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ABSTRACT At present, the vehicle obstacle detection system usually uses different devices or sensors to
perceive and obtain the obstacle information. However, omni-directional obstacle detection is difficult to
realize because these devices or sensors are usually easy to be affected by environmental lighting and the
material properties of the obstacle surface. Furthermore, most sensors have limited information regarding
distance, which limits their application to omni-directional obstacle detection. To solve this problem, this
paper proposes a method using depth camera for omni-directional obstacle detection. A method applying
region growth for depth image and a fast inpainting method for depth image are proposed to extract and
repair the obstacle regions in the depth images obtained by installing depth cameras around the car body.
An improved method applying iterative normalized cut is also proposed to cluster and segment fragmentary
and irregular obstacle regions to generate the complete obstacle regions. Finally, the obstacle regions are
overviewed using a three-dimensional visualization method to realize omni-directional obstacle viewing.
The results of experiments conducted in an environment with different obstacles during the day and night
demonstrate that, compared with other methods, our proposed approach can effectively promote the ability
to detect complex obstacles, and largely improve the detection speed; furthermore, obstacle detection using
our method will be unaffected by environmental lighting. Each of these advantages provided by our method
can significantly promote the driving safety of unmanned or other types of vehicles.

INDEX TERMS Omni-directional obstacle detection, Depth camera, Binocular vision, Normalized cut,
Optical flow

I. INTRODUCTION
The numbers of vehicles on urban roads have increased with
the development of transportation infrastructure, and more
accidents are therefore occurring, making vehicle safety an
important issue. For obstacle detection, many researches have
focused on robots and autonomous vehicles. Numerous suc-
cessful research institutes such as Mobileye, Daimler, and
KITAutonomous Vision Group (AVG) have proposed prefer-
able research approaches in this area.

Vehicle environmental obstacle detection is a hot issue
in the field of intelligent vehicle research. It is a prereq-
uisite for intelligent vehicle to realize automatic driving,
autonomous navigation and other functions. Among the
methods for vehicle environmental obstacles detection, lidar,
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millimeter wave radar(MMW radar) and ultrasonic radar
have been widely used.

The lidar detects the scene in front of the vehicle by
emitting infrared laser beam, and measures the time delay
of the reflected light to calculate the distance between the
obstacle and the vehicle. The lidar has high measurement
accuracy and wide detection range, but it is sensitive to bad
weather (such as heavy rain and fog) and heavy and expen-
sive, and can interfere with the laser signals emitted by other
vehicles.

MMW radar can measure distance by detecting reflected
wave, and it can also achieve enough accuracy under harsh
conditions. However, MMW radar has a narrow view field
(usually has the field with milli-radians level)and low lateral
information accuracy, which means that unless the vehicle
is far ahead, the radar can not detect vehicles from adjacent
lanes.
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Ultrasound radar is also a common obstacle detection
method. However, ultrasonic radar is not suitable for omni-
directional obstacle detection because of its poor long-range
detection ability, vulnerability to noise interference, poor
environmental perception accuracy and robustness.

Comparing with radar method, computer vision based
method can accurately extract the three-dimensional con-
tour of the target. It has the advantages of wide detection
range, complete road information and remote sensing. It is a
very important sensor in vehicle obstacle detection. However,
as with other sensors, visual sensors are sensitive to weather
and illumination conditions. At the same time, the calculation
of disparity map and the analysis and reconstruction of three-
dimensional scenes have large computation, which limits the
application of binocular stereo vision in omni-directional
obstacle detection.

At present, the depth camera gradually plays an impor-
tant role in obstacle detection. It has the advantages of
large detection distance, rich depth information, not affected
by the environmental light, low cost and so on. Therefore
this study proposes an omni-directional obstacle detection
method using depth cameras. After installing depth cameras
at different locations around the vehicle and determining the
ROI, the obstacle area within the ROI is extracted using the
proposed region growthmethod for depth images. In addition,
an improved iterative normalized cut method is also proposed
to cluster and segment the obstacles. Finally, omni-directional
obstacle viewing is realized using 3D reconstruction and an
overview of the obstacle regions.

II. RELATED STUDIES
To prevent traffic accidents, numerous methods have used
sensors such as ultrasound, cameras, or lidar to obtain a
real-time perception of the surrounding environment. Among
such sensors, ultrasound achieves a strong reflectivity, but
its point-to-point ranging method, slow sound wave prop-
agation speed, required planar surface of the reflector, and
interference between ultrasound waves limit its application
in omni-directional obstacle detection. At present, studies on
obstacle detection have focused on computer-vision [1] and
lidar [2]–[8] based methods.

In the case of computer-vision based methods, the
approach in [9] segments the obstacle region by using a given
judgment threshold to obtain the binary image of binocular
depth data; however, this method depends on the selected
threshold, and thus it cannot segment the complete obstacles,
and noise will seriously affect the obstacle detection. The
methods in [5] and [10]–[12] use the V-disparity algorithm
to detect obstacles. In [12], the original UV-disparity algo-
rithm is applied to detect obstacles in an urban environment.
However, this method is more sensitive to large obstacles, and
will lead to a massive loss in the detection of small obsta-
cles. Obstacle detection using a binocular camera and requir-
ing binocular matching, has also been commonly applied.
In [13]–[15], preferable matching methods were proposed.
The method in [13] obtains an accurate binocular matching

by training a convolutional neural network to compare image
blocks. However, binocular matching is a time-consuming
process, and incorrect matching will lead to incorrect obsta-
cle detection. The approaches in [16]–[21] use an optical
flow method to detect obstacles through monocular vision.
In [18], an obstacle ROI region is established according to
the different characteristics of the optical flow between the
obstacle region and the background. The method described in
[19] distinguishes between different obstacles using a combi-
nation of the optical flow and dense disparity information.
In [21], the features of KLT are used to track and detect
obstacles. However, the optical flow is very complex and
time-consuming, and the method is therefore unsuitable for
real-time omni-directional obstacle detection. In [31], inertial
measurement unit (IMU) and other synchronized sensors
are used to detect obstacles. In [22], fewer RGB cameras
are applied to realize omni-directional obstacle detection.
However, the use of fewer cameras causes a serious fisheye
distortion, and the method suffers from other shortcomings,
such as the need for a large amount of camera calibration and
an inability to work at night. In addition, computer-vision
based method is extremely sensitive to light, and obstacle
detection under dark lighting is even worse, which may result
in the shadows of obstacles being detected as new obstacles.

