sensing
matrix. The proposed low complexity IAP-SP algorithm is
described in Algorithm 1.

Algorithm 1 Proposed IAP-SP Algorithm
Require: Vectorized received signal yv, sensing matrix Av,

sparsity K = L1L2, number of time frames P,
number of time slots Q.

1: Initialization: the support set 0(t−1)
= ∅, A(0)

v = Av,
iteration index t = 1, the residual vector r(t−1) = yv,
the redundant column index set of Av: �(t−1)

= ∅,
4 =

{
1, 2, · · · ,N 2

1N
2
2

}
.

Iterative Process:
2: Support set estimation:
0̄(t)
= 0(t−1)

∪M
((
Av
[
4\�(t−1)

])H r(t−1),K),
3: Redundant column index set update:
�(t)
= �(t−1)

∪ Z
((
Av
[
4\�(t−1)

])H r(t−1)),
4: Least square estimation:
u
[
0̄(t)

]
=
(
Av
[
0̄(t)

])†yv,
5: Support pruning:
0(t)
=M

(
u
[
0̄(t)

]
,K
)
,

6: Estimated recovery vector:
g̃(t)v

[
0(t)

]
=
(
Av
[
0(t)

])†yv, g̃v [4\0(t)
]
= 0,

7: Residual update:
r(t) = yv −

(
Av
[
0(t)

])
g̃v
[
0(t)

]
,

8: if
∥∥r(t)∥∥ < ∥∥r(t−1)∥∥, then
t = t + 1,
return to step 2,

end if
9: Compressed recovery vector:
ḡ(t)v =

(
A(t−1)v

[
0(t−1)

])†
yv,

10: Output estimated vector:
ḡv = Z−1

(
g̃(t−1)v

)
and satisfying ḡv

[
4\0(t−1)

]
= 0,

Ensure: Recovered signal vector ḡv = vec
(
Ḡ
T
1 ⊗ Ḡ2

)
.

Now, some important steps of Algorithm 1 are to be
explained in the following. Firstly, as for step 1-2, the algo-
rithm initialization and the support set estimation are pre-
sented, respectively. Secondly, in step 3, the index set of the
redundant columns in Av is updated, where these redundant
columns are not involved in subsequent calculations. It is
worth mentioning that step 3 is a very pivotal operation in
our proposed low complexity IAP-SP algorithm. Then, for
steps 4-9, the operation principle of the proposed low com-
plexity IAP-SP scheme is the same as classical SP algorithm
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in order to find the K -sparse solution to (23). Finally, for
step 10, we need to fill the zero-elements to the corresponding
positions that is caused by step 3. According to the analysis of
the algorithm steps, the computational complexity of classical
SP algorithm and our proposed IAP-SP in terms of complex
multiplications can be expressed as

OSP

(
T
(
N 2
1N

2
2 + 3L1L2

)
PQ+ 2TP3Q3

+4TL1L2P2Q2

)
(24)

OIAP−SP

( T∑
t=1

∣∣�(t)
∣∣)PQ+ 3TL1L2PQ

+2TP3Q3
+ 4TL1L2P2Q2

 (25)

respectively, where T represents the assumed maximum iter-
ations.

Although the sparse vector ḡv is reconstructed, estimating
the Ḡ1 and Ḡ2 separately is still a tricky problem, where
the recovered ḡv, Ḡ1, and Ḡ2 correspond to actual gv, G1,
and G2, respectively. Considering the practical communica-
tion scenarios, the positions of BS and IRS are fixed once
the communication environment is determined. Therefore,
we assume that the sum of the total path gains between BS
and IRS is a constant C0 for a specific environment, where
C0 is decided by the transmit power at BS side. Then we can
get the following expression as

L1∑
l1=1

ᾱl1 = C0, (26)

where ᾱl1 ∈ supp
(
vec

(
Ḡ1
))

and l1 ∈ [1, · · · ,L1]. Here,
we define Ḡv = vec−1

(
ḡv
)
from a block-matrix perspective,

and then Ḡv can be rewritten as

Ḡv = vec−1
(
ḡv
)
= Ḡ

T
1 ⊗ Ḡ2

=

 A1,1 · · · A1,N1
...

. . .
...

AN1,1 · · · AN1,N1

 (27)

where Ai1,j1 ∈ CN2×N2 , ∀i1, j1 ∈ [1,N1].
Combining (26) and (27), the matrix Ḡ2 can be derived as

Ḡ2 ==

N1∑
i1=1

N1∑
j1=1

Ai1,j1

C0
, (28)

Suppose ai1,j1 (i2, j2) ∈ Ai1,j1 and ḡ2i2,j2 ∈ Ḡ2, where
∀i2, j2 ∈ [1,N2]. Subsequently, the desired matrix Ḡ1 can be
formulated as

Ḡ1 =



N2∑
i2=1

N2∑
j2=1

a1,1(i2,j2)

N2∑
i2=1

N2∑
j2=1

ḡ2i2,j2

· · ·

N2∑
i2=1

N2∑
j2=1

a1,N1 (i2,j2)

N2∑
i2=1

N2∑
j2=1

ḡ2i2,j2

...
. . .

