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ABSTRACT Actuators nonlinearities are unknown external perturbations in robots, which are unwanted
because they can severely limit their performance. This research is focused on the stabilization of robots
subject to actuators nonlinearities with a regulator containing the sigmoid mapping. Our regulator has the
following threemain characteristics: a) a sigmoidmapping is used to ensure boundedness of the regulator law
terms, b) the chattering is reduced by the usage of the saturation mapping instead of the signummapping, and
c) the stabilization is ensured by the Lyapunov analysis. Finally, we evaluate our regulator for the stabilization
of two robots.
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I. INTRODUCTION
The nonlinear uncertainties and external perturbations are
unwanted characteristics in nonlinear models because they
can severely limit their performance or damage their com-
ponents; this fact has been drawing much interest in the
community for a long time [1]–[4]. The linear quadratic
regulator is one approach used to reach constant paths in
linear models, it is called optimization [5]–[8]. Different to
the mentioned research, a regulator is one approach used
to reach constant paths in nonlinear models subject to non-
linear uncertainties or external perturbations, it is called
stabilization [2], [3].

There is some research of regulators focused on the
stabilization of nonlinear models subject to nonlinear uncer-
tainties or external perturbations. Authors addressed regu-
lators for stabilization of microgrids in [9], [10], and [11].
In [12]–[14], and [15], authors focused fuzzy sliding
model regulators of robotic exoskeletons and robotic
manipulators. Authors employed neural network sliding
mode regulators of wheeled aerial vehicles and robotic
manipulators in [16]–[18], and [19]. In [20]–[22], and [23],
authors detailed sliding mode regulators based on observers
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of robotic exoskeletons and quadrotors. Authors analyze
proportional derivative sliding model regulators of overhead
cranes and inverted pendulums in [24]–[26], and [27]. In
[28]–[30], and [31], authors addressed robust sliding model
regulators of parallel manipulators and quadrotors. Authors
discussed regulators for stabilization of multiple converters
in [32], [33], and [34].

The aforementioned research is divided in two big groups
where [16]–[19], [21], [22], [24]–[26], [29], [32]–[34] are
focused on the stabilization of nonlinear models subject to
nonlinear uncertainties, and [9]–[15], [20], [23], [27], [28],
[30], [31] are focused on the stabilization of nonlinear models
subject to external perturbations. It is important to note that
in most of the cases the nonlinear uncertainties or external
perturbations are unknown. Hence, the stabilization of non-
linear models where the nonlinear uncertainties or external
perturbations are unknown is of great interest.

Actuators nonlinearities are a kind of external perturba-
tions in the robots nonlinear models yielded by the interaction
of actuators with the environment [1]–[4]. This research is
focused on the stabilization of robots subject to actuators non-
linearities with a regulator containing the sigmoid mapping.
Our regulator has the following three main characteristics:
a) we utilize the sliding mode in our regulator to compensate
the actuators nonlinearities and gravity terms, b) we also use
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the proportional derivative approach in our regulator to reach
the stabilization of the robots positions; and c) we ensure the
stabilization of the regulator error by the Lyapunov analysis.

There are other two issues in a regulator that could limit
its performance: a) when boundedness of the regulator law
terms is not ensured, and b) when chattering of the signum
mapping is increased. The mentioned issues are solved in
our regulator as following: a) taking into account that the
sigmoid mapping is used in a neural network to ensure its
boundedness [16]–[19], we use the sigmoid mapping to
ensure boundedness of the regulator law terms, b) taking
into account that the saturation mapping is used to reduce
its chattering without ensuring its stabilization [28]–[31], we
reduce the chattering by the usage of the saturation mapping
while we ensure the stabilization.

This research is structured as following. In section II,
we present the nonlinear model of robots, and the propor-
tional derivative and sliding mode regulators. In section III,
we present a regulator containing the sigmoidmapping for the
stabilization of robots. In section IV, we evaluate our regulator
for the stabilization of two robots. In section V, we express the
conclusions and future research.

II. SOME PROPERTIES OF ROBOTS
In this section we describe some properties of robots such
as their nonlinear model, and the proportional derivative and
sliding mode regulators.

We define the nonlinearmodel for the robots with n degrees
of freedom in the joint space as [1], [2], [4]:

Q(p)
··
p+ C(p,

·
p)
·
p+ O(p) = τ, (1)

p ∈ <n×1 as the position,
·
p ∈ <n×1 as the speed in the robot,

Q(p) ∈ <n×n as the robot inertia matrix which is symmetric
and positive definite, C(p,

·
p) ∈ <n×n as the centripetal

and Coriolis terms, and O(p) as the gravity terms, τ as the
actuators nonlinearities.

