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ABSTRACT A new neural network prediction model is proposed for predicting ship motion attitude
with high accuracy. This prediction model is based on an adaptive dynamic particle swarm optimization
algorithm (ADPSO) and bidirectional long short-term memory (BiLSTM) neural network, which is to
optimize the hyperparameters of BILSTM neural network by the proposed ADPSO algorithm. The ADPSO
algorithm introduces dynamic search space strategy into the classical particle swarm optimization algorithm
and adjusts the learning factor adaptively to balance the global and local search ability, so as to improve the
optimization performance and improve its optimization effect in BILSTM parameter optimization process.
The results show that the model can obtain higher prediction accuracy and faster convergence speed, and has

better prediction performance in the prediction of ship motion attitude.

INDEX TERMS Ship motion attitude, BILSTM neural network, ADPSO algorithm, prediction accuracy.

I. INTRODUCTION
Under the influence of various external factors such as bad
weather, ships sailing on the sea are easy to produce six
degrees of freedom random and complicated motions, includ-
ing roll, pitch, yaw, sway, surge and heave. These movements
have a great impact on the safety of ships and its personnel,
the efficiency and safety of maritime operations, and espe-
cially on the take-off and landing of carrier-borne aircraft
on aircraft carriers [1]. As we all know, the aircraft carrier
is the key of the navy, in order to safeguard countries’ mar-
itime rights and interests, accurate prediction of ship motion
attitude is of practical value to effectively adjust and control
the ship motion and timely adjust the take-off and landing of
carrier aircraft, which is also of great significance to national
defense.

Ship motion attitude prediction has been widely studied in
recent years. The prediction methods mainly include statisti-
cal prediction method, convolution method, gray prediction
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method, Kalman filter method, time series method, neural
network method, and combination prediction method. The
statistical prediction method is based on the integral equation
analysis. The calculation process is very complicated in order
to obtain the power spectrum of the input signal. This method
is only suitable for very short-term prediction, and it is diffi-
cult to apply to the actual ship motion prediction due to a lot of
constraints there. The convolution method [2] is to predict the
ship’s motion after convolving the wave height measurement
function of a selected ship’s bow at a certain position with
the kernel function of the ship response function because this
method needs to know the accurate response kernel function
and wave height measurement function, limited in practical
applications. The gray prediction method is to use the gray
theory to establish the gray differential model, and use the
limited information to find the rules among the data through
the information processing, so as to carry out the effective
prediction. Professor Shen first introduced the theory of gray
system into the prediction of ship swaying motion, the exper-
imental results show that the model can basically describe
the development trend of real data, but sometimes the error

90087


https://orcid.org/0000-0002-5278-9539
https://orcid.org/0000-0003-0993-9658

IEEE Access

G. Zhang et al.: Ship Motion Attitude Prediction Based on an ADPSO Algorithm and Bidirectional LSTM Neural Network

is large when the swaying range is large [3]. In addition,
the training samples of the gray prediction method cannot
be too many, so the gray prediction method has limita-
tions in nonlinear time series prediction such as ship motion
sequence. The Kalman filtering method has relatively mature
theories, but it is more suitable for linear systems and requires
accurate mathematical modeling of ship dynamics [4]. When
the marine environment changes, the prediction accuracy
will be greatly reduced. The time series method has a small
calculation amount and low cost, but it is generally suitable
for short-term prediction. When there is external interference,
the prediction error is inevitable [5], and its prediction length
and accuracy cannot meet the demand. The neural network
method uses a neural network model to make a prediction,
which takes historical data as input, adjusts its network struc-
ture through neural network training and learning, and then
makes a prediction. In recent years, the neural network has
developed rapidly. Because of its strong self-learning ability
and self-adaptability, the neural network has been widely
used in the study of nonlinear systems. However, due to the
shortcomings of its own network initial structure parameters
often set by experience, the prediction accuracy of a single
neural network method still cannot meet the needs of practical
application [6], [7]. The combined prediction method is to
combine different methods and their respective advantages
to get a new forecasting model. Compared with the single
prediction method, the combined forecasting method is hoped
to make a more accurate prediction. Peng et al. applied a
particle swarm optimization algorithm to long short-term
memory (LSTM) neural network [8], and many other scholars
also applied the combined forecasting method to prediction
problems [9]-[11]. The combined forecasting method is the
hot spot of the current forecasting research. This paper com-
bines an intelligent algorithm with a neural network and opti-
mizes the neural network model by the intelligent algorithm
to predict the ship’s motion attitude. This method overcomes
the shortcomings of a single neural network and is expected
to achieve high prediction accuracy.