As examples of lidar-basedmethod, themethods in [4], [5],
[28] and [29] use lidar to detect obstacles, where [4] processes
point clouds as 2D obstacles using the iterative least squares
method. In [8], a Gauss mixture model based on 3D lidar
is applied for obstacle detection. However, using lidar for
omni-directional obstacle detection is not only expensive it is
also easily affected by rainwater and dust. Furthermore, lidar
typically has a large volume and blind areas when detecting
obstacles closer to the car body, and is thus poorly suited for
omni-directional obstacle detection.

In addition, deep learning has been increasingly applied
to image region segmentation, such as in [23], [24], [30].
Because a deep learning method requires a large amount of
sample data for training, it is difficult to achieve the require-
ment of real-time detection. The methods in [25], [27] apply
machine learning to detect obstacles. Although this method
obtains a better effect, its real-time performance cannot reach
the real-time requirement of an omni-directional obstacle
detection system when the vehicle is moving.

Table 1 summarized the characteristics of different meth-
ods mentioned above based on their different features.
Besides the shortcoming of the computer-vision method in
the table, it cannot work under low illumination environ-
ment. The method we proposed uses the depth camera to
perceive the surrounding environment, which is not affected
by environment lighting and the obstacle detection accuracy
and speed are also greatly improved.

Although the depth camera has the advantages of large
detection distance, rich depth information, not affected by
the environmental light, low cost and so on, there are few
studies regarding obstacle detection by depth camera. Obsta-
cle detection by depth camera mainly uses binary threshold

93734 VOLUME 8, 2020



X. Zhao et al.: Omni-Directional Obstacle Detection for Vehicles Based on Depth Camera

TABLE 1. Characteristics of different methods mentioned above.

segmentation, multi frame background segmentation and
clustering segmentation methods to extract obstacles, but
the detection effect using these methods is not very well
and the some extracted obstacles have incomplete shapes.
To solve these problems, this paper proposes a new method
using depth camera for omni-directional obstacle detection,
which greatly improved omni-directional obstacle detection
accuracy and speed in the vehicle environment.

III. SYSTEM OVERVIEW
The omni-directional obstacle detection method proposed
in this paper can be used to obtain a depth image of an
omni-directional environment through an evenly distributed
installation of ten depth cameras placed on the car body. The
installation positions are shown in Fig. 1 (a). Fig. 1 (b) shows
the overall process used to extract omni-directional obstacles
with this method. In order to ensure that the detection covers
thewhole omni-directional space, the viewfield of each depth
camera is set to 36 degrees(this degree depends on the number
of the depth camera and the type of depth camera. Ten depth
cameras are used in this study), which ensures the coverage
of omni-directional space. When detecting obstacles, all the
depth cameras generate depth images at the same time. After
all the cameras have generated the depth images, a panoramic
depth image will be formed.

The processing steps required include collecting the origi-
nal image of the scene from the depth cameras, which means

obtaining depth images from the ten depth cameras; Note
that the detection range of different depth cameras is differ-
ent, the obstacle depth data within the detection range will
be received normally, and the obstacle depth data outside
the range will not be received. Therefore, the depth image
generated by each depth camera within the detection range
is the real and valid depth data without any data outside
the detection range. So except for noise and holes, there are
no other detection errors in the depth data. Determining the
ROI region for the depth images obtained; and denoising
the ROI regions using a fast adaptive median filter, which
can effectively eliminate holes and pulse noises in the depth
image and helps with the subsequent processing. After the
denoising, as the exact position(including position and rotat-
ing angle) of the cameras in relation to the car coordinate
system is known, the transformation matrix of each depth
camera can be obtained, therefore a panoramic depth image
can be generated by transforming the depth points in ten
depth images into the car coordinate system using their own
transformation matrices(Discussed in section III.F). A newly
proposed method of region growth for depth image and a fast
inpainting method are applied, which can extract connected
obstacle regions and fast repair or fill in the holes in depth
image. Meanwhile, Because the connected obstacle region
will include a large number of small and fragmented obstacle
regions, in this study an improved iterative normalized cut
algorithm is proposed to cluster and segment all obstacles that
extracted, and thus the small and fragmentary obstacles can
be merged into the surrounding obstacles, which is conducive
to the entire treatment of obstacles in the later steps. After
clustering and segmenting using iterative normalized cut,
an omni-directional obstacle distribution map is obtained by
overlooking 3D point clouds in the depth images.

A. DETERMINATION OF THE ROI IN DEPTH IMAGE
Among the different image segmentation algorithms avail-
able, the region of interest (ROI) algorithm is very important
for image processing. On the one hand, it indicates the image
range that requires processing, and on the other, it improves
the processing efficiency. For obstacle detection around a
vehicle using the depth image, the ROI applied in this study
determines the region through which the vehicle can pass,
further reducing the region to be processed and thereby
improving the efficiency.

For the 3D point cloud in a depth space captured by a depth
camera, the vehicle attitude plane equation is defined to seg-
ment the space of the 3D point cloud, as shown in Fig. 2. The
vehicle attitude plane is parallel to the vehicle chassis, and
this plane determines the maximum height of the obstacles
that the vehicle can pass. Fig. 2 (a) and (b) shows the status of
the ROI region at different times while the vehicle is moving.
The region below the vehicle attitude plane is the non-ROI
region, where obstacle detection is not required. The region
above the vehicle attitude plane is the ROI region, where the
objects in this region are obstacles and need to be detected.
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FIGURE 1. Installation of depth cameras and overall process of proposed method.