We express the states and actuators nonlinearities as:

w1 = p ∈ <n×1,

w2 =
·
p ∈ <n×1,

e = τ ∈ <n×1, (2)

w1 =
[
w11 w12

]T
=
[
p1 p2

]T , w2 =
[
w21 w22

]T
=[

·
p1
·
p2

]T
. Then, we rewrite the nonlinear model of the

equation (1) as:

·
w1 = w2,

Q(w1)
·
w2 + C(w1,w2)w2 + O(w1) = e, (3)

Q(w1), C(w1,w2), O(w1) as in (1).
We represent the actuators nonlinearities e as [1]–[4]:

e =


nr (v− wr ) v ≥ wr
0 wl < v < wr
nl (v− wl) v ≤ wl,

(4)

FIGURE 1. The actuator nonlinearities.

nr , nl , wr and wl as constant terms for the actuators nonlin-
earities. Note that v is the input of the actuators nonlinearities.
We show the actuators nonlinearities in Figure 1.

The actuators nonlinearities of robots are symmetric as
nr = nl in (4); consequently, we can express the actuators
nonlinearities e of (4) as:

e =


nl (v− wr ) v ≥ wr
0 wl < v < wr
nl (v− wl) v ≤ wl,

H⇒ e =


nlv v ≥ wr
nlv wl < v < wr
nlv v ≤ wl

+


−nlwr v ≥ wr
−nlv wl<v<wr
−nlwl v ≤ wl,

(5)

after some arranges the actuators nonlinearities e of (5) are
expressed as:

e = nlv− h(v),

h(v) =


nlwr v ≥ wr
nlv wl < v < wr
nlwl v ≤ wl,

(6)

with h(v) as the nonlinearities. We note that the nonlinearities
h(v) are bounded as:

|h(v)| ≤ h, (7)

We will use the next property in a posterior section to reach
the stabilization of our regulator.
Property 1:We express the centripetal and Coriolis matrix

as skew-symmetric and this matrix complies the relationship:

wT
(
·

Q(w1)− 2C(w1,w2)
)
w = 0, (8)

w = [w1,w2]T , Q(w1), and C(w1,w2) as in (3).
Now, we express the proportional derivative and sliding

mode regulators because they will be used for the results in a
posterior section.

We detail a proportional derivative regulator as [24], [25]:

v =
1
nl

(
−Kpw̃1 − Kd w̃2

)
, (9)
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w̃1 = w1 − wd1 ∈ <
n×1, w̃1 ∈ <

n×1 as the position regulator
error, w1 ∈ <

n×1 as the position, wd1 ∈ <
n×1 as the constant

desired position, w̃2 = w2 ∈ <
n×1 as the speed regulator

error, Kp, Kd ∈ <n×n as positive definite, symmetric and
constant matrices, wd1 ∈ <

n×1 as the desired reference, nl
as a actuators nonlinearities term.

We detail a sliding mode regulator as [2], [3]:

v =
1
nl

(
−Kpw̃1 − Kd w̃2 − Ksign (w̃2)

)
,

sign(w̃2) =


1 w̃2 > 0
0 w̃2 = 0
−1 w̃2 < 0,

(10)

w̃1 = w1 − wd1 ∈ <
n×1, w̃1 ∈ <

n×1 as the position regulator
error, w1 ∈ <

n×1 as the position, wd1 ∈ <
n×1 as the constant

desired position, w̃2 = w2 ∈ <
n×1 as the speed regulator

error, Kp, Kd ∈ <n×n as positive definite, symmetric and
constant matrices,wd1 ∈ <

n×1 as the desired reference, sign(·)
as the signum mapping, nl as a actuators nonlinearities term.
Remark 1: The actuators nonlinearities e of (4) are

expressed as the external perturbations of (6) where the
nonlinearities h(v) are the external perturbations yielded by
the interaction of actuators with the environment.