As a classic deep learning model, the recurrent neural
network is widely used in the prediction research of nonlinear
systems. For example, Song ef al. solved the prediction of air
quality problems by combining LSTM and Kalman [12], and
Li et al. applied LSTM to the prediction of PM2.5 concen-
tration [13]. BILSTM neural network [14] is a variant of the
LSTM neural network [15]. It consists of a forward LSTM
network and a reverse LSTM network, and introduces the
context information of time series. It can be trained on the
influence of future information on the current state. There-
fore, for the same time series, BILSTM can better reflect
the changing trend of time series [16]. However, BILSTM
does not solve the problem of random initialization of neural
network parameters, which will affect the nonlinear learning
ability. In view of this shortcoming, the existing methods to
optimize the neural network are mainly to improve the error
function and excitation function [17]-[19], or to optimize
the initial parameters of the network by using intelligent
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algorithms [20]-[23]. The current intelligent algorithms for
parameter optimization mainly include particle swarm opti-
mization (PSO) algorithm [24] and ant colony optimization
algorithm, but these algorithms are often prone to the problem
of local optimal, which leads to the failure to find the global
optimal solution in the process of parameter optimization.
PSO algorithm combined with neural network has been used
to solve a variety of time series prediction problems. How-
ever, other algorithms in metaheuristic algorithm such as
genetic algorithm and simulated annealing algorithm are less
popular in the field of ship motion attitude prediction, so this
paper mainly studies the improvement and application of PSO
algorithm.

Therefore, this paper proposes an improved adaptive
dynamic particle swarm optimization algorithm (ADPSO),
which is improved on the basis of PSO algorithm and
can dynamically adjust the parameters of the algorithm to
adjust the position of particles, so as to ensure that par-
ticles can find the global optimal solution. The ADPSO
algorithm is used to optimize the hyperparameters of the
BiLSTM neural network, and the optimized neural net-
work model (ADPSO-BiLSTM) is used to predict the
ship’s motion attitude. In order to verify the predictive
validity of the ADPSO-BiLSTM model proposed in this
paper, the measured ship motion data was selected in the
experiment and compared with the LSTM, BiLSTM, and
PSO-BiLSTM neural network models. The results show that
the ADPSO-BiLSTM neural network model reflects better
ship motion prediction performance in ship motion attitude
prediction.

The structure of this paper is as follows. The second
section introduces LSTM and BiLSTM neural networks.
In the third section, a particle swarm optimization algorithm
is introduced. Based on the PSO algorithm, the ADPSO algo-
rithm is proposed. The fourth section introduces the process
of optimizing the BiILSTM neural network by the ADPSO
algorithm. In the fifth section, the ADPSO-BiLSTM neural
network model is used to predict the measured ship motion
attitude and analyzed the experimental results. The sixth
section concludes with some conclusions.

Il. RELATED NEURAL NETWORK
A. LSTM NEURAL NETWORK
LSTM neural network was from Recurrent Neural Net-
work (RNN) and solved the problems of the gradient dis-
appearance of RNN. LSTM added a Memory Cell structure
in the neural node of the hidden layer of RNN to store
the historical information and added three gate structures,
Input gate, Forget gate, and Output gate, to control the
use of the historical information. By forgetting the useless
information and memorizing the new information in a cell
state, LSTM can transfer useful information in the subse-
quent time calculation. The LSTM cell structure is shown
in Fig. 1.

In Fig. 1, ¢; represents the current state and ¢; is the
temporary state. i;, f; and o, respectively represent Input gate,
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FIGURE 1. LSTM cell structure.

FIGURE 2. BiLSTM neural network structure.
Forget gate and Output gate, /;_1 is the hidden layer state of

the previous time and x; is the current input.
The calculation formulas are as follows:

oi = (W [h—1, %]+ b)) (D
ofy = (Wr - lhi—1, x/] + by) (2
oo = (Wo - lhy—1, %11+ bo) 3)
hy = o; © tanh(c,) 4)
Ct :ﬁQC1—1+iz®Et )
¢; = tanh (We - [hi—1, x/] + be) (6)
1
oW = o %
e¥ —e™*
tanh(x) = m (8)

where W;, Wy and W, respectively represent the weight of
three gate connections, b is the offset, o and tanh are the
activation functions.