FIGURE 2. Establishment of vehicle attitude plane.

The vehicle attitude plane is defined as

Ax + By+ Cz+ D = 0 (1)

and the coordinates of a certain point in the point cloud of the
depth space are indicated by (x0, y0, z0). If

Ax0 + By0 + Cz0 + D > 0 (2)

then this point belongs to the ROI space; otherwise, it is in
the non-ROI space.

B. DENOISING OF THE DEPTH IMAGE
For a TOF(Time of flight) camera, such as the depth camera,
the depth camera sends the light pulse to the target contin-
uously, then receives the light returned from the object with
the sensor, and obtains the distance between the target and
the object by detecting the flight (round-trip) time of the light
pulse. Because the reflectivity of different surfaces differs,
when the reflectivity is low, the amount of light returned from
the incident light will be reduced, and thus there will be a
smaller number of holes in the depth image, similar to a black
surface absorbing a large amount of light and forming holes in
the image. We assume that the light of each pixel is reflected
from a single location; in practice, however, the light reflected
from other locations may be reflected to the same pixel many
times, whichwill cause an error. At the edge of a stereo object,
namely, the foreground and background, the returned light is
a mixture of the foreground and background, and noise will
be generated during the process of distinguishing between the
two. For the omni-directional obstacle detection requiring a
real-time performance described in this paper, a fast adaptive
median filter is used to remove noise.

The adaptive median filter first detects whether each pixel
in the ROI space is a noise point. By providing a window
with the initial size, the median value of the pixels in the
neighborhood is calculated, and whether this value is between
the maximum and minimum pixel value in the neighborhood
is determined. If this condition is satisfied, then the point is
not a noise point and will not be filtered by the median filter.
Otherwise, the range of the neighborhood is enlarged, and
this process is repeated. For those pixels that are consistently
judged as noise points, the enlargement of the neighborhood
will not stop until the neighborhood size reaches the setting
threshold. Fig. 3 shows the denoising effect when using the
adaptive median filter on a certain depth image. It can be
seen that noises, such as holes in the depth image, have been
effectively removed.

C. METHOD OF REGION GROWTH
FOR DEPTH IMAGE
As described in the previous section, adaptive median filter-
ing is used to remove the holes and other noises in the depth
image, which makes the obstacles in the depth image easier
to be extracted. Each pixel in the depth image has its own
depth value, and thus, the entire depth image can be seen as
a large number of 3D point clouds in space. Therefore, this
study proposes a new region growth method that is suitable
for the depth image, and preliminarily extracts obstacles in
the depth image.

1. For each point in the depth image, ID(x, y, z) is defined
as the number of the region, where the point is located,
the initial value of which is zero, and x, y, and z indicate
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FIGURE 3. Denoising effect of adaptive median filter applied to a certain
depth image.

the 3D coordinates of this point. In addition, S(ID(x, y, z))
is defined as its area, the initial value of which is also zero.

2. The similarity threshold is defined as Ts. Starting from
the coordinates (0, 0, 0) in the depth image, the image points
are traversed along the three-dimensional coordinate axis in
turn. When a depth point P0 is encountered, it is confirmed
whether there is a depth point P1 in the radius Ts of P0. If P1
exists, then P0 and P1 are merged into the same region. The
coordinate of P0 is set as (x0, y0, z0), the number of the region
where P0 is located is set as ID(P0) = ID(x0, y0, z0) = 1 and
the area of P0 is set as S(ID(x0, y0, z0)) = 1. In addition,
the coordinates of P1 are set as (x1, y1, z1) because P1 and
P0 belong to the same region, and thus ID(P1) = ID(P0) is
set, that is ID(x1, y1, z1) = ID(x0, y0, z0) = 1 and the area
of the region increases on its own, that is S(ID(x1, y1, z1)) =
S(ID(x0, y0, z0))+ 1 = 2.
3. Continuing to traverse the depth image. If the next

depth point is P1, it is confirmed whether depth point P′1
exists within the radius Ts of P1 and if so then P′1 and P1
are merged into the same region. If the coordinate of P′1
is set as (x ′1, y

′

1, z
′

1), then ID(x
′

1, y
′

1, z
′

1) = ID(x1, y1, z1) =
1 and the area self-increases, that is S(ID(x ′1, y

′

1, z
′

1)) =
S(ID(x1, y1, z1)) + 1 = 3. If the next depth point is P2, it is
confirmed whether depth point P′2 exists within the radius Ts
of P2. If the next depth point is P3, it is confirmed whether
depth point P′3 exists within the radius Ts of P3. The check
continues until all depth points have been investigated.
4. At a certain time, if there are no depth points belonging

to a certain region within the radius Ts of P′, then P′ is an
isolated point or a start point of a new region, the number
of regions self-increases, which means ID(P′) self-increases,
and the area of the region is set as 1, that is S(P′) = 1.
5. Steps 3 and 4 are repeated until all depth points are

traversed.
Fig. 4 shows a process diagram of this method, in which

a block represents an obstacle point. In (a), obstacle point
p0 is scanned sequentially because there are no points that
belong to a region within the radius Ts of p0, therefore p0 is

a starting point of a new region; thus, the number of regions
that the point belongs to is ID(p0) = 1 and the area of this
point is S(ID(p0)) = 1. Then, obstacle points P1, P2, and
P3 are searched sequentially. For p1, because there are no
points that belong to a region within the radius Ts of P1,
the number of the region self-increases, that is ID(p1) =
ID(p0) + 1 = 2 and the area of this point is S(ID(p1)) = 1
which means a new region is found. The red arrow indicates
that the next obstacle point searched is P2, and because P1
exists within its radius, thus p2 belongs to the region of p1,
that is ID(p2) = ID(p1) = 2 and the area self-increases as
S(ID(p2)) = S(ID(p1))+ 1 = 2.
For p3 which is sequentially searched, its number is the