...
N2∑
i2=1

N2∑
j2=1

aN1,1(i2,j2)

N2∑
i2=1

N2∑
j2=1

ḡ2i2,j2

· · ·

N2∑
i2=1

N2∑
j2=1

aN1,N1 (i2,j2)

N2∑
i2=1

N2∑
j2=1

ḡ2i2,j2



T

(29)

Proof: The detailed proofs for (28) and (29) are pro-
vided in Appendix B and C, respectively.
Once the path gain matrices Ḡ1 and Ḡ2 are completed,

the AoAs and AoDs can be determined as well as the BS-IRS
channel H̄1 and IRS-MS channel H̄2 by utilizing the regula-
tion of grid quantization accordingly. For evaluating the chan-
nel estimation performance, the normalized mean squared
error (NMSE) is defined to compare the validity of diverse
sparse recovery methods, which can be formulated as

NMSE =

∥∥H − H̄∥∥2F
‖H‖2F

, (30)

where H̄ is the estimated channel and H̄ = H̄28H̄1.

FIGURE 4. NMSE comparison of the considered methods in the
IRS-assisted THz communication scenario.

Fig. 4 depicts the NMSE performance comparison among
different CS techniques under the main parameter settings
of NBS = 32, NMS = 32, NIRS = 16, P = 6, and Q = 12.
Taking the computational burden into consideration, the num-
ber of grid points of the grid quantization process is set as
N1 = N2 = 30. From Fig. 4 we note that the classical SP
achieves the best sparse reconstruction performance com-
pared to the other considered algorithms, in which the
selected atoms are possible to be removed or added to form
the estimated support set during the iterative reconstruction
process, just as mentioned in [40]. Interestingly, our pro-
posed IAP-SP algorithm is able to realize approximately
the same NMSE performance as classical SP, while it out-
strips the rest CS techniques, i.e., MP [53], OMP [54] and
IHT [56]. Especially, when SNR = 20, the NMSE values
of the IAP-SP (basically same as classical SP), OMP, MP
and IHT are about 3 × 10−2, 7 × 10−2, 2.9 × 10−1 and
3.2 × 10−1, respectively. Additionally, by substituting these
parameter settings of the THz communication system into
(24) and (25), the proposed IAP-SP algorithm can achieve
around 88.79% complexity reduction when the number of
iterations is T = 9. Through the analysis of computational
complexity and recovery performance, the proposed IAP-SP
scheme can make a better trade-off between computational
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calculations and recovery accuracy compared with classical
SP scheme. With the number of the grid quantization points
increasing, more complexity reduction is to be attained corre-
spondingly. In addition, according to [57], further improved
performance can be achieved by utilizing the redundant dic-
tionary. Therefore, the proposed IAP-SP algorithm is an effi-
cient tool to solve the channel estimation problem of the
IRS-assisted THz MIMO communication system.

IV. DATA-RATE MAXIMIZATION FOR IRS-ASSISTED
THz COMMUNICATION SYSTEM
With the estimated CSI analyzed above, the major objec-
tive is to handle the data-rate maximization problem of the
IRS-assisted THz MIMO communication system by jointly
designing the IRS matrix 8 and the hybrid combiner matrix
W = WRFWBB, which is an intractable non-convex opti-
mization problem. Given this, we reconsider this NP-hard
problem as the phase shift search problem of IRS elements.
In terms of the phase shift search issue, we propose three
different methods are proposed to optimize the IRS phase-
shift matrix, including the exhaustive search scheme, local
search scheme and deep learning based scheme. After that,
we leverage the classical singular value decomposition (SVD)
operation to design the optimal combining matrixW as well
as the maximum communication rate.

Firstly, we present the achievable communication rate of
the IRS-aided THz MIMO system as

R = log2

∣∣∣∣INs + ρ

δ2Ns

(
WHW

)−1
WH

×
(
H̄28H̄1

)
FFH

(
H̄28H̄1

)H
W
∣∣∣ , (31)

where ρ is the total transmission power, δ2 is the noise
power, and F = FRFFBB is the hybrid precoding matrix,
respectively. We note that the BS-IRS channel H̄1 has been
estimated in previous section. Considering the practical com-
munication scenarios, the locations of the BS and the IRS
are fixed and H̄1 also maintains unchanged. Given this,
the precoder F at the BS side is a constant matrix and can
be obtained by the SVD operation of H̄1. Specifically, since
H̄1 is able to be decomposed into H̄1 = U131VH

1 , then
we have the relation as F = Ṽ1, where Ṽ1 is a sub-matrix
with the first Ns column vectors of V1 [49]. Once the optimal
hybrid precoder F or combiner W is obtained, the OMP-
based solution is adopted to decompose F or W into RF
part and baseband (BB) part separately [58]. For simplicity,
we assume that the IRS satisfies a perfect reflecting mode
where each IRS element is set as {µi}

NIRS
i=1 = 1. Then, the data-

rate maximization problem can be written as(
8opt ,Wopt)