III. A REGULATOR CONTAINING THE SIGMOID MAPPING
We represent the gravity terms O(w1) of (3) bounded as:

|O(w1)| ≤ O, (11)

We take into account the stabilization case in this research
due to we use the desired speed states as wd2 = 0, and the
desired references as constant. We detail a regulator contain-
ing the sigmoid mapping v as:

v=
1
nl

(
−

(
1−b(w̃1)2

)T
Kpb(w̃1)−Kd w̃2−Ksat(w̃2)

)
,

sat(w̃2)=


1 w̃2 > 1
w̃2 |w̃2| ≤ 1
−1 w̃2 < −1,

b(w̃1)=
1− exp (−2w̃1)

1+ exp (−2w̃1)
, (12)

w̃1 = w1−wd1 ∈ <
n×1, w̃1 ∈ <

n×1 as the position regulator
error, w1 ∈ <

n×1 as the position, wd1 ∈ <
n×1 as the constant

desired position, w̃2 = w2 ∈ <
n×1 as the speed regulator

error, Kp, Kd ∈ <n×n as positive definite, symmetric and
constant matrices, sat(·) as the saturation mapping, b(·) as the
sigmoid mapping, K as a constant such as O + h ≤ K , O as
in (11), h as in (7), nl as a actuators nonlinearities term. It is
important to note that we do not know the behavior of O(w1),
h(v) and we utilize their upper bounds O, h.
Remark 2: Since w2 will reach to wd2 and w

d
2 = 0, it yields

w̃2 = w2 ∼= 0; consequently, w̃2 is bounded, and since b(w̃1)
and sat(w̃2) also are bounded, it yields that the regulator law
terms v for a regulator containing the sigmoid mapping (12)
are bounded.

FIGURE 2. A regulator containing the sigmoid mapping.

In Figure 2 we show a regulator containing the sigmoid
mapping called RSM for the stabilization of robots called
Robot.

Now, we will detail the stabilization of the regulator error.
Theorem 1: The stabilization of the regulator error in the

close-loop model of a regulator containing the sigmoid map-
ping (12) and robots (3) is ensured, and the speed regulator
error w̃2 will complies with:

lim sup
T→∞

‖w̃2‖
2
= 0, (13)

T as the final time, w̃2 = w2, |O(w1)| ≤ O, |h(v)| ≤ h, and
O+ h ≤ K.

Proof: We represent the Lyapunov candidate as:

L1 =
1
2
w̃T2Q(w1)w̃2 +

1
2
b(w̃1)TKpb(w̃1), (14)

Q(w1) as the positive definite matrix of (3) and Kp as the
positive definitematrix of (12).We take into account w̃2 = w2
and we substitute (12) into (3), we obtain the closed-loop
model as:

Q(w1)
·
w2 + C(w1,w2)w2 + O(w1)

= e = nlv− h(v)

= nl
1
nl

(
−

(
1− b(w̃1)2

)T
Kpb(w̃1)

−Kd w̃2 (−Ksat(w̃2)))− h(v),

H⇒ Q(w1)
·

w̃2

= −

(
1− b(w̃1)2

)T
Kpb(w̃1)

−Kd w̃2 − O(w1)− h(v)− Ksat(w̃2)

−C(w1,w2)w̃2, (15)

We use the fact w̃2 = w2, we express the derivative of (14)
as:

·

L1 = w̃T2Q(w1)
·

w̃2 +
1
2
w̃T2
·

Q(w1)w̃2

+ w̃T2
(
1− b(w̃1)2

)T
Kpb(w̃1), (16)
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·

w̃1 =
·
w1 −

·
w
d
1 = w2 − wd2 = w2 = w̃2 and

·

w̃2 =
·
w2.

We substitute the last equation of (15) into (16) as:

·

L1 = w̃T2

(
−

(
1− b(w̃1)2

)T
Kpb(w̃1)− Kd w̃2

−O(w1)− h(v)− Ksat(w̃2)− C(w1,w2)w̃2

)
+

1
2
w̃T2
·

Q(w1)w̃2 + w̃T2
(
1− b(w̃1)2

)T
Kpb(w̃1),

H⇒
·

L1 = −w̃T2Kd w̃2 − w̃T2O(w1)

− w̃T2 h(v)− w̃
T
2Ksat(w̃2)

+
1
2
w̃T2
·

Q(w1)w̃2 − w̃T2C(w1,w2)w̃2

− w̃T2
(
1− b(w̃1)2

)T
Kpb(w̃1)

+ w̃T2
(
1− b(w̃1)2

)T
Kpb(w̃1), (17)

after some arranges,
·

L1 of (17) is expressed as:
·

L1 = −w̃T2Kd w̃2 − w̃T2O(w1)

− w̃T2 h(v)− w̃
T
2Ksat(w̃2)

+
1
2
w̃T2

(
·

Q(w1)− 2C(w1,w2)
)
w̃2, (18)