B. BiLSTM NEURAL NETWORK

Since LSTM can only learn the above information of time
series, BILSTM makes a further improvement on the basis of
LSTM, which is composed of a forward LSTM network and a
reverse LSTM network, introducing the context information
of time series. BILSTM neural network structure is shown
in Fig. 2.

X1, X2, ..., X, are the input sequence, 71, and 71, are the for-
ward and reverse outputs calculated at each moment respec-
tively, and then the forward and reverse outputs are calculated
to obtain the final output y;. Taking the forward output iz, at
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time ¢ as an example, the calculation formulas of forward

and backward directions are consistent with LSTM, that is,

through ““(1)” to ““(8),” the forward and reverse temporary
- <«

cell states ¢, and ¢ , input gate I, and 1, forget gateft and
f,» output gate o, and 0, can be calculated respectively.
The final output y, at time t is:

v = [hy, 1y ©)

From the above equation, we can calculate the out-
put at each moment, and then get the final output
Y =lho, 1, ..., H].

lll. PROPOSED METHOD

A. PSO ALGORITHM

PSO algorithm is a group intelligence optimization algorithm,
which was first proposed by Kennedy and Eberhart in 1995 to
simulate the foraging behavior of birds. Each particle in the
particle swarm represents a possible solution. Within a given
search range, the particle adjusts its speed and position by
comparing individual extremum and global extremum for
optimization until it finds the optimal solution satisfying the
termination conditions. The formula is as follows:

Vi{;rl = a)V;j +cir (yij — xf,j) + o (&f — xl-”j> (10)
1 +1
Xi7 =X+ Vi an

t is the number of iterations, Vi’, I xfy jare the velocity and posi-
tion of particle i in the j dimensional at the time of iteration 7,
w is the inertia weight, c| and ¢; are learning factors, yf’ j is the
individual extremum point in the 7-th iteration of the particle
swarm, y! is the global extremum of the particle swarm, r and
ry are random numbers uniformly distributed in the interval
[0, 1], Vi{j € [—Vimaxs Vimax], Vinax is the set constant.
Because of its simple operation and fast convergence
speed, PSO has been widely used in many fields such as func-
tion optimization and image processing. However, the PSO
algorithm has problems such as premature convergence and
prone to fall into local extremum. For the problem of PSO,
many papers have proposed a lot of methods to optimize
PSO [25]-[28], such as introducing new parameters, optimiz-
ing initial parameters and search strategy, combining PSO
with other algorithms and so on. Based on this, this paper
proposes a new strategy of position update and parameter
adjustment to improve the performance of the PSO algorithm.

B. ADPSO ALGORITHM

ADPSO is a dynamic particle swarm optimization algorithm
proposed in this paper that can adjust parameters adaptively.
This algorithm combines conventional particle swarm opti-
mization algorithm and dynamic spatial search strategy, mak-
ing the position oscillation process of particles in the iterative
search process more active, and solving the problem that the
PSO algorithm is easy to fall into the local extreme value. In
addition, adaptive adjustment of learning factor parameters
can be realized to balance local search ability and global
search ability.
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1) DYNAMIC
In the PSO algorithm, the current position of the particle
is mainly associated with two factors. one is the previous
position of the particle, and the other is the particle’s current
velocity. For particle search, it belongs to a dynamic nonlinear
process, and there is no fixed trajectory. Therefore, in order to
further improve particle search activity and further improve
the possibility of finding the best position, the formula of
particle position is optimized and adjusted in this paper,
specifically as follows:

Vi’jrl =wVij+ean (yf’j - xf,j) + corn (jzf —xl-”j> (12)

t

X =X+ Vi s inems — 1) (13)
where tpax 1S the maximum number of iterations,
t € [—tmax.tmax]. In the above equation, the logarithmic
function is introduced to make the position of each particle
oscillate, dynamically adjust the search process of the par-
ticle, and effectively guide the particle to find the optimal
solution.

During particle operation, when a particle is out of the
search range, the boundary position value is usually assigned
to the particle, and after this processing, all the out-bound
particles will gather at the boundary, at which point if there is
a local optimal in the boundary area, the particles will easily
fall into the local extreme point and unable to find global
optimal solution, thus affect the global search ability of the
algorithm. In this paper, the algorithm is improved as follows
for the case of particle out of bounds:

When Xl.'j'l > Xmax:

rand (X l{ i Xmax>

max
When Xitjl < —Xmax:
1 rand (—Xmax, Xi”j)
Xff = Xmax * | 1 + (15)

Xmax

After the operation of the above formula, the out-of-bounds
particles will not gather in the boundary region but distribute
near the boundary, which not only makes the particles in
the feasible space, but also overcomes the defect that the
algorithm is easy to fall into the local optimal at the boundary,
and improves the global search ability of the algorithm to
some extent.