same as p2 and the area self-increases. As shown in Fig. 4 (b),
the process continues with the traversing of obstacle points
along with the coordinate axis. Because p4 exists within the
radius of p0, p4 is merged into p0, and the area self-increases
by the largest area of the current region. When p5 is searched,
because p4 exists within the radius of p1p5 is merged into p1,
and the area self-increases by the largest area of the current
region. Fig. 4 (c) shows the growing result of all obstacle
points, and that there are two obstacle regions generated. The
number next to the obstacle region indicates the number of
the obstacle region, and the number in the box indicates the
search order of region growth. In addition, Fig. 4 (d) shows
the area of the obstacles. As indicated, the area of both two
obstacles increases gradually, indicating that the regions are
growing.
This method is described as the following pseudo code,

where the input is the depth image from the depth camera
and the output is a set of obstacles.

Algorithm 1Method of Region Growing for Depth Image

1 INPUT: pointsP from depth image, similarity thresh-
old Ts
2 OUTPUT: obstacle segments 0 = {C1,C2, . . . ,Cn}
3 INITIALLY: ID(x, y, z) ← 0 to reset the number
of the obstacle region

S(ID(x, y, z)) ← 0 to reset the area
of the obstacle region
4 Foreach pi ∈ P do
5 If pi is a depth point and no depth point in the
radius Ts of pi Then
6 ID(pi) = ID(pi)+ 1
7 S(ID(pi)) = 1
8 C ← C ∪ {pi}
9 If p1 is a depth point and distance (p1, pi) <
Ts Then
10 ID(p1) = ID(pi)
11 S(ID(p1)) = S(ID(pi))+ 1
12 C ← C ∪ {p1}
13 End
14 End
15 End
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FIGURE 4. Process of region growing for depth image.

FIGURE 5. Obstacle extraction using region growth for depth image.

Each pixel point is traversed to check whether it is a depth
point. If the pixel point is a depth point and there are no other
depth points within the radius Ts of pi, it is considered an
isolated point or a start point of a new region, and the ID of
this point then self-increases and its area is reset to 1. If the
pixel point is a depth point and there does exist another depth
point within the radius Ts of pi, then these two depth points
aremerged, and the ID of each point is set to the same number,
and the area of this region self-increases.

Fig. 5 shows the obstacle regions extracted from a cer-
tain depth image using the region growth method. Different
obstacles are represented by different colors, and the number
next to or in the obstacle represents the number of the region.
As can be seen from Fig. 5, the region growth method can
effectively extract obstacles in the depth image.

D. FAST INPAINTING METHOD FOR DEPTH IMAGE
BASED ON KNN AND SPATIAL REGION GROWTH
Although the denoising and filtering of the depth image can
eliminate some of the noise and holes, large holes still exist,

which will affect the obstacle extraction in a later step. Gener-
ative Adversarial Networks (GAN) are State Of the Technical
Art in image inpainting, however this method takes a long
processing time and it is more important to quickly repair
the holes using the obstacles information directly from the
method of region growth in the previous step, which could
accelerate the process of repairing the holes in depth image.

As described in the previous section, the obstacle region
in a depth image is roughly extracted using spatial region
growth. Because a real-time performance is required for vehi-
cle obstacle detection, a fast inpainting method for the depth
image based on KNN(k-NearestNeighbor) and spatial region
growth is proposed herein.

Because the infrared reflectivity of different objects differs
and the occlusion between objects always occurs, there are
numerous holes on the obstacle surface in the depth image.
An inpainting of the depth image is applied to repair or fill in
these holes. A spatial correlation is also analyzed according
to the obstacle range obtained during the previous step, and
the pixel that best matches the pixel in the hole is determined.

For the depth data, the depth value is defined as D(u, v),
and the point with a depth value D(u, v) of zero is a hole. The
depth image is then binarized, and the formula applied is as
follows:

D(u, v) =

{
0 D(u, v) = 0
255 D(u, v) > 0

(3)

The result of binarization is shown in Fig. 6 (b). The holes
H() in the figure are shown in black, and the obstacle range
RE extracted using the spatial region growth is indicated in
green.

For each hole, the treatment of themorphological corrosion
and expansion is first carried out to expand the range of
the hole area, allowing the neighborhood of the holes to be
included. The neighborhood is defined that it includes a hole
as RED (RED ∈ RE ), the neighborhood range of the hole,
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FIGURE 6. Process of inpainting of depth image.

which is defined as RNP, can be obtained by determining the
difference between the region after the treatment of the cor-
rosion expansion and the original area through the following
formula:

RNP = RED − H() (4)

The neighborhood RNP is shown in the red region
in Fig. 6 (d).

To fill in a hole, it is necessary to determine its depth.
Because the depth changes uniformly within a neighborhood,
in this study, a new method for calculating the depth of the
holes based on the use of KNN is proposed. To estimate the
depth of a hole close to the neighborhood, it is given the same
value as the depth the of neighborhood itself. For a pixelA in a
hole of a depth image, its eigenvector is defined as Aij(Xi,Xj)
and its estimated depth is DA.
Pixel A is selected as the center point, and the related

attribute values of n2 − 1 pixels in its n × n dimensional
neighborhood (where n is an integer of larger than 2) are
calculated. The reference pixel is marked as Br , its character-
istic vector as Brij(Xri,Xrj), and its depth value as DBr , where
r = 1, 2, . . . , n2 − 1.

