
Received March 21, 2020, accepted May 9, 2020, date of publication May 12, 2020, date of current version May 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994172

ACC_TEST: Hybrid Testing Techniques
for MPI-Based Programs
ABDULLAH S. ALMALAISE ALGHAMDI 1, AHMED MOHAMMED ALGHAMDI2,
FATHY ELBOURAEY EASSA 3, AND MAHER ALI KHEMAKHEM 3
1Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 21493, Saudi Arabia
3Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant
No. (RG-9-611-40). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

ABSTRACT Recently, MPI has become widely used in many scientific applications, including different
non-computer science fields, for parallelizing their applications. An MPI programming model is used for
supporting parallelism in several programming languages, including C, C++, and Fortran.MPI also supports
integration with some programming models and has several implementations from different vendors,
including open-source and commercial implementations. However, testing parallel programs is a difficult
task, especially when using programming models with different behaviours and types of error based on the
programming model type. In addition, the increased use of these programming models by non-computer
science specialists can cause several errors due to lack of experience in programming, which needs to be
considered when using any testing tools. We noticed that dynamic testing techniques have been used for
testing the majority of MPI programs. The dynamic testing techniques detect errors by analyzing the source
code during runtime, which will cause overheads, and this will affect the program’s performance, especially
when targeting massive parallel applications generating thousands or millions of threads. In this paper,
we enhance ACC_TEST to have the ability to test MPI-based programs and detect runtime errors occurring
with different types of MPI communications. We decided to use hybrid-testing techniques by combining
both static and dynamic testing techniques to gain the benefit of each and reduce the cost.

INDEX TERMS MPI, MPI testing tool, hybrid testing techniques, parallel programming, ACC_TEST.

I. INTRODUCTION
Message-Passing Interface (MPI) is one of the most widely
used programming models for parallelizing most scientific
applications. This programming model is used for supporting
parallelism in sequential programming languages by adding
MPI directives to control data movements between pro-
cesses. MPI also supports integration with some program-
ming models and has several implementations from different
vendors, including open-source and commercial implemen-
tations. However, testing parallel programs is a difficult task,
especially when using programming models with different
errors behaviours and types based on the programmingmodel
type. In addition, the increased use of these programming
models by non-computer science specialists can cause several
errors due to lack of experience in programming, which needs
to be considered when using any testing tools.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan Zhang .

As a part of our previous work [1]–[3], we proposed and
created a parallel hybrid testing tool named ACC_TEST
that targeted programs built in a heterogeneous architec-
ture and covering different errors. In addition, we aim to
develop hybrid-testing techniques for detecting errors in the
dual-programming models MPI + OpenACC at the ends of
our project. In this paper, we enhance ACC_TEST to have
the ability to test MPI-based programs and detect runtime
errors occurring with different types of MPI communica-
tions. We also focus on the interaction between MPI and the
other programming models, especially high-level program-
ming models such as OpenACC.

The rest of this paper is structured as follows.
Section 2 briefly gives an overview of MPI, and section 3
will discuss the related work. In section 4, we explain our
techniques for testingMPI-based programs covering different
types of MPI communications, including point-to-point and
collective communications. In sections 5 and 6, we explain
and discuss implementing, testing, and evaluating our

91488 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7644-5039
https://orcid.org/0000-0003-3987-9051
https://orcid.org/0000-0002-1287-1634
https://orcid.org/0000-0002-2058-2373


A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 1. General MPI program structure [4].

techniques for testing MPI. Finally, conclusions and future
work will be discussed in section 7.

II. MPI PROGRAMMING MODEL
Message-Passing Interface (MPI) [4] is a programming
model used for message-passing techniques for supporting
parallelism in traditional programming languages, including
Fortran, C, and C++. The first official version of MPI was
released in May 1994. Data is moved from a process address
space to another process by using cooperative operations in
each process. The aim of MPI is to establish a standard for
creating message-passing programs to be portable, efficient,
and flexible. MPI has several implementations, including
open-source implementations such as Open MPI [5] and
MPICH [6], and commercial implementations such as IBM
Spectrum MPI [7] and Intel MPI [8]. MPI is considered as a
standard, portal programmingmodel that can be implemented
in several platforms, hardware, systems, and programming
languages. Additionally, MPI can work perfectly with sev-
eral programming models and with heterogeneous networks.
In addition, MPI has various versions of MPI implementa-
tions from different vendors and organizations that are avail-
able as open-source and commercial implementations.

AnMPI program has a specific structure, starting withMPI
including the file in the header and thenMPI environment ini-
tialization, which considers the beginning of the parallel code.
After that, the main massage-passing calls take place, and
in the end terminate the MPI environment. Figure 1 demon-
strates the general MPI program structure with respective
examples of MPI codes.

There are two types of MPI communications, including
point-to-point and collective communications. MPI point-
to-point communication typically involves message passing
between two and only two different MPI tasks. The first task
is to perform a send operation, and the other task is to per-
form a matching receive operation. There are different types

FIGURE 2. Example of MPI collective communications [4].

of send-and-receive operations used for different purposes,
including:

1) Blocking send and receive.
2) Non-blocking send and receive.
3) Buffered send.
4) Combined send/receive.

In terms of collective communication, there are three types:
synchronization, data movement, and collective computation.
Also, MPI collective communications can be blocking or
non-blocking, just like MPI point-to-point communications.
Figure 2 demonstrates the collective computation and data
movements for MPI collective communications.

The newestMPI standardization version 4.0 [4] is currently
available, which aims to add new techniques, approaches,
and concepts to the MPI standard to help MPI address
the needs of current and next-generation applications and
architectures. The new version extends to better support
hybrid-programming models, including hybrid MPI+X con-
cerns and support for fault tolerance in MPI applications.

III. RELATED WORK
There are many testing tools that target MPI using differ-
ent testing techniques and covering different types of error.
In our survey, we cover more than 20 testing tools that target
MPI programming models. Using static testing techniques,
the testing tool MPI-Checker [9] has been used for detecting
mismatching errors in MPI-related programs.

