
Received April 12, 2020, accepted April 30, 2020, date of publication May 12, 2020, date of current version May 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994029

Identification of Air-Fuel Ratio for a High-
Temperature and High-Speed Heat-Airflow
Test System Based on Support Vector Machine
CHAOZHI CAI , LUBIN GUO, AND YUMIN YANG
School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China

Corresponding author: Chaozhi Cai (caichaozhi1983@163.com).

This work was supported in part by the Nature Science Foundation of Hebei Province under Grant E2017402037 and Grant E2020402060,
and in part by the Science and Technology Research Project of Hebei Province under Grant ZD2018012.

ABSTRACT Air-fuel ratio is an important parameter in high-temperature and high-speed heat-airflow test
system. If air-fuel ratio of the system is too low, the fuel cannot be fully burned, which will not only reduce
the control performance of the gas temperature, but also increase the pollutant emissions of the combustor.
In order to solve this problem, it is necessary to identify the air-fuel ratio of the system, get the prediction
model of the air-fuel ratio, and adjust the fuel input according to the prediction value of the air-fuel ratio.
In order to realize the accurate identification of the air-fuel ratio of the system, this paper briefly analyses
the mathematical model of the air-fuel ratio in high-temperature and high-speed heat-airflow test system,
and proposes an identification method of the air-fuel ratio based on support vector machine. On the basis
of the experimental data, the air-fuel ratio of the system is identified by using different kernels, i.e. firstly,
the experimental scheme is designed, and the fuel mass flow rate, air mass flow rate, gas temperature and
actual air-fuel ratio of the system are collected under different experimental conditions; then, the collected
data are divided into training datasets and test datasets, and the training datasets are trained by support vector
machine to obtain identification model of the air-fuel ratio; finally, the identification model is validated with
test datasets under different conditions, and the accuracy of the model is obtained. The identification results
show that the support vector machine has good identification performance and can accurately approximate
the actual dynamic process of the air-fuel ratio. The average absolute error of the identification model is less
than 0.05, and the average relative error is less than 0.5% when the test datasets are smaller than the training
datasets.

INDEX TERMS High-temperature, high-speed, combustion system, air-fuel ratio, support vector machine,
system identification.

I. INTRODUCTION
The high-temperature and high-speed heat-airflow test sys-
tem (HHHTS) is a key basic technical equipment in the field
of aerospace. It can not only be used in the test and research
of thermal components in thermal machinery, high-speed
aircraft and aero engine, but also can be used in the static
and dynamic thermal calibration of high temperature sen-
sors in aero engine development. It involves basic theories
and key technologies such as fluid fuel delivery and con-
trol, combustion and temperature control. Its performance
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level not only directly restricts the development level of
national key aero engine, but also affects the reliability of
static and dynamic calibration of high-temperature sensors
and the safety of high-speed aircraft [1], [2]. The control
performance of the gas temperature is an important index
to measure the performance level of the HHHTS. However,
in actual gas temperature control, especially in low speed
and high temperature conditions, fuel combustion is often
inadequate due to the decrease of air-fuel ratio, which will not
only affect the control performance of the gas temperature,
but also increase the pollution of the combustor. Emissions
of pollutants are not conducive to energy conservation and
emission reduction, this is the so-called fuel-rich combustion
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phenomenon. In order to solve this problem, it is necessary
to identify the air-fuel ratio of the system, get the prediction
model of the air-fuel ratio, and then adjust the fuel input
according to the predicted value of the air-fuel ratio, so as to
avoid the phenomenon of the fuel-rich combustion, improve
the control performance of the gas temperature, and achieve
the purpose of energy saving and emission reduction.