We use (8) of Property 1 in the equation of (18) as:
·

L1=−w̃T2Kd w̃2−w̃T2O(w1)− w̃T2 h(v)− w̃
T
2Ksat(w̃2), (19)

From (11) O(w1) + h(v) ≤ |O(w1)| + |h(v)| ≤ O + h ≤ K ,

and from (12) sat(w̃2) =

 1 w̃2 > 1
w̃2 |w̃2| ≤ 1
−1 w̃2 < −1

, we represent

the three cases of the saturation mapping. 1) If w̃2 > 1, then
sat(w̃2) = 1 and w̃2 = |w̃2|, we substitute in (19) as:

·

L1 ≤ −w̃T2Kd w̃2 + |w̃2|
T O+ |w̃2|

T h− |w̃2|
T K ,

⇒
·

L1 ≤ −w̃T2Kd w̃2, (20)

2) If |w̃2| ≤ 1, then sat(w̃2) = w̃2 and w̃T2 w̃2 = |w̃2|
T
|w̃2|,

we substitute in (19) as:
·

L1 = −w̃T2Kd w̃2 + |w̃2|
T O+ |w̃2|

T h− w̃T2 w̃2K ,

⇒
·

L1 = −w̃T2Kd w̃2 + |w̃2|
T O

+ |w̃2|
T h− |w̃2|

T
|w̃2|K ,

⇒
·

L1 = −w̃T2Kd w̃2, (21)

due to in this case |w̃2| ≤ 1. 3) If w̃2 < −1, then sat(w̃2) =
−1 and w̃2 = − |w̃2|, we substitute in (19) as:
·

L1 = −w̃T2Kd w̃2 −

(
− |w̃2|

T
)
O(w1)

−

(
− |w̃2|

T
)
h(v)−

(
− |w̃2|

T
)
K (−1) ,

⇒
·

L1 ≤ −w̃T2Kd w̃2 + |w̃2|
T O+ |w̃2|

T h− |w̃2|
T K ,

⇒
·

L1 ≤ −w̃T2Kd w̃2, (22)

The three cases yield the same inequality, from (20), (21),
(22) we express:

·

L1 ≤ −w̃T2Kd w̃2, (23)

From [2], [3], the stabilization of the regulator error is
ensured. We integrate (23) from 0 to T as:

T∫
0

w̃T2Kd w̃2dt ≤ L1,0 − L1,T ≤ L1,0,

⇒
λmin(Kd )

T

T∫
0

‖w̃2‖
2 dt ≤

1
T

T∫
0

w̃T2Kd w̃2dt ≤
1
T
L1,0, (24)

and applying the lim sup
T→∞

to both sides of the last inequality of

(24) is:

lim sup
T→∞

 1
T

T∫
0

‖w̃2‖
2 dt

 ≤ L1,0
λmin(Kd )

(
lim sup
T→∞

(
1
T

))
=0,

(25)

If T →∞, then ‖w̃2‖
2
= 0, and it is (13).

Remark 3: Our regulator (12) requires to comply with
conditions (11), (7) to be applied for the stabilization of
robots (3), (4).

IV. RESULTS
In this section, we evaluate a regulator containing the sigmoid
mapping of (12) denoted as RSM, a proportional derivative
regulator of (9), [24], [25], and a sliding mode regulator
of (10), [2], [3] denoted as SM, for the stabilization of the
scara and two link robots. Our goal in the regulators is that
the paths of the states in robots must follow the paths of
desired constant references as fast as possible. The scara and
two link robots are chosen due to they are written as (3) and
could be employed in pick and place, screwed, printed cir-
cuits boards, packaging and labeling, etc. We mainly use the
MATLAB software for the results.We utilize themean square
error (MSE), the root mean square error (RMSE), the mean
absolute error (MAE), and the mean absolute percent error
(MAPE) for the evaluations as:

MSE =

 1
T

T∫
0

w̃2dt

 , (26)

RMSE =

 1
T

T∫
0

w̃2dt


1
2

, (27)

MAE =

 1
T

T∫
0

|w̃| dt

 , (28)
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FIGURE 3. Scara robot.