For the dynamic testing techniques, we studied more than
15 testing tools that use dynamic testing for MPI-related
programs to detect various errors. For detecting runtime
errors includingmismatching, data race, and deadlocks, many
testing tools have been used such as MUST [10], [11],
MEMCHECKER [5], IntelMessageChecker [12], STAT [13],
Nasty-MPI [14], and MARMOT [15]. In addition, the test-
ing tools that have been used for detecting mismatching

VOLUME 8, 2020 91489



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

and deadlocks include Umpire [16], GEM [17], and
MPI-CHECK [18]. For race condition and deadlocks,
MPI detections MAD [19], [20], and PDT [21] have been
used. MPIRace-Check [22] has been used to detect race
conditions in MPI. Finally, MOPPER [23] and ISP [24] are
used for deadlock detection.

In the case of hybrid testing techniques, we did not find
enough research tools that used the hybrid testing techniques
for building a testing tool for MPI-related programs covering
wide range of errors. However, MPI collective communica-
tion has been validated by using a two-phase analysis for
detecting collective patterns in anMPI program that can cause
deadlock [25]. Also, for detecting errors in the MPI/OpenMP
dual programming model, two hybrid testing tools have been
used, including PARCOACH [25] and [26] for detecting
deadlocks and other runtime errors.

In our study, we noticed that some tools consid-
ered as debugging tools, not testing tools, including
AutomaDeD [27], ALLINEA DDT [28], TotalView [29],
PDT [21] and MPVisualizer [30]. We have noticed that these
five debuggers do not help to test or detect errors, but instead
are used for finding the causes of the errors.

In our literature review [31], we note that dynamic testing
techniques have been used for testing the majority of MPI
programs. The dynamic testing techniques detect errors by
analyzing the source code during runtime, which will cause
overheads, and this will affect the program’s performance,
especially when targeting massive parallel applications gen-
erating thousands or millions of threads. Also, dynamic test-
ing needs some insertion mechanisms to perform the testing
and get better results, which also comes with its own cost.
On the other hand, only one testing tool that used the static
testing has less execution and size overheads, but does not
detect all errors. Finally, in this version of our testing tool
ACC_TEST, we decided to use hybrid testing techniques by
combining both static and dynamic testing techniques to gain
the benefit of each and reduce the cost. Also, we decided to
cover errors from each type of MPI communications because
the previously mentioned testing tools did not cover some
errors or only focused on race condition and deadlocks.

IV. OUR TECHNIQUES FOR TESTING MPI-BASED
PROGRAMS
In this section, we will explain our techniques for detecting
some errors related to MPI applications. As we discussed
earlier, there are many testing tools related to MPI; therefore,
we only focus on detecting some errors that occur in MPI
programs, which include GPU-related programming models.
On the MPI side, we tried to minimize the overhead and the
slowdown that can occur during dynamic testing, as we will
explain later. We will cover some errors from each type of
MPI communication, including point-to-point and collective
communications.

In terms of MPI point-to-point, we cover two different
cases: blocking and non-blocking point-to-point communica-
tions. In the blocking type, our hybrid testing technique will

examine the targeted source code by analyzing the code, col-
lecting the related information to MPI_Send, MPI_Recv, and
MPI_Sendrecv for detecting any actual or potential errors.
In addition, in the non-blocking type, ACC_TEST will deal
with MPI_Isend and MPI_Irecv by collecting their related
information and analyze their behavior to detect any errors.
In the following, we will explain how ACC_TEST detects an
MPI-related program and classify them into three sections:

A. POINT-TO-POINT BLOCKING COMMUNICATION
DETECTION
ACC_TEST will be responsible for detecting any point-
to-point blocking communication, including MPI_Send,
MPI_Recv, and MPI_Sendrecv. We chose the previous three
MPI directives because of their popularity, and they are the
most-used MPI blocking calls in several related programs.
In ACC_TEST, we focus on the effects of OpenACC and
MPI directives for each other and what types of error could
be caused by this interaction.

Our static analysis will analyze the source code to find
any MPI-related calls and determine their place in the source
code, what type of MPI calls they are, and what arguments
they have including source, destination, data type, communi-
cator, and rank, as well as their relationship to the OpenACC
regions. Our static analysis also will lexically analyze the
MPI calls, as well as parsing them to ensure they are fol-
lowing the MPI call rules. Our static analysis will start by
determining eachMPI send-and-receive and their locations in
the source code, storing their information in a data structure
and also ascertaining to which MPI rank they belong for
determining the message direction. Our static analysis will
create several tables for storing the related send-and-receive
calls based on their type and storing their related informa-
tion, including the rank and type, communicator, tag, and
line number. Then we compare this information in the static
phase, searching for any missing potential for race condition
or deadlock as well as mismatching. In addition, our static
analysis will check for any illegal MPI calls before MPI_Init
and after MPI_Finalize. Race conditions caused by reading
and writing to the same MPI buffer can be detected by our
static tool. Also, in the same rank, if there is MPI_Send and
MPI_Rev, the MPI_Recv should precede the MPI_Send; if
not, our static testing will detect that and issue a warning
message to the programmer.

Additionally, ACC_TEST will determine the
MPI_Send/MPI_Recv pair, which will be used to detect
any differences between the numbers of send-and-receives.
This pairing will also examine the message tag to detect
any unmatched message pairing. Our static analysis will
check any message leaks (messages that were sent but never
received) or inconsistent types on the sender and receiver for
the same message.

In the case of having more senders than receivers, which is
considered a lack of resources that can also lead to a potential
race condition, which will be detected by our dynamic tester
to know the exact error. On the other hand, when the number

91490 VOLUME 8, 2020



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

of receivers is more than the number of senders, this will
lead to potential deadlock because they will be waiting for
a message without receiving it; this will also be annotated for
further testing in our dynamic phase.

In addition, our static analysis has the ability to detect any
mismatching in data types and message sizes. Our static ana-
lyzer will also analyze the relationship between OpenACC
and MPI directives to determine the mismatch in the data
movement between the OpenACC and MPI directives. This
will detect the data type mismatching not only between the
MPI_Send and MPI_Recv calls, but also in the code; for
example, if the programmer defines a variable as an INT in his
code and passes this variable in an MPI call as MPI_CHAR,
ACC_TEST will detect this error.