Air-fuel ratio is an important index affecting the emission,
power and economy of the engine [3]–[5]. The accurate math-
ematical model of the air-fuel ratio is the basis for the accurate
control of the air-fuel ratio of the engine [6]. In order to obtain
an accurate mathematical model of the engine’s air-fuel
ratio, many scholars have conducted in-depth research.
Aqulto first proposed the average air-fuel ratio model [7].
Cho et al. proposed a multi-point injection air-fuel ratio
model of the engine for control system development [8]. Hen-
dricks et al. proposed a three-state dynamic average air-fuel
ratio model [9]. Although the above mentioned mechanism
models have important significance in the modeling of the
engine’s air-fuel ratio, due to the complexity of the model
itself, the above models have their own limitations, and the
accuracy of the above models will become worse in some
cases. In order to improve the modeling accuracy of the
engine’s air-fuel ratio, many scholars have done a lot of in-
depth research on the identification of the engine’s air-fuel
ratio. In order to establish the air-fuel ratio model of the
gasoline engine under transitional conditions, Hou et al. pro-
posed an identification method for the air-fuel ratio under
transitional conditions based on Elman neural network [10].
Based on the average model of the engine’s air-fuel ratio,
Chen et al. identified the uncertain parameters in the model
by using least square method [11]. In order to establish an
accurate mathematical model of the engine’s air-fuel ratio,
Li et al. proposed a method of structure identification of the
non-linear model [12]. In order to overcome the influence of
non-linear characteristics of the ignition engine on the air-fuel
ratio, Saraswati et al. identified the air-fuel ratio of the igni-
tion engine by using recurren neural network [13]; Shi et al.
established a accurate model of the air-fuel ratio of the igni-
tion engine by using RBF network [14]; In order to overcome
the influence of multi-dimensional non-linearity characteris-
tics on the air-fuel ratio of the gasoline engine, Xu et al. pro-
posed an identification method of the air-fuel ratio based on
opportunistic chaotic support vector machine [15]. In order to
control the air-fuel ratio accurately, Zhai et al. used the neural
network to identify the air-fuel ratio of the ignition engine,
and used the identified air-fuel ratio as the feedback of the
control system, thus constituting the soft sensor of the air-fuel
ratio [16].

From the above literatures, it can be seen that the model
research of the air-fuel ratio mainly focuses on the engine.
So far, there is no report on the research of the air-fuel
ratio model of the HHHTS. Although the study object is
air-fuel ratio, The HHHTS is quite different from the engine
in structure, working principle and function, so its air-fuel
ratio model will also be quite different from the engine’s

FIGURE 1. The structure and principle of the system.

air-fuel ratio model. Therefore, the air-fuel ratio model of
the engine cannot be directly applied to the system. In order
to predict the air-fuel ratio of the HHHTS, an appropriate
identification method must be proposed. At present, the pop-
ular system identification methods mainly include artificial
neural network [17], [18], fuzzy logic [19], [20], genetic
algorithm [21], [22], wavelet analysis [23], [24] and sup-
port vector machine (SVM) [25], [26]. Compared with other
identification methods, SVM not only has the advantages of
simple algorithm, good robustness and strong generalization
ability, but also shows many unique advantages in solving the
problem of limited sample and nonlinear identification [27],
which is more suitable for the air-fuel ratio identification of
the HHHTS. Therefore, this paper introduced SVM to pro-
pose an air-fuel ratio identification method based on SVM.
That is to say, SVM is used to identify the air-fuel ratio of the
system according to the input and output data of the system.

II. MATHEMATICAI MODEL OF THE AIR-FUEL RATIO
A. WORKING PRINCIPLE OF THE SYSTEM
The main structure and composition diagram of the HHHTS
is shown in Fig.1.It can be seen from the figure that the
system consists of a combustor, a diffuser connection section,
a stable section, a contractile section and a test section.
Its working principle is that: firstly, high-speed air flow and
fuel burn in the combustor to generate high temperature and
high speed gas flow; then the high temperature and high
speed gas flow passes through the diffuser connection section,
the stable section and the contractile section to form a stable
and uniform temperature field in the test section; finally, the
specimen is placed in the test section to complete the test and
obtain the test results. In addition to the above core parts,
in order to make the system work properly, it is equipped
with a measurement subsystem, a control subsystem, a fuel
supply subsystem, a cooling subsystem and a gas supply
subsystem, etc.

B. MODEL ANALISYS OF THE AIR-FUEL RATIO
The air-fuel ratio model block diagram of the HHHTS is
shown in Fig. 2. It can be seen from the figure that fuel and
air enter the combustor through the fuel supply channel and
gas supply channel respectively. The actual air-fuel ratio is
equal to the ratio of the air mass flow rate mac to the fuel
mass flow rate mfc entering the combustor, that is, the actual
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FIGURE 2. The air-fuel ratio model block diagram of the HHHTS.

air-fuel ratio can be expressed as follows

AFR =
mac
mfc

(1)

The air supply channel is composed of an air supply sys-
tem, an air regulating valve, an air flowmeter and an air
inlet. The high-speed air generated by the air supply system
enters the combustor of the system after passing through the
control valve, air flowmeter and air inlet. Assuming that the
air velocity in the pipeline is uniform and stable under normal
working conditions, it can be considered that the air mass
flow rate mac enters the combustor is equal to the air mass
flow rate passes through the air flowmeter mat . That is to say
mac = mat .

