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ABSTRACT Text generation is a basic work of natural language processing, which plays an important role
in dialogue system and intelligent translation. As a kind of deep learning framework, Generative Adversarial
Networks (GAN) has been widely used in text generation. In combination with reinforcement learning, GAN
uses the output of discriminator as reward signal of reinforcement learning to guide generator training, but
the reward signal is a scalar and the guidance is weak. This paper proposes a text generation model named
Feature-Guiding Generative Adversarial Networks (FGGAN). To solve the problem of insufficient feedback
guidance from the discriminator network, FGGAN uses a feature guidance module to extract text features
from the discriminator network, convert them into feature guidance vectors and feed them into the generator
network for guidance. In addition, sampling is required to complete the sequence before feeding it into the
discriminator to get feedback signal in text generation. However, the randomness and insufficiency of the
sampling method lead to poor quality of generated text. This paper formulates text semantic rules to restrict
the token of the next time step in the sequence generation process and remove semantically unreasonable
tokens to improve the quality of generated text. Finally, text generation experiments are performed on
different datasets and the results verify the effectiveness and superiority of FGGAN.

INDEX TERMS Generative adversarial networks, text generation, deep learning, reinforcement learning.

I. INTRODUCTION
Generative Adversarial Networks (GAN) [1] has gradually
developed into a hot research field in deep learning since it
was proposed. As a generative model, its main application
field is image generation, but GAN also has a high research
potential in text generation. Poetry writing, dialogue system
and intelligent translation are all based on text generation.
Although some progress has been made, the quality of gen-
erated text is often poor or limited to specific areas and lack
of generality.

The combination of GAN and reinforcement learn-
ing (RL) for text sequence generation has become one of the
hotspots of research. Sequence GAN (SeqGAN) proposed
by Yu et al. [2] for the first time feeds discriminator output
as reward signals of reinforcement learning to generators as
decision guidance for generating sequences. GAN combined
with reinforcement learning has achieved remarkable results
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in the field of text generation, but the structure has the fol-
lowing drawbacks:

1) The probability that the discriminator outputs positive
and negative samples is used as a reward signal in rein-
forcement learning. The feedback signal is a scalar and
cannot preserve the high-level semantic information of
the text. The generator lacks a clear training direction.

2) Sampling is required to complete the sequence and
get feedback signal through discriminator in the text
sequence generation process. Due to the limitation of
sampling times, the sampling process is highly random
and inadequate, and may result in semantically unrea-
sonable sequences such as subject repetition and verb
deletion.

Based on the current problems of text generation, we pro-
pose a text generation algorithm based on the Feature-
Guiding Generative Adversarial Networks (FGGAN). The
improved algorithm will effectively solve the shortcomings
of the existing text generation model. The main contributions
of this paper are as follows:
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1) Because the output probability of the discriminator
is scalar, the training direction of the generator is
not clear. In this paper, a feature guidance module
is improved to transform the high-order text feature
extracted from the discriminator into the generator net-
work for feedback guidance. The feedback signal is
transformed into a guidance vector with more guidance
information to improve the generation of sequences by
the generator.

2) Because of the randomness and inadequacy in the
process of sequence sampling, it is possible to gen-
erate non semantic tokens in the process of sequence
generation. This paper proposes a method to create
a vocabulary mask based on semantic rules, which
restricts the tokens generated in the next time step
during the sequence generation. Remove the candidate
tokens with low correlation with the generated pre-
fix sequence to make the generated sequence is more
realistic.

II. RELATED WORK
Text generation is a task of simulating and generating
sequence data. Most text generation tasks are based on Recur-
rent Neural Network (RNN). The Long Short-Term Mem-
ory (LSTM) proposed by Hochreiter et al. [3] has been
widely used. Wen et al. [4] used LSTM to build a natural
language dialogue system. In 2014, Goodfellow proposed the
generative adversarial networks. Compared with the single
generation model, GAN has a more significant effect in
data generation. GAN uses generator and discriminator to
train and optimize in the adversarial way and finally reaches
the state of Nash equilibrium to effectively learn the data
distribution.