2) ADJUSTMENT OF INERTIAL WEIGHT

The inertia weight w has a great impact on the performance
of the PSO algorithm. Since the search state of particles in
different periods should be different, strong search ability is
needed in the early stage to quickly search for the best, and
fine selection is required in the late stage to ensure the search

accuracy:
tmax —
o' = Wmin + (@max — Omin) X —1 (16)
max —
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where wmax and wmin are the upper and lower limits of the
preset inertia weight. In this paper, @wmax is set to 3 and wmin
is set to 1, ¢ and tpax have the same meanings as in “(11).”

It can be seen from “(16)” above that, in the early stage
of particle swarm iteration, o is larger and more inclined to
global search, which is convenient for rapid search, while
in the late stage, w is smaller, which is suitable for local
search, and particle swarm can search more carefully, which
is conducive to particle search for the optimal solution.

3) ADAPTIVE LEARNING FACTOR

In the conventional PSO algorithm, c; and c; are the fixed
values set. This paper proposes a method that the learning
factor can be adaptively adjusted with the change of inertia
weight, so as to adjust the self-learning ability and group
learning ability required by particles in different search peri-
ods, and then adjust the performance of the particle in finding
the optimal solution. Specific adjustments are as follows:

€1 = Cstart + (Cstart — Cend) Cos(ez_w -1 a7

€2 = Cstart — (Cstart — Cend) COS(eZ—w -1 (18)

where cgart represents the initial value of the learning factor
c1 and ¢3, Ceng is the termination value, and w represents
the inertia weight. As can be seen from the above two equa-
tions, when the initial @ decreases from 3 to 2, cos(e*~*—1)
increases, c¢1 also increases gradually, while ¢, decreases
gradually, indicating that the social information communi-
cation ability of the particle is weak and the self-adjustment
ability is relatively strong. At the later stage of the search,
o decreases from 2 to 1, and the cos(e*>~®—1) decreases
gradually, so c; decreases and ¢ increases, indicating that
the self-learning ability of the particle is gradually weakened
and the social learning ability is enhanced.

4) TIME COMPLEXITY ANALYSIS

Similar to the original particle swarm optimization algorithm,
each iteration of particle optimization must go through the
steps of fitness function value calculation, particle individual
and population global optimal solution selection, particle
velocity and position update. Assuming that the maximum
number of iterations is L, the particle swarm size is M, and
the problem size is N, the time complexity of the algorithm
can be expressed as:

O(L.M,N) =L« (O(M «N) + 0 (1) + 0 (M)
—|—0<2M * N2 +M*N2)>
=LxM % ON?) (19)
IV. SYSTEM MODELING

A. ADPSO OPTIMIZE BiLSTM NEURAL NETWORK

The main idea of this paper is to use the ADPSO algorithm
to optimize the hyperparameters of the BILSTM neural net-
work, find the optimal hidden layer nodes of the BILSTM
neural network through the ADPSO algorithm, and then build
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a better neural network model to predict the ship motion atti-
tude. The flowchart of ADPSO optimizing BiLSTM hyper-
parameters is shown in Fig. 3.

The specific steps for ADPSO to optimize BiLSTM param-
eters are as follows:

1) Initialize particle swarm parameters and BiLSTM
network structure. Particle swarm parameters mainly
include the particle swarm size, number of iterations,
learning factors, and the value range of particle location
and velocity. The initialization of the BILSTM network
structure mainly refers to the determination of the num-
ber of hidden layers in the network.

2) Determine the evaluation function of the particles. The
fitness function of particles is defined as:

1.
fityse =~ > (i =) (20)
i=1

In the formula, n represents the particle swarm size, Y;
is the predicted value, and y; is the actual value.

3) Calculate the fitness value of each particle according to
the above formula.

4) Update the individual optimal position of the particles
and the global optimal position of the particle swarm,
and update the speed and position of the particles them-
selves.

5) Determine whether the iteration end condition is
reached (maximum number of iterations or a good
enough position), if it is reached, it ends, otherwise,
go to step 3 to continue iteration.

