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ABSTRACT In ‘‘Shared Manufacturing’’ environment, orders are processed in a given job sequence which
is based on the time of receipt of orders. This paper studies a problem of scheduling two-task jobs in a
two-machine hybrid flow-shop subject to a given job sequence which is used in production of electronic
circuits under shared manufacturing. Each job has two tasks: the first one is a flexible task, which can
be processed on either of the two machines, and the second one is a preassigned task, which can only be
processed on the second machine after the first task is finished. Each job has a processing deadline. Three
objective functions related to deadlines are considered. The computational complexity of the problem for
any of three objective functions is showed to be ordinary NP-hard, a dynamic programming algorithm (DPA)
is presented for each case and the time complexity of each algorithm is given. The results of computational
experiments show the relationship between the running time of DPA and the parameters, and also show the
advantages of DPA in dealing with this problem compared with branch-and-bound algorithm and iterated
greedy algorithm.

INDEX TERMS Shared manufacturing, hybrid flow shop, dynamic programming algorithm, computational
complexity.

I. INTRODUCTION
Two-machine hybrid flow-shop problem is a sort of
scheduling problem which is widely used in CNC machin-
ing, production of electronic circuits [1], computer graph-
ics processing [2], [3] and the health care systems [4]. For
example, the production of electronic circuit usually needs
two procedures. The first procedure usually requires low
precision and can be processed by low-level machine. And
the second procedure requires high-level machines for more
precise processing. These high-level machines often utilize
detachable tool magazines that allow for off-line setups.
If necessary, these high-level machines can process the first
procedure by replacing low-precision tools. I.e., the first pro-
cedure can be processed by any one of low-level machine
and high-level machine with the same processing time but
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the second procedure only can be processed by high-level
machine. Once the machine starts to process the electronic
circuit, it is not allowed to interrupt, otherwise the products
will be scrapped. So pre-emption is not allowed in this pro-
duction scenario.

In ‘‘Shared Manufacturing’’ environment, manufacturing
platforms arrange order processing sequence based on the
importance of the customers or the time of receipt of orders,
i.e., the processing order is given in advance according to
some principle. So, in shared manufacturing environment,
the electronic circuit manufacturing problem can be described
as a two-machine hybrid flow-shop scheduling with a given
job sequence.

This two-machine hybrid flow-shop problem can be
described as follows. A set of n jobs J = {J1, J2, · · ·, Jn}
is processed in a two-stage two-machine flow-shop which
consists of MachineM1 at stage 1 andMachineM2 at stage 2.
Each job Ji has two tasks Ai and Bi. The first task Ai is a
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flexible task, which can be processed on any of Machine M1
and MachineM2 for the same processing time ai; the second
task Bi is a preassigned task, which can only be processed
on MachineM2 for bi time units and must be processed after
Ai is finished. Each job Ji has a deadline di and needs to be
completed as soon as possible before its deadline. If some
jobs miss their deadlines, the objective function value related
to the deadline will increase, and this is what we should avoid
as far as possible. All tasks and machines are available at
time 0. Pre-emption is not allowed, i.e., once a job starts being
processed on a machine, it has to be finished before any other
job can be processed on that machine. All tasks are processed
in the order of subscription (given job sequence constraint),
i.e., if task Ai and Aj are both arranged to be processed on
machineM1 and satisfy i < j, the task Ai is processed before
Aj (The processing sequence of tasks on Machine M2 also
meets this requirement). Obviously, all jobswill be completed
in the order of subscription from 1 to n on Machine M2. The
goal of the problem is to minimize one of the following three
objective functions: the maximum lateness (Lmax), the total
weighted tardiness (

∑
wiTi) or the weighted number of tardy

jobs (
∑
wiUi).