Because the depth value changes evenly within the hole
region and the depth value is related to the distance of the
neighborhood points of the hole, the ratio of Euclidean dis-
tance dr is used to represent the correlation between the hole
point and the neighborhood point, which is defined as the
weight coefficient ωr and the sum of the weights in n × n
dimensional neighborhood is 1, that is,∑

n2−1
r=1 ωr = 1 (5)

The weights of each hole point and its neighborhood point
can be calculated as follows:

ωr =
dr∑ n2−1
r=1 dr

(6)

where the Euclidean distance dr is expressed as follows.

dr = sqrt[(xri − xi)2 + (xrj − xij)2] (7)

Here, xri is the ith dimensional coordinate of the r th point,
and xrj is the jth dimensional coordinate of the r th point. The
smaller the Euclidean distance dr is between the two points,
the larger the weight coefficient and the higher the similarity.

The depth valueDA of the pixel in a hole is calculated using
the valid depth information of the neighboring points, which

is expressed as follows:

DA =
∑

n2−1
r=1 (ωrDBr ) (8)

That is,

DA =
n2−1∑
r=1

[
DBr · sqrt[(xri − xi)2 + (xrj − xij)2]∑ n2−1
r=1 sqrt[(xri − xi)

2 + (xrj − xij)2]

]
(9)

The calculated depth value DA of the hole pixel is filled
into the corresponding position of the hole to complete the
inpainting of the depth image. The final inpainting result of
a depth image with holes (Fig. 6 (a)) is shown in Fig. 6 (e),
which indicates that the holes are well repaired.

E. CLUSTERING SEGMENTATION USING ITERATIVE
NORMALIZED CUT
In the previous section, different obstacles are obtained using
the region growth method for the depth image. However,
themethod is easily affected by the similarity thresholdTs and
may result in the fragmentation of obstacles if this threshold
is too small, which is not conducive to the overall extraction
of obstacles. Herein, an improved iterative normalized cut is
proposed to create the normalized segmentation and merging
the fragmented obstacles.

For obstacles obtained using region growth for the depth
image, an undirected graph with weights is constructed using
the iterative normalized cut algorithm for these obstacles.
Each node in the graph represents an obstacle, and theweights
on the edges represent the approximate relationship between
obstacles.

By establishing a normalized minimum cut on the estab-
lished graph, the obstacles in the graph are segmented for
the first time, and this segmentation is carried out iteratively
until no new areas can be segmented. Finally, the clustering
segmentation of all obstacles is completed.

An undirected graph G = (V ,E) is constructed for obsta-
cles obtained by region growth for the depth image, where
V represents the obstacles extracted from the previous step,
and E represents edges, which are the connections between
obstacles. Assume that graphG can be divided into disjointed
parts A and B (V = A ∪ B). One partition of graph G can be
defined as follows:

Cw(A,B) =
∑

i∈A,j∈B

w(i, j) (10)
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FIGURE 7. Process of iterative normalized cut.

whereCw(A,B) denotes the weights between regionsA andB,
and w(i, j) denotes the weights between obstacles i and j. The
weights are defined as the spatial distance between obstacles.
Iterative normalized cut achieves the purpose of normalized
segmentation by calculating the normalized weights. The
calculation formula is as follows:

NCw(A,B) =
Cw(A,B)∑

i∈A,j∈V
w(i, j)

+
Cw(A,B)∑

i∈B,j∈V
w(i, j)

(11)

Here,
∑

i∈A,j∈V
w(i, j) and

∑
i∈B,j∈V

w(i, j) represent the sum

of the weights from A and B to all nodes in the graph,
respectively. Therefore, the optimal segmentation of A and B
can be achieved by finding the minimal value of NCw(A,B).
The minimal value ofNCw(A,B) can be solved by solving the
eigenvalues and eigenvectors of the matrix. Let the number
of obstacles be n, let x = (x1, x2, · · · , xn), where xi = −1
denotes that B contains node i, and xi = 1 denotes that A
contains node i. LetW be a symmetric matrix of n×n, whose
element wij isW (i, j) in (10). Let D(i, j) = di be the diagonal

matrix, where di =
∑
j
w(i, j). Let k =

∑
xi>0

di∑
i
di
, and NCw(A,B)

can thus be deduced as follows:

NCw(A,B) =
(1+ x)T (D−W )(1+ x)

4k1TD1

+
(1− x)T (D−W )(1− x)

4(1− k)1TD1
(12)

where 1 denotes a matrix of dimensions [N , 1] with each of
its elements having a value of 1. Let b = k/(1 − k) and y =
[(1+ x)− b(1− x)]/2, then the minimal value of NCw(A,B)
can be obtained by solving the eigenvalues and eigenvectors
of formula (13).

(D−W )y = λDy (13)

where y is the eigenvector and t is the eigenvalue. Then, the
location of the obstacle to be segmented is the eigenvector
corresponding to the second smallest eigenvalue.

Initially, the iterative normalized cut algorithm is used to
cluster and segment all obstacles obtained through the region
growth method for the depth image, and two segmentations

A and B of the obstacles are obtained. Iterative normalized
cut is then applied again for both sections A and B, and
the separated obstacle continues to be iteratively clustered
and segmented by the algorithm until it can no longer be
segmented.

Fig. 7 shows the process of the iterative clustering and
segmentation of obstacles in two scenes using the iterative
normalized cut algorithm after extraction using the region
growth method for the depth image. Fig. 7 (a) shows the
obstacles extracted, in which a total of ten obstacles are found
in scene #2 and nine are found in scene #1. Fig. 7 (b) shows
the results of clustering and segmentation applied for the first
time, in which all obstacles are divided into sections A and B;
the objects in both sections are, then clustered and segmented
into new sections A and B, respectively.

For scene #1, Fig. 7 (c) shows the clustering and segmen-
tation results of section A, and Fig. 7 (d) shows the results
for section B. In Fig. 7 (c), section A is segmented into
new sections A and B, and in Fig. 7 (d), section B is also
segmented into new sections A and B. The final clustering
and segmentation results are shown in Fig. 7 (e). The results
indicate that the nine obstacles are clustered into one to four
obstacles, which effectively reduces their fragmentation.