The fuel supply channel consists of a fuel supply system,
a fuel control valve, a fuel flowmeter and a fuel nozzle.
The fuel produced by the fuel supply system passes through
the fuel regulating valve, fuel flowmeter, and then enters the
combustor of the system through the fuel nozzle. The fuel
mass flow rate mft which enters the fuel nozzle (which can
be measured by the fuel flowmeter) can be divided into two
parts after it is ejected from the nozzle, one part is the fuel
vapor which can directly enter the combustor, the other part
is deposited on the wall in the form of liquid droplets to form
an oil film, and the fuel in the film evaporates continuously,
and the evaporated fuel vapor enters the combustor together
with the previous part of the fuel vapor. This shows that the
actual fuel mass flow rate enters the combustor mfc is not the
same as that passes through the fuel flowmetermft . Therefore,
the actual air-fuel ratio of the system is not equal to the ratio
of the air mass flow rate measured by the air flowmeter to the
fuel mass flow rate measured by the fuel flowmeter.

According to reference [28], the dynamic model of oil film
can be expressed as follows

mfv = mft (1− x) (2)

ṁff =
1
τ
(−mff + mftq) (3)

mfc = mfv + mff (4)

where mfv is the mass flow rate of the fuel vapor; mft is the
mass flow rate of the fuel ejected from nozzle; x is the fuel
deposition coefficient; mff and ṁff are the mass and velocity
of the fuel film evaporation; mfc is the mass flow rate of
the fuel entering the combustor; τ is the time coefficient of
the fuel evaporation; q is the fuel distribution coefficient.
τ and q are non-linear functions of the combustor temper-
ature. Therefore, the mass flow rate of fuel entering the

combustor is a non-linear function of the gas temperature T
and mft . It can be expressed as follows

mfc = f1(mft ,T ) (5)

where f1 is a non-linear function.
According to the equation (1) and (5), the mathematical

model of the air-fuel ratio of the system can be described by
the following non-linear functions

AFR = f2(mat ,mft ,T ) (6)

where f2 is a non-linear function.
Therefore, the actual air-fuel ratio of the system can be

identified by the data of the air mass flow rate, fuel mass
flow rate and gas temperature of the combustor obtained by
sensors.

III. SUPPORT VECTOR REGRESSION
A. BASIC PRINCIPLE OF SVR
Support Vector Machine (SVM) is a classification algorithm
for classical classification problems. Support Vector Regres-
sion (SVR) is the application of the SVM in the field of
functional regression. Assuming that the input and output
sample datasets of the system to be identified are {xi, yi},
where i = 1, · · ·, l, xi ∈ Rn is the input vector of the n-
dimensional system and yi ∈ Rn is the output of the system,
the identification system of SVR is to determine a function f
through data training, satisfying that for any input x, the cor-
responding output y can be found in the range of accuracy.
SVM method uses the non-linear mapping function φ(·) to
map the sample nonlinearly to the high-dimensional fea-
ture space, thus transforming the problem of estimating the
non-linear function into the problem of estimating the linear
function in the high-dimensional feature space. It can be
expressed as

f (x) = ωTφ(x)+ b (7)

The core of the above regression problem is to solve param-
eters ω and b. According to the principle of structural risk
minimization, finding parameters ω and b can be equivalent
to solving the following optimization problem

min
ω,b

J =
1
2
ωT · ω (8)

st

{
yi − ωTφ(xi)− b ≤ ε
ωTφ(xi)+ b− yi ≤ ε

(9)

In order to determine the solution of the above optimization
problem, the slack variables ξi and ξ∗i are introduced, and
then the optimization problem can be transformed into the
following problem

min
ω,b,ξ,ξ∗

J =
1
2
ωT · ω + C

l∑
i=1

(ξi + ξ∗i ) (10)

st


yi − ωTφ(xi)− b ≤ ε + ξi
ωTφ(xi)+ b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(11)
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Through the constraints of equation (11), ω and b in
the objective function can be obtained by minimizing equa-
tion (10). 1