In terms of race condition detection, our static analysis will
detect any case of several messages being sent to the same
destination with the same tag number, which can cause a race
condition.

In terms of deadlock detection, our static phase has the abil-
ity to detect actual and potential deadlock based on our static
analysis of the targeted source code. One of the potential
error situations is using the wildcard receive. Additionally,
our static analysis will detect any wildcard receive with any
source or any tag and examine them to avoid any potential
deadlock or race condition and annotate them to be detected
in our dynamic phase.

Another case of point-to-point blocking communication is
the MPI_Sendrecv calls, which will be examined and ana-
lyzed like the previousMPI_Send andMPI_Recv calls. Addi-
tionally, the error detection will be as described in previous
MPI calls because they show the same behavior but with a
different structure.

In our dynamic phase, deadlock and race condition will
be detected using the annotation of our static phase and
insertion of the appropriate statements for detecting the actual
error during runtime. ACC_TEST tests only the connections
that have potential errors as determined by our static testing
analysis, which saves time and enhances testing performance
by testing only the part that needs to be tested and minimizing
overhead and slowdown from dynamic testing.

For detecting deadlock in point-to-point blocking commu-
nication, ACC_TEST will reference the marked MPI_Recv
that has potential errors as determined by our static
analysis. Then, our insertion mechanism will replace the
MPI_RecvwithMPI_Irecv and define newMPI_Request and
MPI_Status for testing purposes. A timer will be set for a
specific time, determined by calculating the average of the
required times. Finally, we test the MPI_Irecv by using the
ACC_TEST to see if the connection is completed or not,
and if it is completed, determine whether there is matching
between the source and the tag of this connection. However,
if the connection is not received, this indicates that this con-
nection has deadlock, and if it uses the MPI_Recv, the pro-
gram will freeze. In Figure 3, ACC_TEST inserts several
statements for detecting deadlock in point-to-point blocking
communication for testing MPI_Send and MPI_Recv.

FIGURE 3. Insert test code for testing deadlock in point-to-point blocking
communication (MPI_Send/MPI_Recv).

FIGURE 4. Insert test code for testing race condition in point-to-point
blocking communication (MPI_Send/MPI_Recv).

In the case of race condition detection, when all calls
arrive ACC_TESTwill compare the actual message exchange
with the information from our static analysis for detecting
any potential race condition, as shown in the insert test
code in Figure 4. ACC_TEST will insert the values from
our static testing and compare them to the resulting values
from the actual runtime values by using the following insert
statements:

Similarly, MPI_Sendrecv will be tested by dividing
each MPI_Sendrecv into MPI_Send and MPI_Recv, as we
explained earlier. The following Figure 5 displays the inser-
tion mechanism of the MPI_Sendrecv calls.

Additionally, for testing race condition in point-to-point
blocking communication in (MPI_Sendrecv), ACC_TEST
will also use the same insertion mechanism of the previous
test as shown in Figure 4 by comparing the actual message
exchange information with the information from our static
analysis.

In addition, to distinguish between actual and potential
deadlock in our dynamic tester, we will test our inserted code
multiple times where:

• If all tested cases detect the same error, this indicates
actual deadlock.

• If some cases detect errors and some not, this indicates
potential deadlock, which can be affected by the execu-
tion environment and order.

• If all cases have no error, that indicates this code is
deadlock-free.

VOLUME 8, 2020 91491



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 5. Insert test code for testing deadlock in point-to-point blocking
communication (MPI_Sendrecv).

For example, if we test the same connection 5 times where
if the number of detected errors is 5, this indicates actual
deadlock. If the detected error(s) is 1, 2, 3, or 4 out of 5,
that indicates potential deadlock. Finally, if the number of
detected errors is 0, this indicates deadlock-free. Our dynamic
testing will inform the programmer about the error type, line
number, which rank, and what MPI call has caused this error.

Finally, by using this approach, ACC_TESTminimizes the
overhead from using the dynamic analysis and enhances our
testing performance by decreasing slowdown, as well as test-
ing accuracy, without extra unnecessary testing operations or
inserting codes that actually cause overhead without getting
accurate results.

B. POINT-TO-POINT NON-BLOCKING COMMUNICATION
DETECTION
In this section, we will discuss how our testing techniques
will examine and detect runtime errors related to point-
to-point non-blocking communication, including MPI_Isend
and MPI_Irecv. Similar to the previous point-to-point com-
munication detection, our static approach will also collect
information related to MPI_Isend and MPI_Irecv and store
them for detecting some errors similar to the previous class,
including mismatch and different numbers of senders and
receivers, as well as analyzing the MPI_Isend/MPI_Irecv
pairs.

Unlike the blocking communication, non-blocking com-
munication has an object called request, used to identify a
communications operation and its properties. This feature
needs to be detected by our static phase to avoid any poten-
tial error. Our static analysis will detect request lost, that
if the same request variable is used in different MPI_Isend,
MPI_Irecv in the same rank, this can cause request overwrite
and should be detected before it can cause further errors in
related operations.

In addition, non-blocking communication will cause
potential race condition, especially in the case of operations
needing to be completed before sending or receiving. There-
fore, the MPI_Wait calls need to be used for completing the
non-blocking communication. As a result, our static tool will

investigate the targeted source code and detect any missing
MPI_Wait calls. However, in the case of using MPI_Wait
while the source code has a deadlock, the programwill freeze,
and therefore our static analysis will annotate this situation to
be tested by our dynamic tester. Also, if there is a deadlock
and the MPI_Wait is not used, the program will complete
running with wrong results that cannot be detected by our
static phase and need further dynamic testing.

In terms of detecting errors in our dynamic phase, our test-
ing detects the deadlock in the non-blocking point-to-point
connection (MPI_Isend/MPI_Irecv) by adding MPI_Test
before anyMPI_Wait to avoid any program freeze, because in
this case the deadlock will occur in the MPI_Wait call. Also,
we can detect the race condition if we found Isend and Irecv
without using MPI_Wait or MPI_Test because we cannot
ensure the arrival order of the threads; therefore, any potential
race condition message will be issued to the programmer. The
insertion mechanism of detecting deadlock will be similar
to that used in the point-to-point blocking communication
shown in Figure 3.