In scene #2, because there are no obstacles that can be
segmented in section B, section A is clustered and segmented,
the results of which are shown in Fig. 7 (c). In Fig. 7 (c),
section A is segmented into new sections A and B. Iterative
segmentation for part A is shown in Fig. 7 (d), and that for part
B is shown in Fig. 7 (e). The final clustering and segmentation
results are shown in Fig. 7 (f). As the results indicate, the ten
obstacles are clustered into one to five obstacles, which also
effectively reduces their fragmentation.

F. DEPTH IMAGE REGISTRATION AND VISUALIZATION
OF OMNI-DIRECTIONAL OBSTACLES
As the exact position(including position and rotating angle) of
the cameras in relation to the car coordinate system is known,
the transformation matrix [T ] of each depth camera can be
obtained, and the inverse transformation matrix [T ]′ could
also be deducted from this matrix.

When detecting obstacles, all the depth cameras generate
depth images at the same time. After all the cameras have
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FIGURE 8. Generation of the panoramic image and the omni-directional
obstacle map.

generated the depth images, depth points in ten depth images
are transformed into the car coordinate system using their
own transformation matrices [T ], which completes the depth
point cloud registration in order to generate the panoramic
depth image.

After the obstacles in the panoramic depth image are
extracted using our method mentioned above, the obstacles
in the panoramic depth image are transformed according to
the inverse transformation matrix [T ]′ deducted from trans-
formation matrix [T ], in order to generate a omni-directional
obstacle map. These two processes as shown in Fig.8.

3D visualization technology is used to show an omni-
directional scene by overviewing the obstacles. By ren-
dering each depth point and constructing obstacle point
clouds, the purpose of a real-time obstacle overview can be
achieved.

IV. EXPERIMENT AND ANALYSIS
A. OMNI-DIRECTIONAL OBSTACLE EXTRACTION
In this experiment, to verify the effectiveness of the pro-
posed method, the effect of omni-directional obstacle detec-
tion under different scenarios is tested. Depth cameras are
installed at different locations of the vehicle, as shown
in Fig. 1 (a). The figure also shows that ten depth cameras
are installed around the car body to collect depth information

of the omni-directional environment. An on-board computer
is used for the experiment and is equipped with an Intel
i3-4130p processor with a main frequency of 3.4 GHz and
4Gmemory, Intel realsense D430 module is used as the depth
camera.

The effect of omni-directional obstacle detection is tested
under both daytime and nighttime environments, and the
results are compared with current mainstream obstacle detec-
tion methods. Fig.9 shows the results of omni-directional
obstacle detection using our method during the daytime.
The depth image of the environment is obtained using depth
cameras installed in ten locations, and the obstacles are then
detected using our proposed method. The detected obstacles
are represented by region using a different color in the orig-
inal and depth images. Among these regions, red indicates
the primary obstacle region, where the obstacle is nearest
to the vehicle. As indicated, our method can extract obsta-
cles more completely, and small and fragmentary obstacles
(such as tree crowns and branches) can also be detected
more completely. Obstacles are segmented coherently and
reasonably as a whole. No detection errors in which one
obstacle is segmented into different regions occur, or different
regions of different obstacles are merged into new obstacles.
A top view of the obstacles represents an overview of the
extracted obstacle point cloud through a 3D visualization.
The term ‘‘Omni’’ indicates the overview of all obstacle point
clouds showing the obstacles that exist in an omni-directional
environment.

Fig. 10 shows the results of omni-directional obstacle
detection using our method at night. Because the environment
is purely dark without any interference of other lighting,
the depth camera can work well. Our method is also used
to detect obstacles in this type of environment, and detected
obstacles are represented by regions with different colors in
both the original and depth images. Among these regions,
the red region is also the primary obstacle region, represent-
ing the obstacle that is nearest to the vehicle. The experiment
results show that the obstacles detected by our method at
night are clearer and more complete than those detected dur-
ing the daytime, and the obstacles are also more reasonably
segmented without any abnormalities. The top view image of
the obstacles using 3D visualization shows the distribution of
omni-directional obstacles in a dark environment.

At present, vision-based obstacle detection focuses on
obstacle extraction using binocular vision. The binocular
vision method usually uses the binary threshold segmenta-
tion, clustering analysis, UV-disparity map, and the optical
flow to extract obstacles.

Binary threshold segmentation simply sets a distance
threshold to segment the pixels in the binocular depth image
according to the distance threshold, such as retaining the pix-
els within the distance threshold and removing the pixels out-
side the distance threshold. The clustering analysis method
combines the pixels with the same attributes into the same
region through a certain statistical method of pixel distance
and density to achieve obstacle extraction. UV-disparity map
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FIGURE 9. Omni-directional obstacle detection using our method during the daytime.

determines the position of obstacles by counting the number
of disparity on the u-map and v-map respectively and detect-
ing the straight lines on the u-map and v-map.The optical
flow method assigns a velocity vector to each pixel in the
image, thus forming amotion vector field. The velocity vector
formed bymoving object is different from that of background,
so the position of moving object can be calculated.

The detection results using the methods above are com-
pared with those of our method. Because the vision-based
method cannot work at night, the experiment was only carried
out during the daytime. Fig. 11 (a) shows the experiment
results of obstacle extraction using binary threshold seg-
mentation. The experimental scene applied is the same as
that shown in Fig. 9. The segmentation threshold is set as
T = 1.0, which indicates that an obstacle can be considered
to exist when the distance between the points in the binocular
depth image and the camera (i.e., the vehicle) is less than
1 m. We can see from the segmentation result that all of the
segmented obstacle are the depth points closest to the vehicle.