2ω
T
· ω in equation (10) is the regularization part,

which can improve generalization ability, while the latter one
in equation (10) is used to reduce errors, and C (C > 0) is the
penalty coefficient. The optimal solution can be obtained by
the dual form of equation (10). By introducing the Lagrangian
function, it can be obtained

L(ω, b, ξ, ξ∗, α, α∗, η, η∗)

=
1
2
ωT · ω + C

l∑
i=1

(ξi + ξ∗i )

−

l∑
i=1

αi[ε + ξi − yi + (ωTφ(xi)+ b)]

−

l∑
i=1

α∗i [ε + ξ
∗
i + yi − (ωTφ(xi)− b)]

−

l∑
i=1

(ηiξi + η∗i ξ
∗
i ) (12)

where α, α∗, η, η∗ ≥ 0 are Lagrangian multiplier. The form
of dual problem can be obtained by minimizing function L to
ω, b, ξ, ξ∗ and maximizing L to α, α∗, η, η∗, and substitut-
ing kernel function for non-linear mapping, i.e. substituting
K (x, x ′) =< φ(x), φ(x ′) > for φ(·).

max
α,α∗

J = −
1
2

l∑
i,j=1

(αi − α∗i )(αj − α
∗
j )K (xi, xj)

− ε

l∑
i=1

(αi + α∗i )+
l∑
i=1

yi(αi − α∗i ) (13)

st


l∑
i=1

(αi − α∗i ) = 0

αi, α
∗
i ∈ [0,C]

(14)

For linear systems, linear kernel function K (xi, x) =
(xi ·x) is used to the structural parameters of the identification
system; for non-linear systems, polynomial kernel function
and radial basis function (rbf) kernel function are used. It can
be written as

K (xi, x) = (xi · x + d)p (15)

K (xi, x) = exp(−‖x − xi‖2 /σ 2) (16)

To solve the quadratic programming problem, the follow-
ing equation can be obtained

w =
l∑
i=1

(ai − a∗i )φ(xi) (17)

According to the KKT condition, the following results can
be obtained at the optimal solution

ai(ε + ξi − yi +
l∑
i=1

(ai − a∗i )K (xi, x)+ b) = 0

a∗i (ε + ξ
∗
i + yi −

l∑
i=1

(ai − a∗i )K (xi, x)− b) = 0
(18)

{
(C − ai)ξi = 0
(C − a∗i )ξ

∗
i = 0

(19)

From the above results, it can be concluded that when the
sample point is located in the insensitive area, ai = 0 and
a∗i = 0, when the sample point is located outside, ai = 0
or a∗i = 0, and when the sample point is on the boundary,
ξi = 0 and ξ∗i = 0, so ai and a∗i belong to C . Therefore,
the calculation formula of b can be obtained as follows

b = yi −
l∑
i=1

(ai − a∗i )K (xi, x)− ε ai ∈ (0,C)

b = yi −
l∑
i=1

(ai − a∗i )K (xi, x)+ ε a∗i ∈ (0,C)
(20)

The samples corresponding to ai 6= 0 and a∗i 6= 0 are called
support vectors, so the following equation can be obtained

w =
l∑
i=1

(ai − a∗i )φ(xi) =
∑
i∈SVs

(ai − a∗i )φ(xi) (21)

where SVs represents the set of support vectors, so f (x) can
be expressed as

f (x) =
∑
i∈SVs

(ai − a∗i )K (xi, x)+ b (22)

B. PARAMETER IDENTIFICATION PROCESS BASE ON SVM
In order to better understand how SVM realizes parameter
identification, based on the introduction of the basic principle
of the SVM identification in the last section, this paper takes
the air-fuel ratio identification of the HHHTS as an example
to introduce the process of the parameter identification based
on SVM. The process of the parameter identification based
on SVM is as follows.