GANhas been successfully applied in the field of images to
generate realistic images. Chang et al. [5] proposed KGGAN
by setting up multiple generators, one of which is respon-
sible for learning the information in a priori knowledge
field and directing the learned knowledge to another gen-
erator to generate a variety of image data. But the disad-
vantages are that a priori domain knowledge is needed to
assist and the learned diversity is not easily accepted by
the discriminator. Lian et al. [6] proposed FG-SRGAN for
high-resolution image generation, mainly by setting up a
guidance module to learn the mapping from low-resolution
image to high-resolution image, to improve the quality of the
generated image by the generator.

However, due to the discreteness of text data, the original
GAN could not optimize the generator parameters based on
gradient backpropagation. Martin et al. [7] conducted some
analysis on the training methods of GAN such as using the
Wasserstein divergence instead of the traditional JS diver-
gence to train GAN in the field of text generation. In addition,
Che et al. [8] proposed the maximum-likelihood augmented
discrete GAN (MailGAN) and designed training techniques
to directly calculate the difference between the generated data
distribution and the real data distribution. Zhang et al. [9]

completed the training by adjusting the generator to make
the generated samples have the same characteristics as the
real samples. Su et al. [10] have made some achievements in
dialogue generation using GAN combined with a hierarchical
recurrent encoder-decoder. Fedus et al. [11] introduced an
actor-critic conditional GAN and producedmore realistic text
samples.

GAN can be combined with reinforcement learning. The
generator can be seen as a decision maker and the network
can be optimized using a policy gradient. Reinforcement
learning requires reward signals as feedback. At each time
step, complete sequences can be sampled using Monte Carlo
Tree Search (MC Search) [12] and fed into the discriminator
to get reward signal. Yu et al. proposed SeqGAN, which is
the first time to use discriminator as reward for reinforcement
learning. Nie et al. [13] proposed Relational GAN (RelGAN),
which uses Gumbel-Softmax to train GAN on discrete data
and multiple embedded representations in the discriminator
to provide a more informative signal. Lin et al. [14] proposed
RankGANwhich replaces the original binary classifier with a
sortingmodel based on cosine similarity tomake the feedback
of the discriminator more continuous. However, these models
still have the disadvantage that the output of the discrimi-
nator as a feedback signal is scalar and has weak guidance.
In addition, the randomness of the sampling process may
cause the network not to learn the implicit semantic infor-
mation, resulting in the unrealistic generated data. In this
paper, FGGAN is proposed for the shortcomings of the exist-
ing model and the effectiveness of the improved module is
verified by experiments.

III. ALGORITHM
This paper adopts the overall framework of GAN and puts
forward improvement aiming at the existing defects. Firstly,
the output scalar of the discriminator in the correlation algo-
rithm is used as the feedback signal, which leads to the
unclear training direction of the generator. In this paper,
a feature guidance module is improved to transform the
high-order text feature extracted from the discriminator into
the generator network for feedback guidance. In addition,
this paper proposes a method to create a vocabulary mask
based on semantic rules, which restricts the tokens generated
in the next time step during the sequence generation. The
improved model is named Feature-guiding GAN, and the
overall network structure is shown in Fig. 1.

The overall structure of the GAN is divided into a generator
Gθ and a discriminator Dφ . The objective of the generator is
to find the parameters of the optimal distribution probability
of the data. However, the parameter update does not originate
from the data sample, but from the back-propagation gradient
of the discriminator. The model is trained via the adversarial
strategy. Also, the generator and the discriminator are alter-
nately optimized.

The generator on the left activity box in Fig.1 can be
regarded as performing a text generation task. The objective
of the generator G is to predict the next token based on the
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FIGURE 1. The overall network structure of Feature-guiding GAN

generated sequence. Assuming a sequence of tokens, where
yi represents a token, y represents the vocabulary. Genera-
tor is mainly divided into text generation module marked
blue in Fig.1 and feature guidance module marked purple
in Fig.1, both of which adopt LSTM structure. Combining the
improved feature guiding module (Section III-A for details)
and the mask vector (Section III-B for details), the generation
equations in time step t can be shown in (1) -(3):

ht = RθR (ht−1, xt ) (1)

P(·|x1, . . . , xt )= zt (ht )=softmax(W (htwtMaskT )+ c) (2)

yt ∼ p(·|x1, . . . , xt ) (3)