However, because only the threshold is used for segmenta-
tion, the segmented obstacles are incomplete and fragmented,
which makes it impossible to analyze and achieve obstacle
avoidance in a further step. Fig. 11 (b) shows the experiment
results of the clustering segmentation. We use the K-means
clustering algorithm to segment and extract obstacles from
the binocular depth images. After the extraction of the obsta-
cles, the purpose of extracting obstacles closer to the vehicles
is achieved by retaining obstacles with smaller depth values.
However, the K-means algorithm is limited by the value of K,
and this clustering segmentation algorithm is more inclined
toward the overall segmentation based on the spatial location;
however, the obstacle segmentation of the depth image should
bemore inclined toward segmentation based on the connected
region. Because the segmentation is based on the spatial loca-
tion, we can see from Fig. 11 (b) that obstacles such as the tree
crown are not extracted, and the trunk and other obstacles are
clustered into an entire obstacle. Because the spatial location
of the tree crown is far from the obstacles on the lower
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FIGURE 10. Omni-directional obstacle detection by our method at night.

side, the K-means algorithm incorrectly divides the trunk and
other obstacles on the lower side into the same obstacles.
Fig. 11 (c) shows the result of extracting obstacles in the
depth image using UV-disparity maps. The UV-disparity map
determines the range of obstacles by detecting the lines in
the map. However, because numerous fragmentary obstacles
(such as trunks and leaves) exist in the test scene, it will
be quite difficult to detect lines in the UV disparity map,
and the detection error will be quite large. Because the
UV-disparity map determines the obstacle range by detecting
the line in the U and V maps, respectively, it can better
extract regular obstacles. For complex and irregular obstacles
such as leaves, trunks, and grasses in this experiment, the
UV-disparity map can only roughly determine their locations
and cannot accurately segment different obstacles; therefore,
the false recognition rate is very high. In Fig. 11 (c), we detect
lines that clearly exist. From the results, we can see that the
overall range of the obstacles can be determined, although
the obstacles cannot be accurately segmented, and the spatial

overlapping obstacles cannot be distinguished. Therefore,
the UV-disparity map is not suitable for obstacle detection
in complex scenes. Fig. 11 (d) shows the obstacle detection
result using the optical flow method. In addition, the yellow
point in the image is the direction of the optical flow. Because
the optical flow method first needs to extract image feature
points, different lighting and color will affect the extrac-
tion of the feature points, and therefore corner and feature
points with significant changes can be properly extracted,
and the obstacles that belong to these points can also be
well extracted. Therefore, we can see from the results in
Fig. 11 (d) that parts of the obstacles are extracted, although
the obstacles without distinct feature points such as trees and
grasses are not well detected. Fig. 11 (e) shows the obstacle
detection result using lidar and deep learning. In the training
phase, as it is impossible to recognize all of the obstacles in
the surrounding environment due to limited samples, only
cars and trees with different shapes were trained for this
experiment. However, as the samples trained are very limited,
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FIGURE 11. Omni-directional obstacle detection using different methods.
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TABLE 2. Comparison of efficiency of omni-directional obstacle detection
using different methods.

this method cannot detect all the obstacles and small obstacles
are not completely detected.

B. COMPARISON OF EFFICIENCY AND ACCURACY OF
OMNI-DIRECTIONAL OBSTACLE DETECTION
For omni-directional obstacle detection for vehicles, the
detection efficiency will affect the driving safety. Therefore,
we compare the efficiency of omni-directional obstacle detec-
tion with our method and the methods tested above. In this
experiment, the frame rates of the depth camera and the
RGB camera were both 30 fps. The vehicle drove for 5 min-
utes in an environment with complex obstacles and recorded
9,000 frames of depth and binocular images. The obstacles in
each frame were detected using our proposed method and the
binary threshold segmentation, K-means clustering analysis,
UV-disparity map, and optical flow methods, respectively,
and the total time required to complete the detection of
9,000 frames, and the maximum, minimum, and average
times required to detect a single frame, were calculated.

Table 2 shows the efficiency of the different methods.
Fig. 12 shows the graph of the time required for omni-
directional obstacle detection for all frames and a single
frame based on the table. Because K-means is a process
of iterative convergence, it takes a long time to complete
the detection. The UV-disparity map method needs to scan
every pixel in the U map that corresponds to the column of
the original depth map and analyze the number of statistical
disparity values. Each pixel in the V map that corresponds to
the row of the original depth map also needs to be scanned
and the number of disparity values are then analyzed; there-
fore, the UV-disparity map method is also time-consuming.
Binary threshold segmentation is in fact not an obstacle
detection method. A partial depth image is preserved using
a predefined threshold, and it is therefore meaningless to
calculate the required time. The optical flow method takes a
long time to process each frame because of its complexity and
numerous computations required. The deep learning method
also takes a long time because of its complexity. In contrast,
our method has a faster processing speed and is suitable for
real-time omni-directional obstacle detection.

For the accuracy of omni-directional obstacle detection,
we collected a large number of omni-directional depth images

FIGURE 12. Time of omni-directional obstacle detection.

and their corresponding binocular images in different envi-
ronments with different obstacles, and detected the obstacles
in these images using both our method and other methods
mentioned above, and manually marked the locations of the
major obstacles in each environment to establish a dataset.
We used the Intersection Over Union (IOU) as the evalu-
ation metrics for this dataset. When marking the locations
of the major obstacles in each environment, the ground-
truth boxes that cover the obstacles were also marked. The
established data set consists of 5000 depth images and
their corresponding binocular images(2500 depth images and
2500 corresponding binocular images), and these images
include 9 scenes and 257 obstacles. This data set as shown
in Table 3.

TABLE 3. Established data set.

We considered correctly detection(true positives), wrong
detection(false positives) and undetected(false negatives) to
calculate accuracy, precision and recall. When each obstacle
was detected, we also use a box that can cover the obstacle,
and then the area of the overlap of this box and the ground-
truth box was calculated to compare the detection similarity.
We define the ratio of this area to the area of the ground-truth
box as the detection similarity, and we calculated the average
similarity after all the images in data set were detected.