In this paper, we consider a two-stage two-machine hybrid
flow-shop problem with a given job sequence which is
applied to the production of electronic circuit in shared
manufacturing environment. For three objectives of this
problem, the computational complexity is analysed and the
pseudo-polynomial time dynamic programming algorithm
(denoted as DPA) is designed respectively. According to the
three-field representation, the three problems discussed in
this paper can be expressed as:

(1) FS2 |FJS,Hybrid |Lmax

(2) FS2 |FJS,Hybrid |
∑

wiTi

(3) FS2 |FJS,Hybrid |
∑

wiUi

The problem (1) is a hybrid Flow-Shop problem with Fixed
job sequence whose objective is minimize the maximum
Lateness. So it is denoted as FSFL. Similarly, the problem
(2) and (3) are denoted as FSFT and FSFU in the follow-
ing discussion. The rest of this paper is arranged as fol-
lows: Section II presents a brief review of the literature.
In Section III, we give the basic symbolic hypothesis and the
characteristics of the optimal solution of the problem, then
prove that the three problems are all NP-hard in ordinary
sense. In Section IV, we present the DPA for problem FSFL.
In Section V we give the DPAs for problem FSFT and FSFU.
Computational experiments are carried out and the results are
analyzed in Section VI. Finally, we conclude the paper and
suggest future research topics in Section VII.

II. LITERATURE REVIEW
If the presumption of a given job sequence is not considered
and the objective is to minimize the maximum completion
time (makespan), the problem was first proposed by Wei
and He [3] in 2005. They called it Semi-Hybrid Flow-Shop

problem (denoted as SHFS). They showed that the problem is
NP-hard, and gave a pseudo-polynomial time algorithm and a
polynomial time approximation algorithm with a worst-case
ratio of 2. Then Wei and Jiang [5] gave an improved polyno-
mial time approximation algorithm with the worst-case ratio
of 8/5. Lately, Wei et al. [6] presented constant-time solution
algorithms for the cases with identical jobs and analysed the
relationship between the hybrid benefits and performance
difference between the two machines. It is obvious that the
researches on the makespan objective of this problem have
been more in-depth, but the researches on other objective
functions have not been reported yet.

Other typical models for two-stage hybrid flow shop
problems include the following: Vairaktarakis and Lee [1]
discussed the problem that two tasks both can be pro-
cessed on any machine, and gave an approximate algorithm
with the worst-case ratio of 1.618; Tan et al. [7] consid-
ered a flexible flowshop scheduling problem with batch
processing machines at each stage, and gave an iterative
stage-based decomposition approach to solve this problem;
Feng et al. [8] studied a two-stage hybrid flowshop with
uncertain processing time and gave a heuristic algorithm
for their problem; Ahonen and Alvarenga [9] proposed a
new two-stage hybrid flow shop problem where the job’s
processing time is related to the starting time of the job, and
used annealing algorithm and tabu search method to solve
their problem; Hidri et al. [10] addressed a two machines
hybrid flow shop scheduling problem with transportation
times between two machines, and presented a heuristic based
on the optimal solution of the parallel machine scheduling
problemwith release date and delivery time; Zhang et al. [11]
considered a hybrid flowshop problem with four batching
machines, and used the clustering and genetic algorithm to
calculate the good solution for this problem. For multi-stage
hybrid flow shop problems, recently, Jiang and Zhang [12]
investigated an energy-oriented scheduling problem deriv-
ing from the hybrid flow shop with limited buffers. They
developed an efficient multi-objective optimization algorithm
under the framework of the multi-objective evolutionary
algorithm based on decomposition. However, none of the
above problems is considered the presumption of a given job
sequence.

In recent years, with the rise of intelligent manufactur-
ing modes such as shared manufacturing and cloud man-
ufacturing, the researches with the presumption of a given
job sequence became very meaningful. Another important
industrial application of the given job sequence setting is
the scheduling of bar-coding operations in inventory or
stock control systems [13]. The earliest scheduling prob-
lem with a given job sequence constraint was proposed by
Shafransky and Strusevich [14]. They studied an open shop
problem to minimize makespan with a given job sequence,
proved the problem is strongly NP-hard and gave an approx-
imate algorithm with a worst-case ratio of 5/4. Afterwards,
Liaw et al. [15] studied the same problem, but the objective
function changed tominimize the total completion time. They
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TABLE 1. Notation used in the paper.

presented a heuristic and a branch-and-bound algorithm for
this problem. Lässig et al. [16] introduced the constraint of
given job sequence into the common due-date scheduling
problem, and presented a linear algorithm for this prob-
lem. Cheref et al. [17] considered an integrated production
and outbound delivery scheduling problem with a given job
sequence, showed this problem is NP-hard, and gave poly-
nomial time algorithms for some particular cases. Lately,
Cheng et al. [18] considered server scheduling on parallel
dedicated machines with fixed job sequences to minimize
the makespan. They designed a polynomial time algorithm
to solve the two machine case of the problem and proved the
problem is strongly NP-hard when the number of machines
is arbitrary. They also designed two heuristic algorithms to
treat the case where the number of machines is arbitrary and
all the loading times are unit.