RθR is the set of generator parameters, ht−1 is the hidden
state of the previous step, xt represents the input vector of
the current time step. The calculated current step hidden state
ht is a y-dimensional vector. ht combines the guide vector
wt generated by feature guidance module and mask vector
MaskT generated by semantic rule module to pass through a
softmax layer, calculates the probability distribution zt of the
tokens and samples a token yt .
The discriminator on the right activity box in Fig.1 uses the

Convolutional Neural Network (CNN). After vectoring the
input text, it uses convolutional kernels of different sizes to
extract the text features and transforms the extracted features
into the generator for more detailed sequence generation
guidance. The discriminator is trained by the negative sam-
ples generated by the generator and the positive samples in the
real data set, which is essentially a binary classification task.
For each sample x, the discriminator outputs the probability
Dφ(x) of whether x is the real data and sends it back to
the generator as the reward in reinforcement learning. The
optimization objective of the discriminator is shown in (4),
as follows:

max
φ

EY∼Pdata [logDφ(Y )]+ EY∼Gθ [log(1− Dφ(Y ))] (4)

Because of the discretization of the text sequence, the gen-
erator cannot solve the gradient of the objective function
to Dφ . For this problem, the reinforcement learning theory
can be combined with the sequence generation process as

a series of action selection. The action of each step is to
select the next token, i.e. ai = yt , and the state of each
step is a prefix sequence composed of generated tokens, i.e.
st = y1, . . . , yt−1. After the last step, the complete sequence
is sent to the discriminator and the output probability is used
as the reward of the generator. The goal of the generator is to
maximize the reward expectation. The optimization objective
of the generator is shown in (5), as follows:

max
θ

EY1:T∼Gθ [logDφ(Y1:T )] (5)

where logDφ(Y1:T ) is the reward of generator The strat-
egy of reinforcement learning is expressed as Gθ (a|s) =
P(a|s; θ ), which specifies the probability of selecting an
action under state s. The action reward value function is
denoted asQθ (s, a), which indicates the total reward expecta-
tion obtained according to the strategy after action a in state s.
The reward expectation of the Tth token is shown in (6),
as follows:

Qθ (s = Y1:T−1, a = yT ) = logDφ(Y1:T ) (6)

The total reward expectation is shown in (7), as follows:

EY1:T∼Gθ [Q
θ (Y1:T−1, yT )]

=

∑
y1

Gθ (y1|s0)...
∑
yT

Gθ (yT |Y1:T−1)Qθ (Y1:T−1, yT ) (7)

The discriminator can only judge the complete sequence,
whichmeans that the current generated token cannot be evalu-
ated in the sequence generation. The granularity of evaluating
the generation quality is too large when generating a com-
plete sequence, which is equivalent to treating every token
in the sequence the same. To obtain better results, the Monte
Carlo search method is used to complete the current gener-
ated sequence at the intermediate time. In the time step t ,
the unknown last T − t tokens can be sampled by the Monte
Carlo search and a K -time MC search can be shown in (8):

{Y 1
1:T , . . . ,Y

K
1:T } = MC(Y1:T ;K ) (8)

The purpose of MC search is to evaluate the corresponding
reward with the generated prefix sequence for each new
generated token. Random sampling is conducted through the
generator to continue to complete the incomplete sequence
and the sequence is sent to the discriminator to judge the
score. The scores that are obtained via multiple sampling are
averaged to obtain the reward expectation of the current token
and to reduce the granularity of reward guidance to the level
of tokens. The calculation method can be shown in (9):

Qθ (s = Y1:t−1, a = yt)

=


1
K

∑K

k=1
logDφ(Y k1:T ),Y

k
1:T ∈ MC(Y1:T ;K ) for t<T

logDφ(Y1:t ) for t=T


(9)

whereK is the times of sampling when calculating the reward
expectation for each time step. We finally set K = 4 in the
experiment. The increase of sampling times will increase the
time complexity of the whole network.
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A. FEATURE GUIDING NETWORK
In the process of generating sequence token by token, the gen-
erator needs the output of the discriminator as the reward
signal of reinforcement learning. However, the comparison
algorithm such as SeqGAN directly transmits the probability
value as the reward to the generator. The generator only uses
this scalar to optimize the network training. The sequence
can only be optimized the training direction through a large
number of samplings and the limited number of sampling
is also very small for a complete spatial distribution. The
gradient of the discriminator Dφ back to the generator is also
very small during training. These problems make the gener-
ator unable to optimize the network parameters effectively.
In view of the weak guidance of the discriminator feedback
signal, we add a feature guidance module in the generator
network. The purpose of the feature guidance module is to
obtain more abundant text features from the discriminator to
guide the generation.