(1) Determine the parameters that need to be identified and
other parameters that affect the parameters, that is, determine
the input and output parameters of the identified system, and
on this basis, build an experimental system for data collection,
get the input and output sample datasets {xi, yi} of the identi-
fied system, and divide the datasets into training datasets and
test datasets. Firstly, the parameter needed to be identified in
this paper is the air-fuel ratio of the HHHTS. In addition, from
Section II.B, it can be seen that the air-fuel ratio is a non-linear
function of the air mass flow rate mat , fuel mass flow rate mft
and gas temperature T in the combustor. Therefore, mat , mft
and T are the input parameters of the systemwhen identifying
the air-fuel ratio, and their sample data can form the input
datasets {xi}; The air-fuel ratio is the output parameter of the
system, and its sample data can form the output datasets {yi}.
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FIGURE 3. Experimental setups.

(2) The training datasets are used to train the identifi-
cation model and get the model of the identified system.
Firstly, select the appropriate precision parameter ε, penalty
coefficient C and kernel function K (x, x ′) to solve the dual
optimization problem described in equation (13) and get
parameter a = (a1, a∗1, · · ·al, a

∗
l ); then select a positive com-

ponent of a to calculate the value of b by using equation (20);
finally, according to equation (22), the identification model
of the air-fuel ratio can be obtained.

(3) The test datasets are used to verify the identification
model of the air-fuel ratio obtained in the second step, and
the accuracy of the identification model of the air-fuel ratio
can be obtained. Firstly, determine the evaluation criteria of
the inspection accuracy, such as mean square error, root mean
square error, average absolute error and average relative error;
then, substitute the input data in the test datasets into the
air-fuel ratio identification model to get the identified air-fuel
ratio; finally, compare the actual collected air-fuel ratio with
the identified air-fuel ratio to get the validation accuracy.

IV. IDENTIFICATION OF THE AIR-FUEL RATIO
BASED ON SVM
A. EXPERIMENTAL SETUPS
In order to realize the identification of the air-fuel ratio of
the HHHTS, based on the existing hardware of the fuel
supply subsystem and air supply subsystem, themeasurement
and control system based on the field PLC controller and
remote industrial computer was developed. The experimental
setups are shown in Fig.3. It can be seen from the figure that
the experimental setups consist of the test system body and
the measurement control system. The main body of the test
system provides the basic conditions for the experiment. The
measurement control system is used to realize the automatic
control and measurement of the air mass flow rate, fuel mass
flow rate, gas temperature and actual air-fuel ratio. The fuel
mass flow rate is obtained by the fuel flowmeter, the air mass
flow rate is obtained by the air flowmeter, the gas temperature
is obtained by the thermocouple, and the actual air-fuel ratio
is obtained by Bosch Lsu4.9 oxygen sensor.

TABLE 1. The sample data range of the HHHTS.

B. EXPERIMENTAL SCHEME AND DATA PREPROCESSING
From the analysis of the air-fuel ratio model of the HHHTS
in Section II.B, it can be seen that air-fuel ratio is the non-
linear function of the air mass flow rate mat , fuel mass flow
rate mft and gas temperature T in combustor, so air-fuel ratio
can be identified by obtaining the experimental data of mat ,
mft and T . Because the general work flow of the HHHTS
is: firstly, the air mass flow rate of the system is adjusted
to a fixed value (the Mach number condition of the system
is obtained), and then the gas temperature is controlled by
adjusting the fuel mass flow rate. Therefore, it is necessary to
fix the air mass flow rate on a certain value first, then change
the fuel mass flow rate, and collect mat ,mft , T and the actual
air-fuel ratio at the same time.

The HHHTS has many working conditions, but they are
basically similar, except that the air mass flow rate is different
(namely theMach number of the system is different). In order
to verify the validity of the identification method of the
air-fuel ratio, two kind of experiments were carried out when
the system’s Mach number is equal to 0.2 (mat = 156 g/s).
Experiment 1 is a gas temperature rise test, that is, when
the air mass flow rate is equal to 156 g/s, the fuel mass
flow rate is increased from 6 g/s to 12 g/s at different time
(10s, 15s, 20s), and the sampling time is 0.01s, so a total
of 4500 sets of test data were obtained. Experiment 2 is a gas
temperature drop test, i.e. when the air mass flow rate is equal
to 156 g/s, the fuel mass flow rate is reduced from 12 g/s to
6 g/s in different time (10s, 15s, 20s), and the sampling time
is 0.01s, also a total of 4500 sets of test data were obtained.
Taking the 15 s datasets as training samples, and the 10 s and
20 s datasets were tested respectively after the SVM training
was completed. The main reason of choosing 10s and 20s
datasets for identification is that the response time of the
fuel control subsystem is required to be in the range of 10 s
to 20 s, so as to ensure the rapid response of the whole system.
Because the values of sample datasets in different dimensions
are quite different, normalization is needed before identifica-
tion. Table 1 shows the sample datasets range of the HHHTS.