MAPE =

100
T

T∫
0

|w̃| dt

 , (29)

w̃2
= w̃2

11 + w̃
2
12 + . . .+ w̃

2
1n + w̃

2
21 + w̃

2
22 + . . .+ w̃

2
2n as the

positions and speeds or w̃2
= e21+e

2
2+. . .+e

2
n as the actuators

nonlinearities. w̃2
11 =

(
w11 − wd11

)2
, w̃2

12 =
(
w12 − wd12

)2
,

w̃2
1n =

(
w1n − wd1n

)2
as the positions regulators errors, w̃2

21 =

w2
21, w̃

2
22 = w2

22, w̃
2
2n = w2

2n as the speeds regulators errors,
e21 = e21, e

2
2 = e22, e

2
n = e2n as the actuators nonlinearities

regulators errors,w11,w12,w1n as the positions,wd11,w
d
12,w

d
1n

as the constant desired positions, w21, w22, w2n as the speeds,
and e1, e2, e3 as the actuators nonlinearities.

A. SCARA ROBOT
The scara robot has three degrees of freedom, it has two rotary
joints and two links configured in horizontal position, it has
one linear joint and one link configured in vertical position.
We express the scara robot of the Figure 3.

We write the scara robot as (3) and we detail it as:
·
w1 = w2,

Q(w1)
·
w2 + C(w1,w2)w2 + O(w1)

= e,

Q(w1) =

 q11(w1) q12(w1) q13(w1)
q21(w1) q22(w1) q23(w1)
q31(w1) q32(w1) q33(w1)

 ,
C(w1,w2) =

 c11(w1,w2) c12(w1,w2) c13(w1,w2)
c21(w1,w2) c22(w1,w2) c23(w1,w2)
c31(w1,w2) c32(w1,w2) c33(w1,w2)

,
O(w1) =

[
o1(w1) o2(w1) o3(w1)

]T
, (30)

and:

q11(w1) = J13 + m2l2c1 + m3

(
l21 + l

2
2

)
+m4

(
l21 + l

2
2

)
+ 2l1C2 (m3lc2 + m4l2) ,

q12(w1) = q21(w1) =
(
m3l2c2+m4l22

)
+l1C2 (m3lc2+m4l2),

q22(w1) = J3 +
(
m3l2c2 + m4l22

)
,

q33(w1) = m4, (31)

the other terms of Q(w1) are zero,

c11(w1,w2) = −2l1S2 (m3lc2 + m4l2)w22,

c12(w1,w2) = −l1S2 (m3lc2 + m4l2)w22,

c12(w1,w2) = 2l1S2 (m3lc2 + m4l2)w21, (32)

the other terms of C(w1,w2) are zero,

o3(w1) = −m3g (33)

the other terms of O(w1) are zero. e as actuators
nonlinearities, w1 as positions, w2 as speeds, m2, m3, and m4
as the masses of the links one, two, and three, w11 = θ1,
w12 = θ2, as the angles of the joints one and two in rad,
w13 = lc3 as the length of the link three, in m, g is the
acceleration gravity constant. l1 = l2 = 0.3 m, lc1 = l1/2,
lc2 = l2/2, m2 = m3 = m4 = 0.3 kg, J13 = J1 + J2 + J3,
J1 = 0.0208 kgm2, J2 = J3 = 0.0127 kgm2, and g = 9.81
m/s2. nr = nl = 0.5, wr = 0.5, and wl = −0.5 as the
actuators nonlinearities terms.

PD of [24], [25] is expressed by equation (9) with param-

eters Kp =

 200 0 0
0 200 0
0 0 500

, Kd =
 10 0 0

0 10 0
0 0 10

.
SM of [2], [3] is expressed by equation (10) with param-

eters Kp =

 200 0 0
0 200 0
0 0 500

, Kd =
 10 0 0

0 10 0
0 0 10

, K = 1.5
1.5
1.5

.
RSM of this research is expressed by equation (12)

with parameters Kp =

 200 0 0
0 200 0
0 0 500

, Kd = 10 0 0
0 10 0
0 0 10

, K =
 1.5
1.5
1.5

.
We evaluate the actuators nonlinearities in the Figure 4,

we evaluate the positions in the Figure 5, we evaluate the
speeds in the Figure 6, we show the MSE of (26), the RMSE
of (27) in the Table 1, theMAE of (28), and theMAPE of (29)
in the Table 2 for the scara robot.

In the Figure 5, since the position and speed of RSM reach
better the paths of the constant desired references than the
position and speed of PD and SM, we can see that RSM is
more efficient than PD and SM. In the Figures 4 and 6, in the
RSM the chattering of the actuators nonlinearities and speeds
is reduced, while in the SM the chattering of the actuators
nonlinearities and speeds is not reduced, and in the PD the
actuators nonlinearities and speeds are not stabilized. In the
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FIGURE 4. Actuators nonlinearities for the scara robot.

FIGURE 5. Positions for the scara robot.