The reward signal that is fed back to the generator by the
discriminator is a scalar and does not contain much seman-
tic information. The discriminator is a trained convolutional
neural network. The input data to be discriminated is first
processed by word embedding layer, then the semantic fea-
tures of text vectors are extracted by convolution operations
of different sizes in convolution layer. Convolutional neural
networks typically connect to the pooling layer to reduce the
dimension after the convolutional layer. However, the dif-
ference between positive and negative samples of the text is
often not on the macro level and it is necessary to consider the
differences in detail. Therefore, we do not adopt the pooling
method. Instead, it is replaced by a convolutional layer with
the step size equal to 1. It is subsequently sent to the output
layer through the fully connected layer. The output layer uses
the sigmoid function. The overall network structure of the
discriminator can be shown in (10):

Dφ(x) = sigmoid(φTo F(x)) (10)

where φ is the parameter of the discriminator network, φo
represents the parameter of the output layer which is the last
layer of the discriminator. F represents all parameters of the
network except the output layer and this part can be regarded
as a feature extraction network. This output result can be used
as the intermediate output to the output layer of the discrimi-
nator and can also be sent to the feature guidance module as
the input. SinceF is the output vector of the feature extraction
by the CNN, relative to the scalar of the discriminator output,
F contains more detailed semantic information. This vector
can represent the mapping of input samples to higher order
feature spaces. It can provide more detailed guidance for
generator optimization. The feature vector is shown in Fig. 2.

The feature vectors extracted by the convolution layer
cannot be directly connected to the input of each time step in
the text generation network. The feature vector is extracted
for the purpose of discriminator distinguishing positive and
negative samples, but each time step of text generation net-
work is to generate residual sequence. Direct access may lead

FIGURE 2. The feature vector extracted from the convolutional layer.

to uncoordinated network training, so a conversion module is
needed for further processing. In this paper, the network is
named the feature-guiding module.

The feature vector passed in by the discriminator is
recorded as ft and continues to use an LSTM network for
transformation, keeping synchronization with the text gener-
ation module.

The network structure can be shown in (11), as follows:

gt , hCt = CθC (ft , h
C
t−1) (11)

where C denotes a feature-guiding network, θC denotes the
parameter set of C , ht denotes a hidden state vector of the
current time step. The feature-guiding vector of the current
time step gt is jointly determined by the feature vector ft of
the current time step and the hidden state vector hCt−1 of the
previous time step. To maintain the stability of the network
training, gt can be normalized into a unit vector.

Because the dimension of the feature-guiding vector is
inconsistent with the vector that is generated by each time
step of the text generation module, linear conversion is also
necessary. Considering the stability of the network, the trans-
formation can be combined with the feature vector of the
latest k-step. In this paper, k = 4 is finally selected. The
process can be shown in (12), as follows:

wt = W
k∑
i=1

gt−i (12)

where W represents the dimensional transformation matrix
and wt represents the dimensionally transformed vector. wt
and the vector generated by text generation module jointly
determine the generation of the next token. The equation of
text generation module is can be shown in (13).

hrt = RθR (Xt , h
r
t−1) (13)

where RθR represents the text generation module and Xt rep-
resents the sequence representation vector of the current time
step. One dimension of Xt is vocabulary size and the other
dimension is the same as wt . Through matrix multiplication,
we can get a vector of vocabulary size, which represents the
probability that each token in vocabulary is selected. Then,

105220 VOLUME 8, 2020



Y. Yang et al.: FGGAN: Feature-Guiding Generative Adversarial Networks for Text Generation

the next token of the sequence is selected by the softmax layer
until the end. The probability distribution of the next word zt
can be shown in (14), as follows:

zt = softmax(Xtwt ) (14)