Similar to our approach of detecting race condition in
the blocking communication, our dynamic tester of the
non-blocking communication will also compare the actual
message-receiving information with the information from
our static analysis for detecting any potential race condition,
as shown in Figure 4.

C. COLLECTIVE COMMUNICATION DETECTION
The third class of detection that our testing tool can target
is the MPI collective communication, including blocking
and non-blocking, which in our case will be MPI_Bcast
and MPI_Ibcast. Our static phase will be responsible for
collecting the related information needed to test and detect
any runtime errors related to MPI collective communication
codes. Additionally, ACC_TEST will lexically analyze and
parse the targeted source code to ensure the correctness of
the MPI calls, as well as detecting some errors that can be
resolved during our static analysis.

The type-matching conditions for the collective opera-
tions are stricter than the corresponding conditions between
sender and receiver in point-to-point [4]. Therefore, our static
phase will be responsible for detecting any data type and
size mismatching errors, as discussed earlier. The collective
operation order will also be examined in our static phase to
avoid any potential errors resulting from incorrectly ordered
collective operations in the same MPI communicator, such as
the example shown in Figure 6. Finally, our static phase will
detect any potential deadlock that occurs as a result of not
calling the MPI collective operation by all processes in the
MPI communicator.

In our dynamic phase, ACC_TESTwill test theMPI_Bcast
during runtime to avoid any deadlock. Because of the behav-
ior of MPI_Bcast in the case of deadlock, ACC_TEST will
use inserted statements as shown in Figure 7 to test the
data exchange between the broadcasts, even in the case of
deadlock without facing the effect of deadlock, which causes

91492 VOLUME 8, 2020



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 6. Incorrectly ordered collective operations.

FIGURE 7. Insert test code for testing collective communication
(MPI_Bcast).

the program to freeze without knowing the actual reasons
behind it.

Our dynamic phase will use the annotation from our static
analysis to replace each blocking broadcast (MPI_Bcast) with
a non-blocking broadcast (MPI_Ibcast) to avoid any block-
ing behavior, and our dynamic testing will set a timer for
waiting for the broadcast calls before testing their situations.
Our dynamic testing will then use MPI_Test for each MPI
broadcast call and extract the actual information, including
the broadcast’s source.

V. IMPLEMENATION AND TESTING
Many experiments have been conducted to test and simulate
runtime errors that can occur in MPI, and their behaviour
has been studied to understand them better and discover their
causes and effects on the applications. Also, several experi-
ments have been conducted to test our proposed solution and
ensure ACC_TEST’s ability to detect different types of errors
inMPI, as well as covering errors from different types of MPI
connections. To perform our experiments, we used an Intel(R)
Core(TM) i7-7700HQ CPU (2.80GHz) with 16 GB main
memory, with an NVIDIA GeForce GTX 1050 Mobile GPU,
which has 768 NVIDIA CUDA cores, 4 GB GDDR5 RAM,
and memory speed of 7 Gbps.

More than 40 MPI benchmarks from four different
benchmark suites have been used to evaluate ACC_TEST,
including NAS Parallel Benchmarks [32], OSU Micro-
Benchmarks [33], EPCC [34], and mpiBench [35].
Table 1 shows some statistics from the chosen MPI bench-
marks, including the number of MPI calls and each class of

TABLE 1. MPI statistics from the chosen benchmarks.

communication to include blocking, non-blocking point-to-
point, and collective communications.

In this section, our implementation and testing for testing
MPI-based programs will be explained to show our tool’s
ability to detect some errors related to MPI applications.
We will show examples of some errors from each type of
MPI communication.

A. POINT-TO-POINT BLOCKING COMMUNICATION
DETECTION
Our static analysis will start by determining each MPI send-
and-receive and their locations in the source code. Also,
we store their information in a data structure as shown
in Figure 8, and we also determine to which MPI rank they
belong for determining the message direction. Our static
analysis will create several tables for storing the related send-
and-receive calls based on their type, storing their related
information such as rank and type, communicator, tag, and
line number. Then we compare this information to the static
phase, searching for any missing or potential for race condi-
tion or deadlock as well as mismatching.

ACC_TESTwill determine theMPI_Send/MPI_Recv pair,
whichwill be used to detect any differences between the num-
bers of send-and-receives, as shown in Figure 9. This pairing
will also examine the message tag to detect any unmatched
message pairing. Our static analysis will check any message
leaks (sending message without receive) or inconsistent types
on the sender and receiver for the same message.

In the case of having more senders than receivers, which
is considered as a lack of resources as shown in Figure 10,
this can also lead to a potential race condition that will
be detected by our dynamic tester to know the exact error.
On the other hand, when the number of receivers is more than

VOLUME 8, 2020 91493



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 8. Information from MPI_Send and MPI_recv-Related
information.

FIGURE 9. Error message in the case of different numbers of MPI_Send
and MPI_Recv.

FIGURE 10. Leak of resource error caused by having sender without
receiver.

the number of senders, this will lead to potential deadlock
because they will be processes waiting to receive a message
without receiving it; this will be annotated for further testing
in our dynamic phase.

In addition, our static analysis will detect any mismatching
in data types and message sizes, as shown in Figure 11.
Additionally, our static analyzer will examine the relationship
between OpenACC and MPI directives to determine the mis-
match between the data movement between the OpenACC
and MPI directives, not only between the MPI_Send and
MPI_Recv calls, but also in the code; for example the pro-
grammer defines a variable as an INT in his code and passes
this variable in an MPI call, as MPI_CHAR ACC_TEST will
detect this error.

FIGURE 11. Unmatched errors detected by our static analysis.

FIGURE 12. Potential race condition detected by our static tester.

In addition, our static analysis will detect any mismatching
in data types and message sizes, as shown in Figure 11.
Additionally, our static analyzer will examine the relationship
between OpenACC and MPI directives to determine the mis-
match between the data movement between the OpenACC
and MPI directives, not only between the MPI_Send and
MPI_Recv calls, but also in the code; for example the pro-
grammer defines a variable as an INT in his code and passes
this variable in an MPI call, as MPI_CHAR ACC_TEST will
detect this error.