= argmaxR,

s.t. ϕn ∈ F, ∀n = 1, . . . ,NIRS ,

8 = diag
([
ejϕ1 , ejϕ2 , . . . , ejϕNIRS

]T)
. (32)

Based on the above discussion, the optimization objective
(32) is a a non-convex and discrete optimization problemwith
two matrix variables, 8 and W . For the sake of solving the

optimization problem (32), existing optimization techniques
are hard to operate directly. Nevertheless, it is worth noting
that there are still some useful properties existing in prob-
lem (32). Firstly, the number of possible candidates of the
phase shift matrix 8 is finite, because each entry {ϕn}

NIRS
n=1

is discrete according to the hardware structure of IRS.
Secondly, the combining matrixW is an unconstrained com-
biner matrix. Moreover, the phase shift matrix 8 and the
combining matrix W are mutually independent in the IRS
assisted THz communication system.
Motivating by these distinguishing features, one avail-

able way of settling the above optimization problem is to
first optimize the phase shift matrix 8 and later design the
combining matrix W . To achieve this, we suppose that the
effective channel H̄e is defined as H̄e = H̄28H̄1. By uti-
lizing the SVD operation, the channel H̄e can be decom-
pose into H̄e = U3VH , where U is a NMS × rank

(
H̄e
)

unitary matrix, 3 is a rank
(
H̄e
)
× rank

(
H̄e
)

diagonal
matrix of singular values arranged in a decreasing order,
and V is a NBS × rank

(
H̄e
)
unitary matrix, respectively.

Furthermore, we also define the unitary matrix U as
U = [U1,U2], and then the optimal combiner is simply given
by Wopt

= U1 [49], where U1 is of dimension NMS × Ns.
To realize the better communication performance, we cal-
culate the combiner matrix W by using the SVD operation
of the cascaded channel H̄e rather than the IRS-MS chan-
nel H̄2, since the cascaded channel H̄e contains the CSI of
joint W and 8. Thus, the optimization problem (32) can be
rewritten as

R = log2

∣∣∣∣INs + ρ

δ2Ns

(
WHW

)−1
WH

× H̄eFFH H̄
H
e W

∣∣∣ ,
s.t. ϕn ∈ F , ∀n = 1, . . . ,NIRS ,

8 = diag
([
ejϕ1 , ejϕ2 , . . . , ejϕNIRS

]T)
,

Wopt
= U1. (33)

A. EXHAUSTIVE SEARCH SCHEME
In terms of the optimization problem (33), the number of
alternative matrix 8 is finite since the phase shift of each
reflecting element is discrete and is selected from the pre-
defined phase shift set F , where ϕn ∈ F , ∀n = 1, · · · ,NIRS .
Under such a condition, the non-convex optimization prob-
lem (33) is able to be converted to a phase shift search
problem whose optimal solution can be obtained by an
exhaustive search method. Specifically, the exhaustive search
method demands to successively generate the phase shift
value {ϕn}Nn=1 from F , and then the phase shift matrix 8 is
able to be determined. Then, with a given 8, the cascaded
channel H̄e is definite and the corresponding combining
matrix W can be obtained by utilizing the SVD operation
of the cascaded channel H̄e. Once the phase shift and the
combining matrix is determined, the optimal data rate for the
IRS-aided THz communication system can be got by comput-
ing all the possible candidates of 8 and W . After traversing
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all the alternative matrices8 and the corresponding matrices
W , we are able to get the optimal communication rate and the
expected phase shift matrix, denoted as8opt . During this pro-
cedure, there are total |F |NIRS alternative phase shift matrices
to participate in calculations. Therefore, the exhaustive search
method suffers from severe computational complexity that
involves a huge search operations for possible matrices 8.
To decrease the computational complexity, it is pressing to put
forward the low complexity methods in practical application
scenarios.

B. LOCAL SEARCH SCHEME
To begin with, the main complexity of the exhaustive search
method comes from the exponential growth of the possi-
ble phase shift combinations when the number of the IRS
elements increases. Attractively, different from the exhaus-
tive search method, the proposed local search method can
greatly reduce the complexity by just selecting the partially
better combinations of discrete phase shifts. Similar to the
exhaustive searchmethod, the local searchmethod transforms
the optimization problem (33) into the phase shift search
problem. The local search method just achieves the sub-
optimal data rate performance while it can greatly decrease
the computational complexity. According to [59], the ele-
ments of the diagonal matrix {3 (i, i)}Nsi=1 are regarded as the
virtual path gains. and the phase shift matrix 8 is influenced
by the virtual path gains. Instead, the combiner W is related
with the unitary matrix U1 rather than the virtual path gains.
Subsequently, we turn to maximize the sum of these virtual
path gains rather than directly solving the non-convex opti-
mization problem (33). Therefore, the problem (33) can be
further transformed as

max
8

log2

Ns∑
i=1

|3 (i, i)|2
(a)
= max

8

[
1+ Tr

(
H̄eH̄

H
e

)]
, (34)

where the definition (a) comes from the linear algebra that
for any matrix A ∈ CNs×Ns and Tr (A) ∈

∑Ns
i=1 λi(A), we can

get that {|3(i, i)|2}Nsi=1 is the eigenvalue of the term H̄eH̄
H
e .