B. PREDICTION PROCESS OF SHIP MOTION ATTITUDE
BASED ON ADPSO-BiLSTM

This article is based on the ADPSO-BiLSTM network model
to predict the measured ship motion attitude data. The specific
process of prediction is shown in Fig. 4.

Firstly, collect the measured ship motion data and prepro-
cess it. Select part of the motion data as the training set and
part as the test set. Input the training set and use the ADPSO
algorithm to optimize the hyperparameters of the hidden layer
nodes of the BILSTM neural network. Enter the test data to
make a prediction and get the prediction result.

V. SIMULATION RESULTS AND ANALYSIS

A. ADPSO ALGORITHM PERFORMANCE ANALYSIS

The ADPSO algorithm proposed in this paper is mainly for
the problem that the PSO algorithm is easy to fall into local
extremes. Therefore, the commonly used test functions will
be selected for testing and compared with the PSO algo-
rithm and QPSO (Quantum Particle Swarm) algorithm [29].
Table 1 shows the selected test functions.

In this paper, the particle swarm size of each algorithm is
set as 40, and the maximum number of iterations is 5000, with
each algorithm running 100 times. Fig. 5, Fig. 7, Fig. 9 and
Fig. 11 are three-dimensional graphs of the test functions,
Fig. 6, Fig. 8, Fig. 10 and Fig. 12 are representative pictures of
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FIGURE 3. Parameter optimization flowchart.
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FIGURE 4. Prediction process.

the selected operation results, which are respectively compar-
ison graphs of the optimization iteration results of different
algorithms for the test function.

Fig. 5 shows that the Holder table test function is a multi-
peak function with many local extremum points. Experimen-
tal results in Fig. 6 show that the PSO algorithm often falls
into local extremum, while the other two algorithms quickly
find the global optimal value.
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TABLE 1. Test functions information.

Name Test Function Dimension Range Optimal Value
\/ﬁ
. X+
Holder table fi(x) = —| sin(x;) cos(x;) exp( 1- — ) | 2 [—10,10] -19.2085
D
Rastrign f(0) = Z(xf — 10 cos(2mx,) + 10) 30 [-5.12,5.12] 0
i=1
Beale f3(0) = (L5 —x + xy)? + (2.25 — x + xy?)? + (2.625 — x + xy*)? 2 [—4.5,4.5] 0
D
Sphere fi00) = Z x? 20 [~5.12,5.12] 0

i=1

FIGURE 5. Three-dimensional graph of the Holder table test function.

_6 J
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‘ — QPsO
-84 --- ADPSO
-
_10 -
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0 -124
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e
=
i -14
-16 4
_18 -
1_I=_
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Iteration

FIGURE 6. Optimization iteration results of the Holder table test function.

Fig. 7 shows that the Rastrign test function is also a multi-
peak function. It can be seen from Fig. § that the PSO algo-
rithm and the QPSO algorithm fall into local extreme points
in the process of optimization.

The Beale test function is a unimodal function with a global
minimum of 0. Compared with Holder table and Rastrign test
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FIGURE 7. Three-dimensional graph of the Rastrign test function.

functions, the PSO algorithm can find the global optimal solu-
tion in the Beale test function in a better way, but sometimes
it still falls into the local value.

From the formula in Table 1 and three-dimensional
diagram of the sphere test function, we can easily
see that the Sphere test function has only one global
minimum value of 0. Compared with the other two
algorithms, ADPSO finds the global optimal solution
quickly.

It can be seen from Fig. 6, Fig. 8, Fig. 10, and Fig. 12 that
the PSO algorithm is prone to fall into the local extreme
value in the test functions. Among the above four single-
peak and multi-peak test functions, compared with the other
algorithms, ADPSO shows a good optimization ability and
quickly finds the global optimal value. The ADPSO algo-
rithm finds the global optimal solution in the four test func-
tions in the least number of iterations, and all of them do not
exceed 200 times.

Table 2 shows the stability of the three algorithms, that is,
the success rate of the algorithm in finding the optimal value
of the test function (the percentage (%) of finding the optimal
value).
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TABLE 2. Comparison of algorithm stability.

Global optimization

success rate / (%) PSO QPSO ADPSO
f, 68 100 100
f, 76 84 100
f; 97 100 100
f, 88 92 100
3509 | —:= PSO
‘ — QPSO
300d | -=- ADPSO
250 4
A 2004
QUL | R TR el i s e s
(=
£ 150+
100 4
50
D RS S g S M SR SR S SN ————
0 1000 2000 3000 4000 5000

Iteration

FIGURE 8. Optimization iteration results of the Rastrign test function.