TABLE 1. MSE and RMSE for the scara robot.

Table 1 and Table 2, since theMSE, RMSE,MAE, andMAPE
for the RSM are smaller than for PD and SM, we can show
that RSM is more efficient than PD and SM.

B. TWO LINK ROBOT
The two link robot has two degrees of freedom, it has two
rotary joints and two links configured in vertical position.
We express the two link robot of the Figure 7.

We write the two link robot as (3) and we detail it as:
·
w1 = w2,

Q(w1)
·
w2 + C(w1,w2)w2 + O(w1)

FIGURE 6. Speeds for the scara robot.

TABLE 2. MAE and MAPE for the scara robot.

= e,

Q(w1) =
[
q11(w1) q12(w1)
q21(w1) q22(w1)

]
,

C(w1,w2) =
[
c11(w1,w2) c12(w1,w2)
c21(w1,w2) c22(w1,w2)

]
,

O(w1) =
[
o1(w1) o2(w1)

]T
, (34)

and:

q11(w1) = J12 + m2l2c2C2,

q22(w1) = J2 + m2l2c2, (35)

the other terms of Q(w1) are zero,

c12(w1,w2) = −m2l2c2S2w21,

c21(w1,w2) = m2l2c2S2C2w21, (36)

the other terms of C(w1,w2) are zero,

o2(w1) = m2glc2C2, (37)

the other terms of O(w1) are zero. e as actuators
nonlinearities, w1 as positions, w2 as speeds, m2 as the mass
of the link two in kg, w11 = θ1 and w12 = θ2 as the angles
of the joints one and two in rad, g is the acceleration gravity
constant, J1 and J2 as the inertias in kgm2, C2 = cos(w12),
S2 = sin(w12). m2 = 0.34 kg, l2 = 0.293 m, lc2 =

l2
2 ,

J12 = J1 + J2, J1 = 0.0208 kgm2, J2 = 0.0127 kgm2, and
g = 9.81 m/s2. nr = nl = 0.5, wr = 0.5, and wl = −0.5 as
the actuators nonlinearities terms.

PD of [24], [25] is expressed by equation (9) with param-

eters Kp =
[
500 0
0 500

]
, Kd =

[
30 0
0 30

]
.
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FIGURE 7. Two link robot.

FIGURE 8. Actuators nonlinearities for the two link robot.

SM of [2], [3] is expressed by equation (10) with parame-

ters Kp =
[
500 0
0 500

]
, Kd =

[
30 0
0 30

]
, K =

[
1.5
1.5

]
.

RSM of this research is expressed by equation (12) with

parameters Kp =
[
500 0
0 500

]
, Kd =

[
30 0
0 30

]
, K =[

1.5
1.5

]
.

We evaluate the actuators nonlinearities in the Figure 8,
we evaluate the positions in the Figure 9, we evaluate the
speeds in the Figure 10, we show the MSE of (26), the RMSE
of (27) in the Table 3, theMAE of (28), and theMAPE of (29)
in the Table 4 for the two link robot.

FIGURE 9. Positions for the two link robot.

FIGURE 10. Speeds for the two link robot.

TABLE 3. MSE and RMSE for the two link robot.

TABLE 4. MAE and MAPE for the two link robot.

In the Figure 9, since the position and speed of RSM reach
better the paths of the constant desired references than the
position and speed of PD and SM, we can see that RSM is
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more efficient than PD and SM. In the Figures 8 and 10,
we can see that in the RSM the chattering of the actuators
nonlinearities and speeds is reduced, while in the SM the
chattering of the actuators nonlinearities and speeds is not
reduced, and in the PD the actuators nonlinearities and speeds
are not stabilized. In the Table 3 and Table 4, since the MSE,
RMSE, MAE, and MAPE for the RSM are smaller than for
PD and SM, we can show that RSM is more efficient than PD
and SM.

V. CONCLUSION
In this research, wewere focused on the stabilization of robots
subject to actuators nonlinearities with a regulator containing
the sigmoid mapping. In the results with respect to a propor-
tional derivative regulator and a sliding mode regulator, since
the position and speed of our regulator reach better the paths
of the constant desired references, and the chattering in our
regulator is reduced, we showed that the our regulator is more
efficient for the stabilization of two robots. Our regulator
illustrates the viability, efficiency, and potential especially
important in robots subject to actuators nonlinearities. Our
discussed method could also be applied to solve other issues
in robots like Coulomb friction, or backlash. As a future
research, we will modify our discussed regulator using that
some parameters are approximated by the intelligent systems.
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