In terms of race condition detection, our static analysis
will detect any case of several messages sent to the same
destination with the same tag number, which can cause a
race condition. Figure 12 shows an error message indicating
potential race condition, and further detection by our dynamic
phase is needed.

In terms of deadlock detection, our static phase detects
actual and potential deadlock based on our static analysis of
the targeted source code. One potential error situation is using
the wildcard receive. Our static analysis will also detect any
wildcard receive with any source or any tag and examine them
to avoid any potential deadlock or race condition and annotate
them to be detected by our dynamic phase. Figure 13 shows
error messages related to deadlock detection in our static
phase.

Figure 14 also shows a potential deadlock due to wildcard
receives that need further investigation by our dynamic tester
to determine the exact error type, including deadlock or race
condition based on the execution environment and the source
code analysis. Another case of potential deadlock can be
caused by data exchange between two processes, which can

91494 VOLUME 8, 2020



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 13. Actual deadlock due to receiving without match sender.

FIGURE 14. Potential deadlock because of the wildcard receive.

FIGURE 15. Data exchange leads to potential deadlock.

FIGURE 16. MPI_Sendrecv information from Our static analysis.

be detected by our static analysis in Figure 15, and this error
will be annotated to be tested by our dynamic tester.

Another case of point-to-point blocking communication
is the MPI_Sendrecv calls, which will be examined and
analyzed just like the previous MPI_Send and MPI_Recv
calls. Figure 16 displays the information collection for the
MPI_Sendrecv calls. The error detection will be conducted
as described in the previous MPI calls because they display
the same behavior but with different structures. An example
of detected error in MPI_Sendrecv is shown in Figure 17.

This is for detecting deadlock in point-to-point blocking
communication, as we explained previously. Figure 18 shows

FIGURE 17. MPI_Sendrecv unmatched errors.

FIGURE 18. Instrumented inserted test code for testing point-to-point
blocking communication.

FIGURE 19. Deadlock detected by our dynamic tester.

FIGURE 20. The actual information of the received message from our
dynamic tester.

the instrumented inserted code used for testing the dead-
lock in the point-to-point blocking communications for each
MPI_Recv, and Figure 19 displays the related error message.

In the case of race condition detection, when all calls arrive,
ACC_TEST will compare the actual message exchange with
the information from our static analysis to detect any potential
race condition. Figure 20 shows the actual information from
the dynamic tester and the process of comparing them with
the static analyzer information, which will be shown in our

VOLUME 8, 2020 91495



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 21. Race condition detected by our dynamic tester.

FIGURE 22. Instrumented inserted code for testing deadlock
MPI_Sendrecv.

historical log file. In case of an error, the error message will
be displayed in the dynamic error file, as shown in Figure 21.

Similarly, MPI_Sendrecv will be tested by dividing each
MPI_Sendrecv into MPI_Send and MPI_Recv, and test them
as we explained earlier. Figure 22 shows the instrumented
inserted test code to be used by our dynamic tester.

B. POINT-TO-POINT NON-BLOCKING COMMUNICATION
DETECTION
In this section, we will discuss how our testing tool will
examine and detect runtime errors related to point-to-
point non-blocking communication, including MPI_Isend
and MPI_Irecv. Figure 23 shows the collective data from
our static analysis for non-blocking communication, and
Figure 24 shows the mismatching error message from our
static tester for non-blocking communication. Figure 25 dis-
plays a lack of resources by having a sender without a
receiver. Finally, the wildcard receive will be tested as the
previous detection technique in the blocking communication.

Unlike blocking communication, non-blocking communi-
cation has an object called request, which is used to identify
a communication operation and its properties. This feature
must be detected by our static phase to avoid any potential
error. Our static analysis will detect request lost, that is,
if the same request variable is used in different MPI_Isend,
MPI_Irecv in the same rank, this can cause request overwrite
and should be detected before it can cause further error
when it needs to be used for related operations, as displayed
in Figure 26.

Also, non-blocking communication will cause a potential
race condition, especially in the case of operations to be

FIGURE 23. Collected information related to non-Blocking sends and
receives.

FIGURE 24. Mismatching error message in non-blocking communication.

FIGURE 25. Leak of resources in non-blocking communication.

FIGURE 26. Request lost potential error.

FIGURE 27. Deadlock detected in non-Blocking communication.

completed before sending or receiving. Therefore, the
MPI_Wait calls needed to be used for completing the
non-blocking communication. Figure 27 shows deadlock
detection by our static testing and indicates not having
MPI_Wait call.

In terms of detecting errors in our dynamic phase, our
dynamic testing detects the deadlock in the non-blocking
point-to-point connection (MPI_Isend/MPI_Irecv) by adding
MPI_Test before any MPI_Wait to avoid any program freeze

91496 VOLUME 8, 2020



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 28. Instrumented inserted test code for detecting errors in
non-blocking communication.

FIGURE 29. MPI collective communication information collected from our
static analysis.

because in this case, deadlock will occur in the MPI_Wait
call. We can also detect the race condition if we found Isend
and Irecv without using MPI_Wait or MPI_Test because
we cannot ensure the arrival order of the threads; therefore,
any potential race condition message will be issued to the
programmer. The insertion mechanism of detecting deadlock
will be similar to that used in the point-to-point blocking com-
munication shown in Figure 3. Figure 28 shows the instru-
mented inserted code in the case of having two MPI_Irecv.

Similar to our approach to detecting a race condition in
the blocking communication, our dynamic tester of the non-
blocking communication will also compare the actual mes-
sage receiving information to that from our static analysis for
detecting any potential race condition, as shown in Figure 4.

C. COLLECTIVE COMMUNICATION DETECTION
Our static phase will be responsible for collecting informa-
tion needed to test and detect any runtime errors related to
MPI collective communication codes, as shown in Figure 29.
ACC_TEST will also lexically analyze and parse the targeted
source code to ensure the correctness of theMPI calls, as well
as detecting errors that can be resolved during our static
analysis.