To simplify the expression in (34), a more explicit formula-
tion is employed to represent the problem as

max
8

Tr
(
H̄eH̄

H
e

)
s.t. ϕn ∈ F , ∀n = 1, . . . ,NIRS ,

8 = diag
([
ejϕ1 , ejϕ2 , . . . , ejϕNIRS

]T)
. (35)

From the problem (35) we note that this optimization prob-
lem is a phase shift search problem, in which just contains
one matrix variable 8. Compared with exhaustive search
method, the proposed local search method owns some obvi-
ous advantages. On the one hand, by analyzing the structure
features of the matrix H̄e, the matrix variable W can be
eliminated and the obtained problem (35) is not involved with
SVD operations. On the other hand, the phase shift search
strategy is optimized in the local search method. Instead of

calculating all the phase shift combinations, the proposed
local search method only takes advantage of the relatively
better combinations of the discrete phase shifts. Thus, based
on these superiorities, the proposed local search method is
capable of lessening the computational complexity tremen-
dously by avoiding the exhaustive search of the phase shift
combinations.

Algorithm 2 Local Search Algorithm

Require: BS-IRS channel: H̄1, IRS-MS channel: H̄2, the bit
quantization number: b, the controllable phase shift range
of each reflecting element: 1ϕ.

1: Initialize: Phase shift matrix: 8 = 0NIRS×NIRS , the phase
shift set: F =

{
0,1ϕ

/
2b, · · · , (2b − 1)1ϕ

/
2b
}
,

γ = Tr
(
H̄eH̄

H
e

)
, the maximum value of γ : γmax

= 0.
Iterative Process:

2: for i = 1 : NIRS do
3: Randomly generate ϕk ∈ F , ∀k ∈ [i+ 1, · · · ,NIRS ],
4: for all ϕi ∈ F do
5: Construct the phase shift matrix of IRS:

8 = diag
[
ejϕ1 , · · · , ejϕNIRS

]
,

6: Calculate the term γ with a given 8:
γ = Tr

(
H̄eH̄

H
e

)
= Tr

((
H̄28H̄1

) (
H̄28H̄1

)H)
,

7: if γ > γmax do
8: γmax

= γ , 8opt
= 8,

9: end if
10: end for
11: end for
12: Calculate the optimal cascaded channel:

H̄
opt
e = H̄28

optH̄1,
13: Derive the optimal combinerWopt :

H̄e = U3VH , U = [U1,U2],Wopt
= U1,

14: Compute the maximum data rate Rmax based on (31),
Ensure: 8opt ,Wopt , Rmax.

The detailed procedure of the proposed local search algo-
rithm for the data-rate maximization problem is illustrated in
Algorithm 2. Here, the important steps of the proposed algo-
rithm are introduced in the following. Firstly, we initialize
some key parameters that are utilized in the iterative process,
such as the phase shift matrix, the phase shift set for each
IRS element and so on. Next, the iterative process is to be
described in detail. During the ith iteration process, we fix
the phase shifts of reflecting elements from i+ 1 to NIRS ,
and select the optimal phase shift fromF for the ith reflecting
element by maximizing the term Tr

(
H̄eH̄

H
e

)
. Continue such

iteration process for NIRS times, we are able to find the
optimal phase shift matrix 8opt , the optimal combiner Wopt

and the corresponding data-rate Rmax in the end.

C. DEEP NEURAL NETWORK BASED SCHEME
Through the analysis of optimization problem as well as the
hardware constraints, intriguingly, we note that the phase shift
matrix is related to inherent channel features, such as path
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gain, AoAs and AoDs. In other words, there is a nonlin-
ear functional relationship between the phase shifts of IRS
elements and the estimated CSI. However, such an implicit
relationship is hard to be described mathematically by the
IRS mapping function. Thus, the DNN based method, which
maps from the estimated CSI to the phase shift matrix, is an
appropriate choice to fit the desired mapping function [60].
The local search method discussed above not only endures
obvious performance loss, but also suffers from high com-
putational complexity due to the enormous SVD operations
and the matrix multiplication. Therefore, another advantage
of our developed method is that the DNN is able to fur-
ther mitigate the computational burden of the phase shift
search problem by fitting the IRSmapping function instead of
searching the phase shift combinations of reflecting elements.
To this end, the DNN based method is developed in this
subsection.

FIGURE 5. The proposed neural network architecture with S layers for the
IRS-assisted THz communication system.

From [61] we know that DNN based method well fits
the functional relationship when the training samples of the
data sets is sufficient enough. Since the estimated CSI in
previous section can provide enough data sets, the proposed
DNN basedmethod is able to tackle the optimization problem
(33) with the low complexity and slight performance penalty
compared with the exhaustive search method. Once the DNN
based search model is established, the optimal phase shift
matrix 8 as well as the corresponding communication rate
R can be obtained quickly for the new CSI input. In the
following, the neural network architecture of the proposed
DNN base method is introduced, as shown in Fig. 5. The
feedforward fully connected network is designed here, which
contains an input layer, S − 2 hidden layers and an output
layer. Also, any two neural units in different layers are inter-
connected with each other.