B. TEXT SEMANTIC RULES FOR RESTRICTING
GENERATION
Sequence generation is the process of token by token gen-
eration. The intermediate time sequence is not generated
completely, but it still needs to evaluate the reward of the
current generated token in this time step. Because the dis-
criminator can only accept the input of the complete sequence
and theMonte Carlo sampling can supplement the incomplete
sequence, a large number of sampling operations are needed
to fill the incomplete sequence in the intermediate time.
Then the complete sequence is fed into the discriminator to
determine the reward of the current token and the subsequent
generation is carried out according to the feedback guidance.
Due to the limitation of sampling times, the process of Monte
Carlo sampling cannot be fully traversed in the complete
vocabulary space, which has a high randomness. There may
be generating sequences with unreasonable semantics, such
as subject repetition and verb deletion.

This paper proposes a method to create a vocabulary mask
based on semantic rules, which restricts the tokens generated
in the next time step during the sequence generation. The
specific method is to preprocess the real dataset according
to the semantic rules to get the corresponding mask vector of
each token in the vocabulary. The mask vector represents the
relationship between tokens, such as part of speech, similar-
ity. It represents the tokens that should be restricted in the sub-
sequent generation when the token appears in the current step.
The dimension of the mask vector is equal to the dimension
of the vocabulary. If the parameter value on the dimension
is 0, it means that the token corresponding to the dimension
has a very low correlation with the generated prefix sequence
and subsequent generation should mask the token. The pur-
pose of mask vector is to eliminate the candidate tokens that
do not conform to the objective context in the generation,
so that the generation process can learn the implicit semantic
structure and improve the quality of the final generation
sequence.

Assuming that the vocabulary size is n and the sequence
length is m, the sampling space is of size nm. In the current
time step, if the prefix sequence has been generated, the sam-
pling space size is still the vocabulary size n. However, there
are many alternatives that do not conform to the current
semantics. These tokens should be restricted to subsequent
generation. Although the text sequence has a complex seman-
tic structure, in the case of the generated prefix sequence,
the frequency of occurrence of subsequent tokens has a non-
random probability distribution. We define rules in terms of
the word similarity. Each token in the text sequence can be
encoded into a word vector in the word embedding layer.
Word2vec [15] is a related model that is used to generate

FIGURE 3. The mask vector that corresponds to each token.

the word vector. The model is a shallow two-layer neural
network that is used to train to reconstruct the token. After
the training has been completed, the word2vec model can be
used to map each token to a vector, which can be used to
represent the relationships between tokens. This paper uses
the cosine distance to characterize the similarity between two
tokens. Each token in vocabulary is traversed to find out the
tokens with high subsequent relevance in real dataset, so as
to restrict in the subsequent generation process. The current
token iswordi and the cosine distances are calculated between
wordnext , which denotes the k tokens that appear next in the
real data sequence, and all tokens in the vocabulary. For every
token in the vocabulary, If k-times calculation similarity is
less than threshold Thsim, set the value to 0 in the correspond-
ing mask vector, otherwise, set it to 1. Thus, the vectorMaski
that corresponds to each token is obtained. The vector can be
shown in Fig. 3 and equations (15)-(15).

Wksimn = 0 if Sim(Wk ,Vocan) < Thsim else 1 (15)

Maski =
k⋃
j=1

Masknextj (16)

Through the experimental test, the parameter k is set to 5,
Thsim is set to 0.6. The vector similarity formula can be shown
in (17), as follows:

similarity =

∑n
i=1 Ai ∗ Bi√∑n

i=1 A
2
i ∗

√∑n
i=1 B

2
i

(17)

where n is the word vector dimension. When generation at
each time step, consider the m tokens that are generated by
the prefix sequence. The masks are Maski, i ∈ [1,m]. The
final mask is ORed by the mask vectors of the latest m tokens
at the current time step, which can be shown in (18).

MaskT =
m⋃
i=1

MaskT−i (18)

Through the experimental test, the parameter m is set
to 4. Finally, MaskT is used to mask the token selection
probability of the current time step. Combined with the mask
vectorMaskT and the feature-guiding vector wt in the feature
guidance module, the current time step vector Xt in the text
generation module is sent to the softmax layer to determine
the next token generation. The probability of the next token
can be shown in equation (19) and Fig. 4.

zt = softmax(XtwtMaskT ) (19)
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FIGURE 4. Sampling through the mask vector.