FIGURE 30. Potential deadlock in MPI collective communication.

TABLE 2. Our hybrid testing tool error coverage for MPI.

Finally, our static phase will detect any potential deadlock
that occurs as a result of not calling the MPI collective
operation by all processes in the MPI communicator; an
example of the error message for detecting this error is shown
in Figure 30.

As we explained in Section 4, our dynamic phase will
use the annotation from our static analysis to replace each
blocking broadcast (MPI_Bcast) with a no-blocking broad-
cast (MPI_Ibcast). Figure 31 demonstrates an example of
the instrumented inserted test code for detecting errors in
the MPI collective communications, and Figure 32 shows an
MPI collective communication deadlock error detected in our
dynamic phase.

VI. DISSCUSSION AND EVALUATION
Table 2 demonstrates our hybrid testing tool’s ability to detect
MPI errors based on their types, similar to the approach
used to evaluate ACC_TEST’s ability to detect OpenACC
errors. We noticed in Table 2 that ACC_TEST tried to detect
errors by our static approach as much as possible to decrease
overhead from the dynamic testing approach and therefore
enhanced our testing performance. However, race condition
and deadlock are partially detected by our static testing

VOLUME 8, 2020 91497



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

FIGURE 31. Instrumented inserted statements for detecting MPI
collective communication errors.

FIGURE 32. Deadlock Detected in our dynamic phase.

FIGURE 33. MPI program size overhead (by number of lines).

approach and need further investigation by our dynamic test-
ing approach due to their behavior, and they were affected by
the execution environment and sequence. As a result, these
errors were detected using our hybrid testing approach.

Figure 33 shows the size overhead that resulted from the
insertion mechanism for executing the dynamic testing to
detect runtime errors that cannot be detected by the static
approach by using Equation 1, as shown at the bottom of this
page, which measures size overhead.

Also, Figure 35 shows the testing time needed to conduct
the static testing approach on the MPI-related program with
our hybrid-testing tool. The average overhead in the number
of lines added is 22%, and 29% size overhead in bytes,
and the average testing time for the MPI-related program
is 17 milliseconds.

FIGURE 34. MPI program size overhead (by bytes).

FIGURE 35. Testing time for MPI related program in milliseconds.

Aswe noticed in the previous Figures 33 and 34, the bench-
mark PingPong has the largest overhead at 48%; that is
because it has the largest number ofMPI point-to-point block-
ing calls to be tested by our dynamic approach. Based on
our results, the range of overheads size varies based on the
behavior of the insertion statements.

ACC_TEST minimizes the size overhead when testing
MPI-related programs because we only add the insertion
statements when needed and only on the MPI receiver side.
We avoid adding unnecessary messaging (communications)
to test the connection between senders and receivers to
detect deadlock, unlike the research that suggested adding
(MPI_Isend) before any send and (MPI_Irecv) before any
receive [36]. Even if the connection seems to be deadlock-
free after testing, the connection for any reason (non-
programmatic fault) can cause the message not to arrive,
which means the detected message itself has not been tested.
MPI_Isend and MPI_Irecv can also cause deadlock or a race
condition if there is any error or if the MPI_Wait has not been
used, while using them in the insertion mechanism. There-
fore, we choose to test the arrival of the detected message

Size Overhead =
Size with inserted test code−Size without inserted test code

Size without inserted test code
(1)

91498 VOLUME 8, 2020



A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

without adding overhead or sending unnecessary messages,
which will affect system performance and testing time.

VII. CONCLUSIONS AND FUTURE WORK
Despite the fact that there are many testing tools that target
MPI, there is still much work to be done, primarily for cov-
ering more errors as well as reducing the execution and size
overheads resulting from dynamic testing techniques.

Our testing tool ACC_TEST has used hybrid testing tech-
niques combining both static and dynamic techniques for
detecting errors at lower cost and overheads. ACC_TEST can
cover errors from each type of MPI communication because
the testing tools previously mentioned in our related work did
not cover some errors or only focused on race condition and
deadlocks. Finally, ACC_TEST can be integrated for testing
the dual-programming model MPI + X.
In our future work, we will create a hybrid testing tool

for the dual-programming model MPI + OpenACC. Our
new version of ACC_TEST will have the ability to detect
run-time errors when using the hybrid programming model
in a heterogeneous architecture.

ACKNOWLEDGMENT
This project was funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah, under
grant No. (RG-9-611-40). The authors, therefore, gratefully
acknowledge the DSR technical and financial support.

REFERENCES
[1] A.M.Alghamdi and F. E. Eassa, ‘‘OpenACC errors classification and static

detection techniques,’’ IEEE Access, vol. 7, pp. 113235–113253, 2019,
doi: 10.1109/ACCESS.2019.2935498.

[2] A. M. Alghamdi and F. Elbouraey, ‘‘A parallel hybrid-testing
tool architecture for a dual-programming model,’’ Int. J. Adv.
Comput. Sci. Appl., vol. 10, no. 4, pp. 394–400, 2019, doi: 10.
14569/IJACSA.2019.0100448.

[3] A. M. Alghamdi and F. E. Eassa, ‘‘Parallel hybrid testing tool for appli-
cations developed by using MPI + OpenACC dual-programming model,’’
Adv. Sci., Technol. Eng. Syst. J., vol. 4, no. 2, pp. 203–210, 2019, doi:
10.25046/aj040227.

[4] Message Passing Interface Forum. (2017). MPI Forum. [Online]. Avail-
able: http://mpi-forum.org/docs/

[5] The Open MPI Organization. (2018). Open MPI: Open Source High Per-
formance Computing. [Online]. Available: https://www.open-mpi.org/

[6] MPICH Organization. (2018). MPICH. [Online]. Available: http://www.
mpich.org/

[7] IBM Systems. (2018). IBM Spectrum MPI. [Online]. Available: https://
www.ibm.com/us-en/marketplace/spectrum-mpi

[8] Intel Developer Zone. (2018). Intel MPI Library. [Online]. Available:
https://software.intel.com/en-us/intel-mpi-library

[9] A. Droste, M. Kuhn, and T. Ludwig, ‘‘MPI-checker: Static analysis for
MPI,’’ in Proc. 2nd Workshop LLVM Compiler Infrastruct. HPC LLVM,
2015, pp. 1–10, doi: 10.1145/2833157.2833159.