As can be seen from the above, two-machine hybrid flow-
shop scheduling with a given job sequence and deadline has
not been investigated with any exact or heuristic method
in the literature so far. Hence, the DPA presented in this
article provides a feasible method to solve this problem.
The computational experiments show that DPA has obvi-
ous advantages in running time compared with branch-and-
bound algorithm and has more than 30% advantages in the
accuracy of calculation results compared with iterated greedy
algorithm.

III. SYMBOLIC HYPOTHESIS, STRUCTURE OF SOLUTIONS
AND COMPUTATIONAL COMPLEXITY
In this section, firstly we give the basic symbols needed in
the following sections. And then we analyse the properties
of the optimal solution of SHFS with a given job sequence.
Finally, we show the problems studied in this paper are all
NP-hard.

A. NOTATION
The notations used in the rest of this paper are listed
in Table 1.

B. THE STRUCTURAL CHARACTERISTICS OF THE OPTIMAL
SCHEDULE OF THE PROBLEMS
An optimal schedule is a scheduling scheme to minimize
the objective function of the problem. Whether the objec-
tive function is minimizing the maximum lateness, the total
weighted tardiness or the weighted number of tardy jobs, it is
easy to get that there is an optimal schedule of this problem
satisfying the following properties.
Proposition 3.1: There is an optimal schedule where

machineM1 does not have idle time from time 0 to the end of
processing.

Proof: Suppose that there is an optimal scheduleφ where
machineM1 has idle time between some successive processed
tasks. Using schedule φ, we construct another schedule ϕ:
All tasks on machineM1 are processed as early as possible to
fill all the idle time in the same order as that in schedule φ;
the tasks on machine M2 are processed in the same way as
that in schedule φ. For the jobs in V1, the first tasks in ϕ
on machine M1 are finished no later than them in φ, and the
second tasks on machineM2 in ϕ and φ start at the same time.
So the second task of each job in V1 is processed after the
first task of this job is finished in ϕ. We have ϕ is feasible.
For the tasks on machine M2 are processed in the same way
as that in schedule φ, the complete time of each job in ϕ is
the same as that in φ. So the maximum lateness, the total
weighted tardiness and the weighted number of tardy jobs in
ϕ are all the same as those in φ. Since φ is optimal, ϕ is also
optimal and there is on idle on machine M1 in schedule ϕ.
So Proposition 3.1 holds.
Proposition 3.2: There exists an optimal schedule which

satisfies that the idle time on machine M2 appears only
before the second tasks of some jobs in V1, but can’t appear
elsewhere.

Proof: Suppose that there is an optimal scheduleφ where
machine M2 has idle time before the tasks of some jobs
in V2. Using the idea similar to the proof of Proposition 3.1,
we construct a schedule ϕ: The tasks on machineM1 and the
tasks of the jobs in V1 on machine M2 are all processed in
the same way as those in schedule φ; the tasks of the jobs
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in V2 on machine M2 are processed as early as possible to
fill all the idle time before them in the same order as that
in schedule φ. Since the jobs in V1 are processed the same
as that in φ, the second task of each job in V1 starts to be
processed after the first task of this job is finished. So ϕ is
feasible. In V1, the completion time of each job in ϕ is the
same as that in φ. In V2, the completion time of each job in
ϕ is less than or equal to that in φ. So the maximum lateness,
the total weighted tardiness and the weighted number of tardy
jobs in ϕ are not more than those in φ. Since φ is optimal, ϕ
is also optimal and there is on idle before the tasks of the jobs
in V2 on machine M2 in ϕ. So Proposition 3.2 holds.
Proposition 3.3: There exists an optimal schedule which

satisfies that the task A1 of first job J1 is processed on
Machine M2, and the task An of the last job Jn is processed
on Machine M1.