In the following, the proposed DNN based phase shift
search algorithm is presented in detail. Generally, the
proposed DNN based method consists of two distinct phases,
namely (I) the offline (training) phase and (II) the online
phase.

1) OFFLINE PHASE
In the training phase, the database can be generated by the
channel estimation method mentioned above and the exhaus-
tive search method, where the exhaustive search procedure
operated online involves tremendous latency overhead. The
estimated CSI provides the channel features while the exhaus-
tive searchmethod can find themapping relationship between
the optimal phase shift matrix (optimal data rate) and the
channel features. Thus, the input vector D̄ contains the path
gain, AoAs and AoDs. Correspondingly, the output vector
Ō =

(
ϕ1, · · · , ϕNIRS ,R

)
is the optimal phase shifts of IRS

elements and the desired data rate. By aggregating the input
data and the output data together, a complete database is
created to train the proposed DNN model. Once the DNN
model is trained well, the optimal phase shift matrix 8 can
be gained with much lower computational complexity com-
pared with the local search method and the exhaustive search
method. It is worth noting that the collected channel samples
are generated dynamically during the offline training process.
Although the channel varies in practice, the trained DNN
model still possesses the extremely high adaptability.

2) ONLINE PHASE
In the online training phase, we suppose that both the database
and DNN model are placed on the IRS side. Before the
DNN model comes into use, we firstly estimate a new chan-
nel sample. With the given CSI, the IRS feeds the pre-
processing channel information to the trained DNN model.
Finally, the optimal Rmax and 8opt can be gained through
the online processing of the proposed DNN model. We note
that the online prediction only involves simple calculation
operations in the neural network, such as the multiplication
operation, and thus the proposed DNN based method has
the better ability to reduced the computational complexity
significantly.

As discussed above, the DNN, as one of the branches of
deep learning [60]–[62], has an advantage in fitting the map-
ping functions between the phase shift matrix and the CSI.
With this motivation, the S-layer DNN model is designed to
seek the appropriate mapping functions. The critical parts of
the DNN model are introduced concretely in the following.

a: FEATURES SELECTION
Through the analysis of optimization objective and the train-
ing samples, the array response vectors and the path gains of
channel information are finally selected as the input features
in the adopted DNN model. In the IRS-assisted THz MIMO
communication model, we assume that the BS-IRS channel
and IRS-MS channel contain L1 and L2 propagation paths,
respectively. Let āBS (φl1 ), āIRS (γ

AOA
l1

), āIRS (γ AODl2
), āMS (θl2 )

represent the estimated array response vectors. Meanwhile,
the ᾱl1 and β̄l2 are the estimated path gains, where l1 ∈
(1, 2, · · · ,L1) and l2 ∈ (1, 2, · · · ,L2).

b: DATA PREPROCESSING
Before feeding the channel samples to the proposed DNN
model, the input vector D̄ needs to be normalized to conclude
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the uniform statistical distribution of the training samples.
In practice, since the THz wave endures serious path loss and
molecular absorption loss, the propagation path gains of THz
signals changes widely. Thus, the normalization process is
indispensable to narrow the gap among the different values
of the data samples and accelerate the convergence of the
DNN model. After the data preprocessing of the original
data sets, the processed data samples can be regarded as the
effective input of the DNN model. Next, the formulation of
the processed input vector D̄ can be represented as

D̂ =
1

D̄max − D̄min
D̄ (36)

where Dmax and Dmin are the maximum and minimum
elements in

∣∣D̄∣∣.
c: INPUT
For a specific communication scenario, once the number of
input features is determined, the dimension of the input layer
is also definite. Although the input features of DNN have
been selected according to the database, another challenge
is that the input vector D̂ of the proposed DNN has to be
the real numbers. To face this difficulty, the complex input
vector is essential to be divided into the real part and the
imaginary part. Then, the real part and the imaginary part are
integrated together to form the final input vector. For the sake
of simplifying this explanation, we select the array response
āBS (φl1 ) as an example. Specifically, the vector āBS (φl1 ) of
path l1 is split into the real parts <(āBS (φl1 )) and the imagi-
nary parts =(āBS (φl1 )). Similarly, all the feature vectors can
be split into real and imaginary parts. Therefor, the dimension
of the expected input vector is (NBSL1 +NIRSL1 +NIRSL2 +
NMSL2+L1+L2) in the proposed DNNmodel, and the input
vector can be further expressed as

<

{
D̂
}
= <



āBS (φl1 ), · · · , āBS (φL1 )
āIRS (γ AOAl1

), · · · , āIRS (γ AOAL1
)

āIRS (γ AODl2
), · · · , āIRS (γ AODL2

)
āMS (θl2 ), · · · , āMS (θL2 )