C. NETWORK TRAINING
In the early stage of the GAN, the generator will encounter
suboptimal model convergence. Because the underlying
parameters are too random, it is impossible to generate higher
quality text, which causes the feedback to be a large penalty
value, which leads to slow convergence of the model. There-
fore, the maximum likelihood pre-training method is used
to reduce the risk. In the pre-training process, the generator
network uses the cross-entropy as the loss function to quickly
optimize the generator parameters.

The improved model is still composed of a generator and
a discriminator, where in the generator includes a feature-
guiding network and a text generation network, both of which
are composed of LSTM. The discriminator is composed of a
CNN. Except for the last layer of the output layer classifi-
cation, all layers are extracted as feature extraction network.
The text generation network can use supervised pre-training
to accelerate the convergence of the model before the whole
system begins training to avoid the model collapse.

In the overall training, the method of adversarial training is
still adopted. When training the discriminator, the supervised
training method is used. The real data are regarded as the
positive sample and the sequence that is generated by the
generator is regarded as the negative sample. Also, the cross-
entropy loss function is utilized. When training the generator,
the parameters of the discriminator are fixed and the gener-
ator network adopts the token-by-token generation method.
The prefix sequence is oversampled to obtain the complete
sequence and sent to the discriminator to obtain the reward
value.We optimize generator parameters in a gradient descent
way to get the highest reward.

IV. EXPERIMENTS
To evaluate the performance of the design, an experiment1

with three parts was designed: The first part of the experiment
uses synthetic data for the text generation test. The train-
ing data comes from the well-trained LSTM model Goracle2

disclosed in the paper of SeqGAN, which randomly initial-
izes the LSTM network parameters and randomly generates
sequences with length of 20 as the real dataset. The effect
of generator Gθ learning data distribution and generating

1the code is available on the https://github.com/danxiaodong/FGGAN
2the code is available on the https://github.com/LantaoYu/SeqGAN

TABLE 1. Convolution layer parameters.

sequence is judged by the negative log-likelihood (NLL) of
Goracle. The second part of the experiment uses the COCO
dataset [16] as the real text data for the experiment. The
COCO dataset is a dataset that the Microsoft team can use
for image recognition, which has a manual text description of
each image, and it is used as a real dataset. In the third part,
the experiment was conducted using a Chinese poetry dataset
inwhich 8,000Chinese Tang poemswere selected as datasets.
Each poem contains five or seven Chinese words per sen-
tence. The evaluation of real data experiment is bilingual
evaluation understudy (BLEU) [17]. The BLEU score is used
to compare and count the number of commonly occurring
n-ary words for the quality evaluation of the generated text.

Using the above datasets for comparison experiments,
MLE trained LSTM, SeqGAN, RankGAN, RelGAN and
FGGAN proposed in this paper are used for text generation
comparison tests. The text generation experiments that are
conducted in this paper all use free generation by inputting a
random character as the starting character. Finally, the quality
of the generated text is judged by calculating the correspond-
ing evaluation.

Generator in FGGAN mainly includes text generation
module and feature guidance module, both of which adopt
LSTM structure. In text generation module, it is specified
that the sequence generation length is 20, the dimension of
the input embedding layer is 128 and the dimension of the
hidden layer is 128. The feature guidancemodule uses the text
feature vector extracted from the discriminator as the input
and generates the feature guidance vector with dimension 16.
The guidance vector and the output of text generation module
are transformed to determine the generation of the next token.
The discriminator uses CNN structure for feature extraction
and classification output. The dimension of the input embed-
ding layer is 256. The subsequent convolutional layer param-
eters are shown in the following Table 1 and the convolution
step is set to 1. The dimension of text feature vector extracted
by convolutional layer is 1720, which is transferred to feature
guidance module for processing.

L2 regularization with weight parameter of 0.2 is added
on the basis of cross entropy loss function and dropout is
set to 0.75 to avoid over fitting. In the adversarial training
of generator and discriminator, the ratio of generator and
discriminator training times is 1:3, that is, generator training
once and discriminator training three times.