C. AIR-FUEL RATIO IDENTIFICATION
Section II.B shows that the air-fuel ratio of the HHHTS is a
non-linear function of mat , mft and T . Therefore, when using
SVM to identify the air-fuel ratio, a non-linear kernel function
should be selected. In this paper, in order to find the proper
kernel function and get good identification accuracy, based on
the measured curve of the air-fuel ratio, the identification of
the air-fuel ratio was studied under the condition of choosing
polynomial kernel function and radial basis function (rbf)
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TABLE 2. Training accuracy under temperature rise condition.

TABLE 3. Verification accuracy under temperature rise condition.

kernel function respectively. The air-fuel ratio identification
program in this paper was implemented by Scikit-Learn, and
SVR function was used as SVM to realize the identification
of the air-fuel ratio. Because the characteristics of the air-fuel
ratio are different when the temperature rises and falls, the air-
fuel ratio of the system was identified under two different
conditions.

1) IDENTIFICATION UNDER TEMPERATURE RISE CONDITION
Under this condition, firstly, 1500 sets of the test data with
a temperature rise of 15s were used as training samples to
identify the air-fuel ratio of the system, and then the identified
model was validated by using 10s and 20s datasets respec-
tively. When using polynomial kernel function, the param-
eters of the SVM were: kernel = ‘‘poly’’, ‘‘degree = 3’’,
gamma = 1, coef 0 = 14, C = 10; when using radial basis
kernel function, the parameters of the SVM were: kernel =
‘‘rbf’’, ‘‘gamma = 0.25’’, C = 10. Mean square error (mse),
root mean square error (rmse), mean absolute error (mae) and
mean relative error (mre) were used as the criteria to evaluate
the accuracy of the identification model. The training and
verification accuracy of the air-fuel ratio based on SVMunder
two kinds of kernels were obtained as shown in table 2 and
table 3.

In addition, by exporting the training output data and the
verification output data of the SVM, the air-fuel ratio identi-
fication results can be obtained as shown in Fig. 4, Fig. 5 and
Fig. 6 (The figures were obtained by selecting the data with
the highest accuracy in table 2 and table 3).

2) IDENTIFICATION UNDER TEMPERATURE DROP
CONDITION
Under this condition, firstly, the air-fuel ratio of the system
was identified by using 1500 sets of the test data with temper-
ature drop of 15s as training samples, and then the identified
model was validated by using 10s and 20s datasets respec-
tively. The parameters of the SVM were consistent with the
temperature rise condition. Using the same parameters as the
accuracy test standard, the training accuracy and verification

FIGURE 4. Training results of the air-fuel ratio under temperature rise
condition.

FIGURE 5. Validation results of the air-fuel ratio of 10s test datasets
under temperature rise condition.

FIGURE 6. Validation results of the air-fuel ratio of 20s test datasets
under temperature rise condition.

TABLE 4. Training accuracy under temperature drop condition.

accuracy of the air-fuel ratio based on SVM under two kinds
of kernels were obtained as shown in table 4 and table 5.

Similarly, by exporting the training output data and verifi-
cation output data of the SVM, the identification results of the
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TABLE 5. Verification accuracy under temperature drop condition.

FIGURE 7. Training results of the air-fuel ratio under temperature drop
condition.

FIGURE 8. Validation results of the air-fuel ratio of 10s test datasets
under temperature drop condition.

FIGURE 9. Validation results of air-fuel ratio of 20s test datasets under
temperature drop condition.

air-fuel ratio can be obtained as shown in Fig. 7, Fig. 8 and
Fig. 9 (The figures were obtained by selecting the data with
highest accuracy in table 4 and table 5).