ᾱ1, ᾱ2, · · · , ᾱL1
β̄1, β̄2, · · · , β̄L2


(37)

=

{
D̂
}
= =



āBS (φl1 ), · · · , āBS (φL1 )
āIRS (γ AOAl1

), · · · , āIRS (γ AOAL1
)

āIRS (γ AODl2
), · · · , āIRS (γ AODL2

)
āMS (θl2 ), · · · , āMS (θL2 )

ᾱ1, ᾱ2, · · · , ᾱL1
β̄1, β̄2, · · · , β̄L2


(38)

d: OUTPUT
It is worth mentioning that the data-rate (R) is correlated
with the optimal phase shift matrix 8, so the proposed
DNN model can output the R and the diagonal elements
ϕ = (ϕ1, · · · , ϕNIRS ) of the matrix 8 simultaneously.
Thus, the final output vector is represented as Ō =(
ϕ1, · · · , ϕNIRS ,R

)
.

TABLE 1. Complexity comparisons of considered schemes.

e: TRAINING PROCESS OF DNN
On the basis of the working principle of the neural network,
each current neural unit sums all the input values which are
related to the neural units from the previous layer and the
corresponding weights. More specifically, the input value for
each current neural unit sums the product of the output values
from the previous layer and the corresponding weights. In the
hidden layers, the summation values need to be processed by
rectified linear units (ReLUs) to improve nonlinear relations
and alleviate gradient dissipation problems. Then, the output
values of current neural units can be further utilized for the
next layer. To avoid the overfitting issue, the dropout units
are also designed in the proposed neural network architecture,
where the dropout units indicate that a random neural unit is
selected as an inactive unit during the learning process.

In order to obtain the optimal8 andRwith small batches of
training samples as well as the low computational complexity,
the stochastic gradient descent (SGD) algorithm is employed
in the proposed neural network architecture. According to the
SGD algorithm, the parameters of theDNNmodel at kth layer
can be expressed as

9k
= 9k−1

− η∇L
(
9k−1

)
(39)

where η is the learning rate of the algorithm, 9 is the set of
all the neural network parameters, and ∇L (·) is the gradient
of the batch’s loss function. After that all the parameters are
determined, the DNN model is established accordingly.

According to the trained DNN model, when a new data
sample is input, the predicted output Ô can be obtained
swiftly. To demonstrate the effectiveness of the proposed
DNN based method, the minimum mean square error
(MMSE) criterion is chosen to minimize the loss function
L(9). Also, the MMSE can evaluate the prediction accuracy
of the proposed DNN model by calculating the difference
between the predicted output Ô and the sampled output Ō.
During the training process of the DNN model, we need to
minimize the regression loss function until the proposedDNN
converges. So, the loss function L(9) is expressed as

L(9) = MMSE(Ô− Ō) (40)

D. COMPLEXITY ANALYSIS OF DIVERSE SCHEMES
In this subsection, the detailed complexity of different phase
shift search schemes are analyzed, including the exhaustive
search scheme, local search scheme, and DNN based scheme
for the IRS aided THz communication scenarios.

To begin with, the computational complexity of the
exhaustive search method mainly caused by three different
aspects. Firstly, calculating the multiplication of two matrix
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H̄e ∈ CNMS×NBS and H̄
H
e ∈ CNBS×NMS is O (NMSNBSNMS).

Then, the complexity of searching all the possible phase shift
matrices is O(N 2b

IRS ). In addition, the complexity of the SVD
operation about the matrix H̄e is O (NMSNBSNs). Therefore,
the total complexity of the exhaustive search scheme is

O (NMSNBSNs)O
(
N 2b
IRS

)
O (NMSNBSNMS)

= O
(
N 3
MSN

2
BSNsN

2b
IRS

)
. (41)

Next, since the local search scheme only needs to search
NIRS2b possible phase shift combinations, the complexity of
the local search scheme can be written as

O (NMSNBSNMS)O
(
NIRS2b

)
= O

(
N 2
MSNBSNIRS2

b
)
. (42)

Without loss of generality, the complexity of the offline
training can be ignored, the major computational complexity
comes from the online phase. Based on the algorithm pro-
cedure of the DNN based model, the complexity of online
predictions mainly involves the operations of multiplying the
output value of each unit with the corresponding weight.
Hence, the complexity between two layers is the product of
the input vector and the weight matrix. In terms of the S-lay
DNN model, the total complexity of DNN based scheme can
be determined as

O

 (NBS + 2NIRS + NMS + 2L)Ln2

+

S−2∑
i=2

nini+1 + nS−1(NIRS + 1)

 (43)

where ni ∈ (n1, n2 . . . nS) is the number of neural units for
the ith layer. Especially for the S = 4, the complexity of such
a DNN model can be expressed as

O
(
(NBS + 2NIRS + NMS + 2L)Ln2
+ n2n3 + n3 (NIRS + 1)

)
(44)