[10] MUST:MPI Runtime Error Detection Tool, RWTHAachen Univ., Aachen,
Germany, 2018.

[11] T. Hilbrich, M. Schulz, B. R. de Supinski, and M. S. Müller, ‘‘MUST:
A scalable approach to runtime error detection in MPI programs,’’ in
Tools for High Performance Computing. Berlin, Germany: Springer, 2010,
pp. 53–66.

[12] J. DeSouza, B. Kuhn, and B. R. de Supinski, ‘‘Automated, scalable debug-
ging of MPI programs with Intel message checker,’’ in Proc. 2nd Int.
Workshop Softw. Eng. High Perform. Comput. Syst. Appl. SE-HPCS, 2005,
pp. 901–908.

[13] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller,
and M. Schulz, ‘‘Stack trace analysis for large scale debugging,’’ in Proc.
IEEE Int. Parallel Distrib. Process. Symp., Mar. 2007, pp. 1–10, doi:
10.1109/IPDPS.2007.370254.

[14] R. Kowalewski andK. Fürlinger, ‘‘Nasty-MPI: Debugging synchronization
errors in MPI-3 one-sided applications,’’ in Proc. Eur. Conf. Parallel
Process. Euro-Par, 2016, pp. 51–62, doi: 10.1007/978-3-319-43659-3_4.

[15] T. Hilbrich, M. S. Müller, and B. Krammer, ‘‘MPI correctness checking
for OpenMP/MPI applications,’’ Int. J. Parallel Program., vol. 37, no. 3,
pp. 277–291, Jun. 2009, doi: 10.1007/s10766-009-0099-4.

[16] M. K. Ganai, ‘‘Dynamic livelock analysis of multi-threaded programs,’’ in
Runtime Verification. San Diego, CA, USA: IEEE, 2013, pp. 3–18.

[17] A. Humphrey, C. Derrick, G. Gopalakrishnan, and B. Tibbitts, ‘‘GEM:
Graphical explorer of MPI programs,’’ in Proc. 39th Int. Conf. Par-
allel Process. Workshops, Sep. 2010, pp. 161–168. [Online]. Available:
http://ieeexplore.ieee.org/document/5599207/

[18] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou, ‘‘MPI-
CHECK: A tool for checking fortran 90 MPI programs,’’ Concurrency
Comput., Pract. Exper., vol. 15, no. 2, pp. 93–100, 2003.

[19] D. Kranzlmueller, C. Schaubschlaeger, and J. Volkert, ‘‘A brief overview
of the MAD debugging activities,’’ in Proc. 4th Int. Workshop Automated
Debugging (AADEBUG), 2000, pp. 234–299.

[20] A.-T. Do-Mai, T.-D. Diep, and N. Thoai, ‘‘Race condition and deadlock
detection for large-scale applications,’’ in Proc. 15th Int. Symp. Par-
allel Distrib. Comput. (ISPDC), Jul. 2016, pp. 319–326, doi: 10.1109/
ISPDC.2016.53.

[21] C. Clemencon, J. Fritscher, and R. Ruhl, ‘‘Visualization, execution control
and replay of massively parallel programs within annai’s debugging tool,’’
in Proc. High-Perform. Comput. Symp. (HPCS), 1995, pp. 393–404.

[22] M.-Y. Park, S. J. Shim, Y.-K. Jun, and H.-R. Park, ‘‘MPIRace-check:
Detection of message races in MPI programs,’’ in Proc. Int. Conf. Grid
Pervasive Comput. GPC, 2007, pp. 322–333, doi: 10.1007/978-3-540-
72360-8_28.

[23] V. Forejt, S. Joshi, D. Kroening, G. Narayanaswamy, and S. Sharma,
‘‘Precise predictive analysis for discovering communication deadlocks in
MPI programs,’’ACMTrans. Program. Lang. Syst., vol. 39, no. 4, pp. 1–27,
Sep. 2017, doi: 10.1145/3095075.

[24] G. Gopalakrishnan, R. M. Kirby, S. Vakkalanka, A. Vo, and Y. Yang,
‘‘ISP (in-situ partial order): A dynamic verifier for MPI programs,’’ Ph.D.
dissertation, School Comput. Univ. Utah, Salt Lake, Utah, 2009. [Online].
Available: http://formalverification.cs.utah.edu/ISP-release/

[25] E. Saillard, P. Carribault, and D. Barthou, ‘‘PARCOACH: Combining static
and dynamic validation of MPI collective communications,’’ Int. J. High
Perform. Comput. Appl., vol. 28, no. 4, pp. 425–434, Nov. 2014, doi:
10.1177/1094342014552204.

[26] H. Ma, L. Wang, and K. Krishnamoorthy, ‘‘Detecting thread-safety viola-
tions in hybrid OpenMP/MPI programs,’’ in Proc. IEEE Int. Conf. Cluster
Comput., Sep. 2015, pp. 460–463, doi: 10.1109/CLUSTER.2015.70.

[27] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn,
and M. Schulz, ‘‘AutomaDeD: Automata-based debugging for dissimilar
parallel tasks,’’ in Proc. IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2010, pp. 231–240.

[28] Allinea Software Ltd. (2018). ALLINEA DDT. ARMHPC Tools. [Online].
Available: https://www.arm.com/products/development-tools/hpc-tools/
cross-platform/forge/ddt

[29] RWS Inc. (2018). TotalView for HPC. [Online]. Available: https://www.
roguewave.com/products-services/totalview

[30] A. P. Claudio, J. D. Cunha, and M. B. Carmo, ‘‘Monitoring and debugging
message passing applications with MPVisualizer,’’ in Proc. 8th Euromicro
Workshop Parallel Distrib. Process., Jan. 2000, pp. 376–382, doi: 10.
1109/EMPDP.2000.823433.