FIGURE 9. Three-dimensional graph of the Beale test function.

The stability of the algorithm is very important. If the PSO
particle swarm algorithm is used to optimize the parameters
of the neural network, there will be a certain probability of
falling into the local extreme point during the optimization
process, which will affect the accuracy of the prediction
experiment. The above pictures and tables prove that ADPSO
solves the problem that is easy to fall into a local optimum,
obtains a higher iteration success rate, and has good stability.
ADPSO achieved a good global optimization success rate in
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FIGURE 10. Optimization iteration results of the Beale test function.

20.0

17.5
15.0
12.5
10.0
7.5
5.0
2.8
0.0

FIGURE 11. Three-dimensional graph of the Sphere test function.

all test functions. It can be seen that the improved algorithm
reduces the probability of falling into the local optimal value
by up to 34 percentage points, which proves that the improved
algorithm is significantly more robust.

B. EXPERIMENT OF SHIP MOTION ATTITUDE PREDICTION
This article collects the measured motion data of a ship,
and mainly predicts the heave displacement, roll angle
and pitch angle in the motion attitude. In order to ver-
ify the effectiveness of the BILSTM neural network opti-
mized by the ADPSO algorithm (ADPSO-BiLSTM), the
paper uses LSTM neural network, BiLSTM neural network,
and BiLSTM network optimized by standard PSO algorithm
(PSO-BiLSTM) for comparison experiments. In order to
ensure the fairness of the experiment, the parameters of the
four models compared in this paper are as consistent as
possible. For example, the network structure parameters of
LSTM and BiLSTM are consistent, and the parameters of
PSO and ADPSO algorithms are also of the same value. The
specific parameter setting is as follows:
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1) Particle swarm size. In this paper, the number of par-
ticles is finally set to be 40 after the actual simulation
experiment on different particle numbers.

2) Particle swarm dimension. In this paper, the particle
swarm optimization algorithm is used to find the opti-
mal number of nodes in the hidden layer of the neural
network, so the particle swarm dimension corresponds
to the number of hidden layers. Corresponding to the
number of hidden layers of the neural network, this
paper sets the particle swarm dimension to 2 when
constructing the actual experimental model, which is
to find the optimal number of hidden layer nodes of the
two hidden layers.

3) Initial particle position, initial velocity, velocity range
and position range. In this paper, the range of particle
positions is set to 1 to 30, the maximum speed of
particles is set to 1, and the initial position and speed
of particles are set to random values within the range.

4) Inertia weight and learning factor parameters. The
parameter settings in the two algorithms are differ-
ent. The parameters in the PSO algorithm are fixed,
while the parameters in the ADPSO algorithm change
with the number of iterations. In the PSO algorithm,
the weight parameter w is set to 1, and the learning
factors ¢; and ¢, take the value 2. In the ADPSO
algorithm, wmax is equal to 3, wpiy is 1, the initial
learning factor cgayt is set to 2, and cepg is set to 1.

5) Maximum number of iterations. In this paper, the max-
imum number of iterations is set to 100.

6) Fitness function. The fitness functions of both algo-
rithms are set as the mean square error function.

Before the experiment, the collected ship motion data is

normalized, such as ““(21).” The ship motion data collected
in this paper is actually measured when the ship is sailing
at sea. The heave displacement is measured by a laser rang-
ing sensor. The roll and pitch angles are collected by an
electronic inclinometer. The sampling time of the data set
exceeds 1000s, the collection interval is 0.176s, the collection
frequency is 6 times per second, and there are more than
6000 sets of data in total. This paper sets 98% of the experi-
mental data as the training set and 2% as the test set.

m; = Xi — Xmin 21)
Xmax — Xmin
In the above formula, x; is the input data i = 1,2,...n),
Xmax and Xpin are the maximum and minimum values in the
data, and m; is the normalized data.

This paper mainly selects RMSE (Root Mean Square
Error) and MAPE (Mean Absolute Percentage Errors) as the
evaluation indicators of the prediction results. The calculation
formulas are as follows:

D (91' _yi)z
n

)A’i —Ji
Vi

RMSE = (22)

1 n
MAPE = — 23
- | (23)

i=1
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FIGURE 13. Iterative results of loss functions for four models.

where y; is the predicted value, y; is the actual value, and n
is the number of predictions. The smaller the value of the
evaluation index in the above formula, the more accurate the
prediction result and the better the prediction effect.