V. NUMERICAL RESULTS
In this section, numerical results are presented to demon-
strate the performance of the IRS-aided THz MIMO system
and the conventional THz communication system without
IRS in terms of the data rate performance and the compu-
tational complexity. Here, the conventional scheme without
IRS means that all the system settings are the same as the
proposed IRS assisted system except for the existence of IRS,
and thus we can see the benefits brought by the IRS. For
a given downlink communication scenario, the BS employs
NBS = 32 antennas and the MS uses NMS = 32 antennas.
As for the IRS, we adopt NIRS = 16 reflecting elements
with 2 bits quantization precision and the working frequency
of the IRS elements is at 0.22 THz. Particularly, the dis-
tance between adjacent antenna elements or the neighbour-
ing reflecting elements is set as the half the wavelength
of the THz wave. Due to the extremely sparse nature of
the THz channel H̄1 and H̄2, we denote that the number of
the propagation paths is L1=L3= 3. Additionally, the com-
plex gains are selected from the circularly-symmetric Gaus-
sian distribution and satisfies ᾱl1 , β̄l2 ∈ CN (0, 1), where

l1, l2 ∈ [1, 2, 3]. On the basis of the geometric channelmodel,
the physical AoAs and AoDs are randomly generated from
[0, 2π ] with an equal probability. Ultimately, it worth noting
that the channel parameters are estimated in previous section
and thus are known here.

FIGURE 6. Data rate performance comparisons of considered schemes
versus different values of SNR.

A. DATA RATE PERFORMANCE COMPARISONS
Fig. 6 depicts the data-rate performance comparisons of
diverse phase shift search methods along with the increase
of the SNR. In the practical THz communication scenarios,
it is obvious that all the proposed phase shift search schemes
with IRS achieves higher data rate performance than the
conventional scheme without IRS. Among these proposed
phase shift search schemes, the exhaustive search method
performs the optimal performance while the proposed local
searchmethod suffers from the apparent performance penalty.
Specifically, when the SNR is 10 dB, the exhaustive search
method is about 7.59 bps/Hz higher than the local search
method. Interestingly, the simulation curve of the proposed
DNN basedmethod can be basically consistent with the curve
of the optimal method (around 1.14 bps/Hz performance gap
at SNR = 10 dB). One may also note that the DNN based
method is able to realize the better communication perfor-
mance compared with the proposed local search method in
indoor THz communication systems.

Fig. 7 illustrates the data rate performance versus the num-
ber of reflecting elements NIRS among different schemes
under the condition that SNR = 10 dB. From Fig. 7 we
can see that, the data rate performance of the conventional
scheme without IRS remains unchanged when the number
of the reflecting elements increases. Fortunately, the number
of IRS elements has a great impact on the communication
performance of our proposed schemes, including the exhaus-
tive search scheme, the local search scheme and the DNN
based scheme. In other words, by increasing the number
of the IRS elements, all the proposed schemes is able to
enhance the data rate performance significantly. Specifically,
in the case that the number of IRS elements is configured
as 60, the data rate of the proposed DNN based scheme is
38.36 bps/Hz, which is greatly better than that of local search
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FIGURE 7. Data rate performance comparisons of considered schemes
versus the number of reflecting elements with SNR = 10 dB.

FIGURE 8. Data rate performance comparisons of considered schemes
along with the number of training samples.

method with 12.24 bps/Hz. Moreover, it is worth mentioning
that the data rate performance of the proposed DNN based
scheme approaches the simulation curve of the exhaustive
search scheme.

Fig. 8 presents the data rate performance of different
scheme versus the number of training samples. It is obvious
that the proposed local search method and the exhaustive
search method are not influenced by the number of training
samples. Nevertheless, the data rate of the proposed DNN
based method becomes continuously better along with the
increasing number of the training samples, and has a tendency
to approach the the exhaustive search method. Notably, when
the number of the training samples is 8000, the DNN based
method has almost converged in terms of SNR = 5 dB and
SNR = 10 dB. Under the case that the training samples are
sufficient at SRN = 5 dB, the DNN based method inher-
its about 1.17 bps/Hz performance loss compared with the
exhaustive search method, and possesses about 3.12 bps/Hz
performance enhancement compared with the local search
method. In short, as long as the database is large enough,
the DNN based method can attain the near optimal data
rate performance for the IRS aided THz communication
systems.

FIGURE 9. Complexity comparisons of diverse schemes versus the
number of reflecting elements NIRS .

B. COMPLEXITY COMPARISONS
Fig. 9 investigates the computational complexity compar-
isons of the proposed three different schemes with the
increasing of the IRS elements. For the sake of a fair
comparison condition, the proposed diverse phase shift search
methods are based on the same parameter settings just as
mentioned before. Especially, the proposed DNNmodel con-
tains four lays where n2 = 16 and n3 = 16. Firstly, from
Fig. 9 we find that the proposed local search method can
greatly reduce the computational overhead in comparison
with the exhaustive search method. Moreover, the further
complexity reduction is able to be achieved dramatically by
the proposed DNN based method compared with the local
search method. In more concrete terms, when the number
of the IRS elements is 16, the complexity of the exhaustive
search, the local search method and the DNN based method
is 2.15 × 109, 2.10 × 106 and 5.42 × 103, respectively.
Generally, the complexity of offline phase is not taken into
account here. Additionally, one may point out that, as the
number of the reflecting elements increases, the computa-
tional complexity of both the local search method and the
exhaustive search method grows to a great extent, while the
proposed DNN based method varies slowly. Thus, in other
words, the advantage of the proposed DNN based method
method in terms of the complexity tends to be more distinct.
Ultimately, combining the Fig. 6 and Fig. 9, the proposed
DNN based scheme is capable of making a better trade-off
between the data rate performance and the computational
complexity, which will be widely deployed in future IRS
assisted THz communication scenarios.