D. DISCUSSIONS OF IDENTIFICATION RESULTS
It can be seen from the accuracy data of table 2, table 3,
table 4 and table 5 that for the air-fuel ratio identification of
the HHHTS, the training accuracy of SVM is satisfactory in
both cases under both polynomial and radial basis functions,
and the training accuracy of SVM using polynomial as kernel
function is slightly better than that using radial basis function
as kernel function. When the training model was validated on
the test datasets, it can be found that the validation accuracy
and training accuracy are basically the same on the 10s test
set. This shows that the air-fuel ratio identification model
based on SVM has satisfactory accuracy. However, when it
was validated on the 20s test datasets, the validation accuracy
decreased greatly, because the data volume of the test datasets
is larger than that of the training datasets, and it contains some
new unknown features. This shows that in order to maintain
satisfactory verification accuracy, the training datasets should
be larger than the test datasets when using SVM for system
identification. In addition, it can be clearly found from the
figures (especially from figure 6 and figure 9) that when the
value of the air-fuel ratio is low, the verification accuracy is
high; the verification accuracy begins to decrease with the
increase of the air-fuel ratio. This result is caused by the
differences in the data itself, that is, from the actual air-fuel
ratio curve in the figures, it can be seen that when the air-fuel
ratio is low, the collected data is relatively smooth, with the
increase of the air-fuel ratio, the smoothness of the collected
data decreases, resulting in the decrease of the verification
accuracy.

It also can be found from the accuracy data of table 2,
table 3, table 4 and table 5 that although the parameters used
by SVM have not changed during the identification of the
temperature rise condition and temperature drop condition,
the identification accuracy of the air-fuel ratio is different,
that is, the training accuracy and verification accuracy under
temperature rise condition are obviously better than that
under temperature drop condition. This is due to the differ-
ence between the datasets. Comparing the air-fuel ratio curves
of Fig 4 and Fig 7, it can be seen that the data collected under
the temperature rise condition is smoother than that collected
under the temperature drop condition, that is, the noise is
smaller. This shows that SVM is sensitive to noise. When the
noise contained in the data increases, the identification accu-
racy of the SVM will decrease. In addition, it can be found
from the data in the tables that the average absolute error of
the air-fuel ratio identification is not very different under the
two working conditions, but the average relative error is quite
different. This is due to the difference of the average value of
the air-fuel ratio data under the two working conditions, that
is, the average value of the air-fuel ratio under the temperature
rise condition is higher than that under the temperature drop
condition, which results in the average relative error increases
obviously under the condition of the temperature drop
condition.

In addition, it also can be found from the accuracy data of
table 2, table 3, table 4 and table 5 that the accuracy of the
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training and 10s test is slightly better when the polynomial
function is used as the kernel function, however, the accuracy
of 20s test is slightly better when the radial basis function is
used as the kernel function. These results show that the ability
of radial basis function to adapt to new data is better than that
of polynomial kernel function.

V. CONCLUSION
In order to overcome the phenomenon of the fuel-rich
combustion in the combustor of the HHHTS and improve
the combustion efficiency and gas temperature control perfor-
mance, this paper presented a method to identify the air-fuel
ratio of the system, that is, to obtain the actual air-fuel ratio
of the system by identifying the air-fuel ratio, and then adjust
it to avoid fuel-rich combustion. In order to identify the
air-fuel ratio of the system, this paper briefly analyzed the
mathematical model of the air-fuel ratio of the test system,
and proposed an air-fuel ratio identification method based
on SVM. The air-fuel ratio of the system was identified by
using different kernels based on the experimental data, and
the following conclusions were obtained:

(1) When the test datasets are smaller than the training
datasets, the SVM has a satisfactory identification perfor-
mance in both polynomial kernel function and radial basis
function. It can accurately approximate the actual dynamic
process of the air-fuel ratio of the HHHTS. The average
absolute error of the identification model is less than 0.05,
and the average relative error is less than 0.5%. When the test
datasets are larger than the training datasets, the identification
accuracy of the SVM will be greatly reduced.

(2) For the identification of the air-fuel ratio of theHHHTS,
on the 10s test datasets, the identification accuracy is better
when the polynomial function is used as the kernel function,
however, on 20s test datasets, the identification accuracy is
better when the radial basis function is used as the kernel
function.

(3) The identification accuracy of the air-fuel ratio based
on SVM is sensitive to noise. When the noise contained in the
datasets increases, the identification accuracy of the air-fuel
ratio will decrease.
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