1) HEAVE DISPLACEMENT PREDICTION

Four neural network models were used to predict the ship
heave displacement. Fig. 13 shows the iterative results of the
loss function of the four models. Fig. 14 and Fig. 15 show the
comparison between the heave displacement prediction curve
and the true curve. Fig. 16 shows the comparison between
the prediction errors. Table 3 shows the two evaluation index
values of the prediction results of the four models.

It can be seen from Fig. 13 that the loss functions of the four
models decrease with the number of iterations while training
the models, and the performance of the ADPSO-BiLSTM
model is the most prominent.

Fig. 14 and Fig. 15 show the comparison between the
predicted value of the heave displacement and the true value.
The data was normalized before the experiment, so the pre-
dicted value is also the normalized value, and then the real
predicted value was obtained after the denormalization. These
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TABLE 3. Evaluation indexes of heave displacement prediction results.

LSTM BiLSTM PSO- ADPSO-
BIiLSTM BiLSTM
RMSE 0.162489  0.087512 0.066444 0.049804
MAPE 0.483738  0.276900 0.228500 0.183593
0.8-
~, — True
; -=- LSTM
0.7 SIS R e e BILSTM
—-= PSO-BiLSTM

—— ADPSO-BILSTM

o
=]

Heave/m
=]
o

0.4-

0.2-

0.0 25 5.0 7.5 1000 125 150 175
t/s

FIGURE 14. Heave displacement prediction results (normalized data).

two figures are the normalized predicted values and the
real predicted values respectively. The figure clearly shows
the performance of the four models in the prediction of
the ship’s heave displacement. They all maintain the same
trend with the real movement, but by comparison, the LSTM
is quite different from the true value, while the predicted
value of ADPSO-BILSTM model is the best fit with the true
value.

The vertical coordinate of Fig. 16 is the difference between
the true value and the predicted value. From Fig. 16, the pre-
diction accuracy of the four models can be seen more clearly.
Except for the LSTM model, the other three models predicted
the heave displacement with small error.

The different colored lines in Fig. 13 to Fig. 16 represent
the predictive performance of the four models. Fig. 13 is
a comparison of the loss function changing with the num-
ber of iterations in the four models. We observe that
ADPSO-BiLSTM has the fastest convergence speed, and the
final result is very close to zero. Fig. 14 and Fig. 15 show the
prediction results of the heave displacement obtained in the
four models. Fig. 14 uses the predicted normalized standard
data, and Fig. 15 is the real data obtained after denormaliza-
tion. Fig. 16 is a comparison chart of the error between the
predicted value and the true value. Table 3 shows the evalua-
tion index values of the prediction results of the four models.
The above results show that the predicted values of the four
models have fluctuated over time, but the ADPSO-BiLSTM
neural network model proposed in this paper has fewer errors
than the other three models, the value of the obtained eval-
uation index is smaller, and it fits better with the real value,
and has better prediction results. Compared with the LSTM,
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FIGURE 16. Heave displacement prediction error.

ADPSO-BiLSTM on index RMSE and MAPE respectively
decreased 0.112685 and 0.300145.

2) ROLL ANGLE PREDICTION

Four neural network models were used to predict the ship
roll angle data. Fig. 17 shows the iterative results of the
loss function of the four models, Fig. 18 and Fig. 19 are
comparison charts of the roll angle prediction curve and the
true curve, and Fig. 20 is a comparison chart of the prediction
error. Table 4 shows the four evaluation index values of the
prediction results of the four models.

Fig. 17 shows the change process of the loss func-
tions of the four models when training the model, and the
ADPSO-BIiLSTM model has the fastest convergence when
training.

Compared with heave displacement, roll motion requires
prediction angle, and the maximum roll angle in the dataset
can reach 10 degree, so roll motion has a greater impact on
ship performance. As can be seen from Fig. 18 and Fig. 19,
the roll angle prediction of the four models is consistent
with the trend of real roll motion. Compared with the other
three models, the ADPSO-BiLSTM model has a smaller gap
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TABLE 4. Evaluation indexes of rolling angle prediction results.

LSTM BIiLSTM PSO- ADPSO-
BiLSTM BiLSTM
RMSE 0.882616  0.810308 0.560505 0.478694
MAPE 0.853155  0.796305 0.630343 0.433547
0.175- i ===
= e BILSTM
: —-- PSO-BiLSTM
0.150 - —— ADPSO-BILSTM
0.125 -
w 0.100-
ul
S
0.075 -
0.050 -
0.025

0.000 -
0 20 a0 60 80 100
Epoch

FIGURE 17. Iterative results of loss functions for four models.

between the predicted value and the true value within the
predicted duration.