The experiment results are shown in Table 4, and
Fig. 13 shows a graph of the accuracy, precision, recall rates
and average similarity based on the table.

In Table 4, ‘‘Correct detection’’ indicates the number of the
images that all of the obstacles in each image are correctly
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TABLE 4. Comparison of accuracy of omni-directional obstacle detection using different methods.

FIGURE 13. Omni-directional obstacle detection, precision and recall rate
with different methods.

detected. Because binary threshold segmentation only pre-
serves a portion of the disparity region, it does not have
the ability to extract obstacles as a whole, and therefore
this method is basically unable to achieve a proper obstacle
detection. As this method segments the depth image though
a set threshold, only the obstacle regions in the threshold can
be detected, which causes most of the obstacles will not be
detected and thus the accuracy and recall rate are very low.
As this method can not really segment the obstacles, therefore
most of the detected obstacles have incomplete shapes, which
cause the detection similarity to the ground-truth box are
also very low. The K-means clustering analysis can extract
obstacles as a whole but is more inclined toward an over-
all segmentation according to the spatial location. However,
the obstacle segmentation of the depth image is more inclined
toward determining the connected regions of the obstacles.
Therefore, K-means results in numerous obstacles being mis-
segmented into different obstacles. Although obstacles are
divided into different parts, most obstacles that marked in the
data set were detected, and only a few wrong or incomplete
detections exist. Therefore this method has a relatively high
precision and recall rate. By contrast, the UV-disparity map
detects obstacles by detecting lines in a UV graph. If there are
numerous fragmentary and complex obstacles in the environ-
ment, the detection of the lines will be extremely difficult to
achieve, resulting in a number of incorrectly detected obsta-
cles, which lead to poor accuracy, precision and recall rate.
Because UV method detects the lines to judge the obstacle,
therefore detected obstacles usually have incomplete shapes,
which will cause the area of the detected obstacles largely
differ from the area of the ground-true boxes, and thus the
detection similarity is also very low. Because the environ-
mental light and color of the obstacle affect the extraction
of the corner and feature points, the optical flow method
cannot reliably extract all obstacles, and a few of the obstacles
will not be completely extracted, which cause the accuracy,

recall rate and average similarity are not very high. But for
the obstacles that have the strong feature points, this method
could well detect obstacles, so the precision rate can reach
a high level. For deep learning, because only the sample of
vehicle and tree were trained for the experiment, therefore
not all the obstacles are correctly detected. But for the trained
samples, almost all the obstacles are correctly and completely
detected, therefore it has a high precision rate and high simi-
larity to the ground-truth box. Because there are many other
obstacles are not detected in the experiment environment due
to limited samples, the accuracy and recall rate are relatively
low. By contrast, first as our method could effectively extract
small and irregular obstacles in complex scenes using depth
image region growth, the number of detected obstacles are
largely increased, which avoid small obstacles being miss-
ing and the shape of detected obstacles being incomplete,
and thus our method could improve the accuracy and recall
rate. Second, as a large number of fragmentary obstacles
can be merged into the nearest obstacles through the pro-
posed iterative normalized cut algorithm, it ensures that the
detected obstacles could have a more complete shape and
thus improves the precision rate and average similarity to the
ground-truth box. All of these advantages make our method
could more accurately and completely detect obstacles in all
kind of complex environment, and more conducive to the
subsequent overall treatment of the obstacles for analysis and
avoidance.

V. DISCUSSION AND CONCLUSION
To solve the problem in which the obstacle detection around
a vehicle is easily affected by the environment light and the
material of the obstacle, this study proposes using a depth
camera to obtain the depth image of the environment and
extract obstacles from this image. A depth camera has a large
detection coverage and can work at day or night, and is there-
fore more suitable for omni-directional obstacle detection
than ultrasound and visual sensors.

In this study, the application of the ROI for a depth point
cloud was proposed, which avoids collisions with obstacles
by defining a plane parallel to the chassis, and the pro-
cessing efficiency of the depth point cloud was promoted.
The transformation matrix of each depth camera is used
to generate the panoramic depth image. A fast inpainting
method for depth image was also proposed, which effectively
eliminates the noise and holes on the obstacle surface in the
depth image. A region growth method for the depth image
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was also proposed. By analyzing the connected region in a
depth image, the depth image is segmented, and obstacles
are roughly extracted. An improved iterative normalized cut
method was also proposed to cluster and segment all obstacle
regions extracted using the region growth method for the
depth image. The fragmented and small irregular obstacles
are merged with the nearest obstacles in the spatial position
to generate more complete obstacles, which is conducive to
the subsequent overall treatment of the obstacles for analysis
and avoidance. Finally, the inverse transformation matrix
deducted from transformation matrix of their original depth
camera is applied to generate a omni-directional distribution
map for obstacles around the vehicle, thereby increasing
driving safety. Based on an obstacle detection experiment
conducted in a complex environment during both day and
night, the effect of our detection method during the daytime
was shown to be more effective than that of other mainstream
methods in extracting complete obstacles, whereas for frag-
mentary and small obstacles such as branches, crowns, and
leaves, our method can also achieve a complete extraction.
Because the depth camera can work better in a dark envi-
ronment, the detected obstacles have a more complete shape
and clearer segmentation level at night, whereas the other
mainstream methods cannot work at all at night.

Using a depth camera and a binocular camera to collect the
depth and binocular images of the environment with complex
obstacles, and applying different methods to detect obstacles
in each image and calculate both the time required and the
detection rate, the results indicate that our method has a faster
detection speed than that of the other methods, as well as
higher detection, precision, and recall rates. Each of these
advantages shows that our method is more suitable for real-
time omni-directional obstacle detection for use in vehicles.
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