In the synthetic data experiment, initialize the LSTM
Model Goracle and generate 10000 sentences as the real data.
Both FGGAN and comparison algorithm use this dataset for
text generation. The NLL function of Goracle is used as the
evaluation of data generation effect after each batch of data is
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TABLE 2. Experimental results of NLL on synthetic data.

FIGURE 5. Synthetic data experimental training curves.

generated. NLL objectively represents the ability of learning
data distribution of the model. The equation is shown in (20),
as follows:

NLL = EY1:T∼Gθ [
∑T

t=1
logGoracle(yt |Y1:t−1)] (20)

Each model uses random noise to generate data. The effect
comparison is shown in the Fig 5. In the pretraining,
the FGGAN model has shown a more advantageous effect
on the evaluation compared with other models. After entering
the adversarial stage, the FGGAN convergence speed is better
than other models and the final NLL value is closer to the real
data, as shown in the Table 2.

In the COCO real data experiment, using the image
description sequence of dataset as the target of genera-
tion. The dataset includes 19,383 words and 198,751 sen-
tences. This experiment preprocesses the dataset by deleting
words with frequencies of less than 10 and sentences con-
taining them. The processed dataset includes 5126 words.
45000 sentences were randomly selected as the training set
and 5000 sentences were used as the test set. The BLEU
scores are presented as following Table 3 and Fig. 6. FGGAN
training loss on BLEU is shown in Fig. 7. The results demon-
strate that the FGGAN model outperforms the compared
models.

In order to verify the enhancement effect of the improved
module proposed in this paper, we use the COCO dataset
for comparative experiments and the network settings are
consistent with the above.The feature guidance moule and
the semantic rule module are deleted as the baseline. The

TABLE 3. COCO dataset BLEU score comparison.

FIGURE 6. BLEU on the COCO dataset.

FIGURE 7. FGGAN training loss on BLEU.

effect after adding the improved module is compared and the
effect scores of each model are shown in the Fig. 8. It can be
seen that the improved module in this paper has improved the
effect of the baseline model.

The comparison of real data and generated data on the
COCO dataset is shown in table 4.

To evaluate the improved model that is proposed in this
paper, text generation of Chinese poetry was also conducted
and 8000 Chinese Tang poems were selected as data sets.
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FIGURE 8. The improvement of feature guidance module and semantic
rule module.

TABLE 4. Comparison of real data and generated data on the COCO
dataset.

Each poem contains five or seven Chinese words per sen-
tence. Among them, 4000 poems are used as training sets,
4000 are used as test sets and BLEU-2 is used as the result

TABLE 5. Chinese poetry dataset BLEU score comparison.

FIGURE 9. BLEU on the Chinese poetry dataset.

judgement standard. The scores are shown in Table 5 and
Fig. 9. The improved model outperforms other models in
simple poetry generation.

V. CONCLUSION
For text sequence generation, this paper proposes an
improved framework FGGAN. In order to solve the problem
that the feedback signal of the discriminator is not very
instructive, this paper proposes a feature guidance module
which obtains the text semantic feature feedback to the gen-
erator with more guidance. In addition, this paper proposes
a method to create a vocabulary mask based on semantic
rules which restricts the tokens during the generation to make
the sequence more realistic. The superiority of the improved
module is evaluated experimentally. In the synthetic experi-
ment, the negative log-likelihood is used for the evaluation.
FGGAN proposed in this paper has higher ability of fit-
ting data distribution. In the experiment on real data, BLEU
is used for the evaluation. Compared with other models,
FGGAN has a higher evaluation score and generates more
realistic text data.

VI. DISCUSS
Compared with other comparison algorithms, FGGAN in this
paper has some improvements in the relevant dataset, but
there are still some problems that need further improvement.
Firstly, the feature guidance module extracts the text features
from the discriminator and sends them to the text generation
module for guidance after transformation. However, because
the linear transformation may not be able to adapt to the
high-speed changing feature space of the discriminator CNN,
the text generation module may not learn advanced semantic
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features. Further research on extraction and transformation
of text feature is needed in the future. Secondly, in the pro-
cess of using semantic rules to restrict sampling, the mask
vector is obtained by preprocessing the dataset according
to the semantic rule. However, too complex rule restriction
will cause the neural network to mode collapse, resulting in
some duplicate text sequences. Subsequent work related to
semantic rule optimization needs to be carried out.
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