Fig. 17 shows that with the increase of iteration times,
the loss function values of the four models tend to be sta-
ble, while ADPSO-BiLSTM converges the fastest. As can
be seen from Fig. 18, Fig. 19 and Fig. 20, among the
four models, ADPSO-BiLLSTM neural network model has a
fewer prediction error and better prediction accuracy, while
the LSTM model has the biggest gap with the real value.
The data in Table 4 shows that from LSTM to ADPSO-
BiLSTM, the index values predicted by the four models are
getting smaller and smaller, indicating that the prediction
accuracy is gradually increasing. Compared with the LSTM,
ADPSO-BIiLSTM on index RMSE and MAPE decreased
0.403922, 0.419608, almost half as much.

3) PITCH ANGLE PREDICTION

Four network models were used to predict the ship pitch angle
data. Fig. 21 shows the iterative results of the loss function
in the four models, Fig. 22 and Fig. 23 are comparison
diagrams of the pitch angle prediction curve and the true
curve, and Fig. 24 is a comparison diagram of the prediction
error. Table 5 shows the four evaluation index values of the
prediction results of the four models.

In the prediction of pitch motion, Fig. 17 shows the change
process of the loss function of the four models during the
training of the model. It shows that the model optimized by
the intelligent algorithm can achieve less loss function value
than the other two neural network models and reach a stable
state faster.

90096

— True

-—- LSTM
e BILSTM
W\ —:- PSO-BILSTM
A=, —— ADPSO-BILSTM
0.6 - s
2 0.5-
©
o
0.4-
03-
0.2-

0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5
t/s
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FIGURE 19. Rolling angle prediction result (real data).
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FIGURE 20. Rolling angle prediction error.

As can be seen from Fig. 22 and Fig. 23, the amplitude
of pitch is significantly smaller than that of roll. The pitch
angle prediction of ADPSO-BiLSTM model is better fitted
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FIGURE 21. Iterative results of loss functions for four models.
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FIGURE 23. Pitch angle prediction result (real data).

to the real pitch motion curve, which also proves the effec-
tiveness of ADPSO algorithm to optimize neural network
parameters.
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FIGURE 24. Pitch angle prediction error.

TABLE 5. Evaluation indexes of the pitch angle prediction results.

LSTM BiLSTM PSO- ADPSO-

BiLSTM BiLSTM

RMSE 0.352050  0.198043 0.144586 0.121107
MAPE 2.170007  1.167142 0.829227 0.630618

The above results show that in the prediction of pitch angle,
ADPSO-BiLSTM and PSO-BiLSTM perform better than the
other two models. Fig. 24 shows that the LSTM neural net-
work model has the largest prediction error. Moreover, it can
be seen from Fig. 21 that the two network models optimized
by the algorithm converge faster and the value obtained by
the loss function is small. Compared with the other three
prediction models, ADPSO-BiLSTM neural network model
has fewer prediction errors and better performance in terms
of prediction accuracy. Compared with the LSTM, ADPSO-
BiLSTM on index RMSE and MAPE reduced almost two
thirds, 0.230943 and 1.539389 respectively.

From the prediction results of the four models, it can be
seen that the ADPSO algorithm improves the global search
capability of the particle swarm algorithm. In the process of
optimizing the hyperparameters of the BiLSTM neural net-
work model, it can generate the parameters with higher accu-
racy and more optimized models make the ADPSO-BiLSTM
network model have higher prediction performance in the
prediction of ship’s heave displacement, roll angle and pitch
angle. The results show that the ADPSO-BiLSTM neural
network model has a good prediction performance for the ship
motion data set, but its prediction effect in other fields needs
to be further verified.

VI. CONCLUSION

In this paper, an improved particle swarm optimization algo-
rithm, ADPSO, is proposed, which can adjust parameters
adaptively and dynamically. The ADPSO algorithm is used
to optimize the number of hidden nodes of the BiLSTM
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neural network, and an optimized ship motion attitude pre-
diction model is obtained, which can effectively improve
the prediction accuracy of the model in ship motion attitude
prediction. The experimental results show that compared with
LSTM, BiLSTM, and PSO-BiLSTM neural network models,
ADPSO-BIiLSTM neural network model can better fit the
data in the ship motion attitude prediction and has better
prediction performance.
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