VI. CONCLUSION
THz frequency band is regarded as a promising alterna-
tive to provide large bandwidth and high data rates for 6G
wireless communication systems. To settle the poor cover-
age capability and high path loss of THz waves existing
in indoor THz communication systems, the IRS has been
proposed recently to enhance the communication rates of the
terminal equipment as well as the coverage capacity. By uti-
lizing the CS technique, we put forward a low complexity
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IAP-SP scheme to solve the channel estimation problem
that involves the double grid quantization issue. Fortunately,
the proposed IAP-SP algorithm achieves the basically same
recovery performance compared with classical SP algorithm.
With the estimated CSI, we then propose three diverse data
rate maximization methods by searching the phase shifts of
IRS elements. Remarkably, the proposed DNN based scheme
makes a better tradeoff between computational complexity
and data rate performance. Specifically, as long as the training
samples are large enough,the proposed DNN-based scheme
is able to achieve the near-optimal performance and debases
the computational burden sufficiently. It is also worth noting
that these proposed frameworks in this paper are able to
be extended to multiuser MIMO communication scenarios.
Ultimately, the IRS-assisted THz communication systems
will act an important role in indoor 6G application scenarios.

APPENDIX
A. PROOF OF (23)
According to (22), the vectorized channel is written as

vec (H)
= vec

(
ĀMSG2Ā

H
IRS,28ĀIRS,1G1Ā

H
BS

)
=

(
Ā
∗

BS ⊗ ĀMS
)
vec

(
G2Ā

H
IRS,28ĀIRS,1G1

)
=

(
Ā
∗

BS ⊗ ĀMS
)

︸ ︷︷ ︸
Part1

(
GT1 ⊗ G2

)
︸ ︷︷ ︸

Part2

vec
(
Ā
H
IRS,28ĀIRS,1

)
︸ ︷︷ ︸

part3

. (45)

Then, we continue to vectorize (45) and can obtain the
following expression as

vec (H) = vec (vec (H))

=

[
vec

(
Ā
H
IRS,28ĀIRS,1

)]T
⊗

(
Ā
∗

BS ⊗ ĀMS
)
vec

(
GT1 ⊗ G2

)
=

[
Ā
T
IRS,1 ⊗ Ā

H
IRS,2vec (8)

]T
⊗

(
Ā
∗

BS ⊗ ĀMS
)
vec

(
GT1 ⊗ G2

)
=

[
(vec (8))T

(
ĀIRS,1 ⊗ Ā

∗

IRS,2

)]
⊗

(
Ā
∗

BS ⊗ ĀMS
)
vec

(
GT1 ⊗ G2

)
. (46)

Thus, by substituting (46)) into (20), we accomplish the
proof for (23).

B. PROOF OF (28)
Considering the (27), we note that

Ḡv = vec−1
(
ḡv
)
= Ḡ

T
1 ⊗ Ḡ2

=

 ḡ11,1 ⊗ Ḡ2 · · · ḡ11,N1
⊗ Ḡ2

...
. . .

...

ḡ1N1,1
⊗ Ḡ2 · · · ḡ1N1,N1

⊗ Ḡ2


=

 A1,1 · · · A1,N1
...

. . .
...

AN1,1 · · · AN1,N1

 , (47)

where Ai1,j1 = ḡ1i1,j1 ⊗ Ḡ2, ∀ i1, j1 ∈ [1,N1].

Based on the fact that ḡ1i1,j1 is a complex number, so we
can get

N1∑
i1=1

N1∑
j1=1

Ai1,j1 =
N1∑
i1=1

N1∑
j1=1

ḡ1i1,j1 ⊗ Ḡ2

= Ḡ2

N1∑
i1=1

N1∑
j1=1

ḡ1i1,j1 = C0Ḡ2. (48)

Thus, the proof for (28) is completed.

C. PROOF OF (29)
On the basic of (47), the entry of Ḡ1 can be formulated as

ḡ1i1,j1 =

N2∑
i2=1

N2∑
j2=1

ai1,j1 (i2, j2)

N2∑
i2=1

N2∑
j2=1

ḡ2i2,j2

(49)

where ḡ2i2,j2 ∈ Ḡ2, ai1,j1 (i2, j2) ∈ Ai1,j1 , ∀ i1, j1 ∈ [1,N1],
∀ i2, j2 ∈ [1,N2]. By resorting to (49), the proof for (29) can
be completed directly.
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