[31] A. M. Alghamdi and F. E. Eassa, ‘‘Software testing techniques for parallel
systems: A survey,’’ Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 4,
pp. 176–186, 2019.

[32] NAS Parallel Benchmarks Team. (2018). NAS Parallel Benchmarks
Version 3.4. [Online]. Available: https://www.nas.nasa.gov/publications/
npb.html

[33] Network-Based Computing Laboratory. (2019). OSU Microbenchmarks.
The Ohio State University, Columbus, OH, USA. [Online]. Available:
http://mvapich.cse.ohio-state.edu/benchmarks/

[34] J. M. Bull, J. Enright, X. Guo, C. Maynard, and F. Reid, ‘‘Performance
evaluation ofmixed-modeOpenMP/MPI implementations,’’ Int. J. Parallel
Program., vol. 38, nos. 5–6, pp. 396–417, Oct. 2010.

VOLUME 8, 2020 91499

http://dx.doi.org/10.1109/ACCESS.2019.2935498
http://dx.doi.org/10.14569/IJACSA.2019.0100448
http://dx.doi.org/10.14569/IJACSA.2019.0100448
http://dx.doi.org/10.25046/aj040227
http://dx.doi.org/10.1145/2833157.2833159
http://dx.doi.org/10.1109/IPDPS.2007.370254
http://dx.doi.org/10.1007/978-3-319-43659-3_4
http://dx.doi.org/10.1007/s10766-009-0099-4
http://dx.doi.org/10.1109/ISPDC.2016.53
http://dx.doi.org/10.1109/ISPDC.2016.53
http://dx.doi.org/10.1007/978-3-540-72360-8_28
http://dx.doi.org/10.1007/978-3-540-72360-8_28
http://dx.doi.org/10.1145/3095075
http://dx.doi.org/10.1177/1094342014552204
http://dx.doi.org/10.1109/CLUSTER.2015.70
http://dx.doi.org/10.1109/EMPDP.2000.823433
http://dx.doi.org/10.1109/EMPDP.2000.823433


A. S. A. Alghamdi et al.: ACC_TEST: Hybrid Testing Techniques for MPI-Based Programs

[35] D. Grove and P. Coddington, ‘‘Precise MPI performance measurement
using MPIBench,’’ in Proc. HPC Asia, 2001, pp. 24–28.

[36] G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva, ‘‘Deadlock
detection in MPI programs,’’ Concurr. Comput. Pract. Express, vol. 14,
no. 11, pp. 911–932, Aug. 2002, doi: 10.1002/cpe.701.

ABDULLAH S. ALMALAISE ALGHAMDI
received the B.Sc. degree in computer science
from the University of SouthernMississippi, USA,
in 1990, the M.Sc. degree in management infor-
mation systems from the University of Illinois
at Springfield, IL, USA, in 1992, and the
Ph.D. degree in computer science from George
Washington University, USA, in 2003. He is cur-
rently a Full Professor with the Information Sys-
temsDepartment, Faculty of Computing and Infor-

mation Technology, King Abdulaziz University, Saudi Arabia. His research
interests include collaborative software, distributed systems, conflict mea-
surements, workflow, information systems, and artificial intelligence.

AHMED MOHAMMED ALGHAMDI received
the B.Sc. degree in computer science and the
first M.Sc. degree in business administration from
King Abdulaziz University, Jeddah, Saudi Arabia,
in 2005 and 2010, respectively, the secondmaster’s
degree in internet computing and network security
fromLoughboroughUniversity, U.K., in 2013, and
the Ph.D. degree in computer science from King
Abdulaziz University. He is an Assistant Profes-
sor with the Department of Software Engineering,

College of Computer Science and Engineering, University of Jeddah, Saudi
Arabia. He has also over 11 years of working experience before attend-
ing the academic carrier. His research interests include high-performance
computing, big data, distributed systems, programming models, software
engineering, and software testing.

FATHY ELBOURAEY EASSA received the B.Sc.
degree in electronics and electrical communication
engineering fromCairo University, Egypt, in 1978,
and the M.Sc. and Ph.D. degrees in computers
and systems engineering from Al-Azhar Univer-
sity, Cairo, Egypt, in 1984 and 1989, respec-
tively, with joint supervision with the University of
Colorado, USA, in 1989. He is currently a Full
Professor with the Computer Science Department,
Faculty of Computing and Information Technol-

ogy, King Abdulaziz University, Saudi Arabia. His research interests include
agent-based software engineering, cloud computing, software engineering,
big data, distributed systems, and exascale system testing.

MAHER ALI KHEMAKHEM received the B.Sc.
degree in physics from the University of Tunis,
Tunisia, in 1982, and the M.Sc. degree in digital
electronics and computer science and the Ph.D.
degree in digital electronics and computer science
from the University of Paris 11, Orsay, France,
in 1984 and 1987, respectively, and the Habilita-
tion Accreditation (HDR) degree in computer sci-
ence from the University of Sfax, Tunisia, in 2008.
He is currently a Full Professor with the Computer

Science Department, Faculty of Computing and Information technology,
King Abdulaziz University, Saudi Arabia. His research interests include
distributed systems, performance analysis, network security, and pattern
recognition.

91500 VOLUME 8, 2020

http://dx.doi.org/10.1002/cpe.701

	INTRODUCTION
	MPI PROGRAMMING MODEL
	RELATED WORK
	OUR TECHNIQUES FOR TESTING MPI-BASED PROGRAMS
	POINT-TO-POINT BLOCKING COMMUNICATION DETECTION
	POINT-TO-POINT NON-BLOCKING COMMUNICATION DETECTION
	COLLECTIVE COMMUNICATION DETECTION

	IMPLEMENATION AND TESTING
	POINT-TO-POINT BLOCKING COMMUNICATION DETECTION
	POINT-TO-POINT NON-BLOCKING COMMUNICATION DETECTION
	COLLECTIVE COMMUNICATION DETECTION

	DISSCUSSION AND EVALUATION
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	ABDULLAH S. ALMALAISE ALGHAMDI
	AHMED MOHAMMED ALGHAMDI
	FATHY ELBOURAEY EASSA
	MAHER ALI KHEMAKHEM