Proof: Suppose that there is an optimal scheduleφ where
the task A1 of first job J1 is processed on MachineM1. Using
schedule φ, we construct another schedule ϕ. Firstly, change
the processingmode of job J1, i.e.,A1 andB1 are all processed
together on Machine M2. In φ, considering that B1 can’t be
processed until A1 is completed and B1 is the first task to
be processed on Machine M2, there is an idle with length a1
before task B1 is processed on MachineM2. So, in ϕ, we can
process A1 on this idle before task B1 on Machine M2. It is
easy to see that the complete time of J1 has not changed in ϕ.
Then we can processed the other jobs in the same way and at
the same time as those in schedule φ. Obviously, the complete
time of all jobs is the same in φ and ϕ, so the maximum late-
ness, the total weighted tardiness and the weighted number
of tardy jobs in ϕ are the same as those in φ. Since φ is
optimal, ϕ is also optimal. This establishes the first part of
the proposition. Using the similar way, we can get the second
part of the proposition.

According to Property 3.1, Property 3.2 and Property 3.3,
it can be concluded that there must be an optimal schedule of
the problem as shown in the following figure:

FIGURE 1. The structure of optimal schedule of this problem.

There must be an optimal schedule where the task A1
is processed on Machine M2, the task An is processed on
Machine M1 and the continuous processing tasks are sep-
arated from the idle time before the second tasks of some
jobs in V1 on machine M2. The continuous processing tasks
between two idle time periods do not contain any idle time
which are called ‘‘Continuous Blocks’’. In Section IV and
Section V, the continuous blocks will help us design DPAs for
the problems studied in this paper. In the following, we only

need to find the optimal solution in the feasible solutions
which meet the above three properties.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Now, we use polynomial time Turing Reduction to prove that
FSFL, FSFT and FSFU are all NP-hard.
Theorem 3.4: Problem FSFL is NP-hard.
Proof: Firstly, we present an instance of Partition Prob-

lem which is a known NP-hard problem. We denote this
instance as Instance I: Let set of integers S = {s1, s2, · · · sn}
and an integer bound s = 1/

2
∑n

i=1 si. Is there a partition S1
and S2 of set S, such that S = S1 ∪ S2, S1 ∩ S2 = ∅ and∑

si∈S1 si =
∑

si∈S2 si = s?
We create an instance of FSFL with n+ 2 jobs denoted as

Instance II: Let a job set V = {J0, J1, J2, · · · Jn, Jn+1} where

job J0 : a0 = s− ε, b0 = ε,

job Ji : ai = si, bi = ε, 1 ≤ i ≤ n,

job Jn+1 : an+1 = s+ nε, b0 = 0.

Let the deadline of job Jidi = 0 (i = 0, 1, · · ·, n,
n + 1). If all jobs are processed in the order of subscription,
is there a feasible schedule that makes the maximum lateness
Lmax = 2s+ nε?
Next, we prove that the solutions of Instance I and Instance

II can be derived from each other. Let S1 and S2 be a partition
of S in Instance I. A feasible schedule is constructed as follow.
Let V1 = {Ji |si ∈ S1 }∪{Jn+1} and V2 = {J0}∪

{
Jj
∣∣sj ∈ S2 },

all tasks be processed in the order of their subscription.
Obviously, Ai is processed on machine M1 if Ji ∈ V1 and
Aj is processed on machine M2 if Jj ∈ V2. So we have the
maximum lateness

Lmax = max
{∑

Ji∈V1 ai,
∑

Jj∈V2 aj +
n+1∑
t=0

bt

}
=

∑
si∈S1

si + (s+ nε)

= (s− ε)+
∑

sj∈S2
sj + (n+ 1) ε = 2s+ nε.

(V1,V2) is a solution of II as depicted in Fig. 2.

FIGURE 2. Configuration of a feasible schedule with maximum lateness
of 2s+ nε.

Assume now that there is a feasible schedule the maximum
lateness of which is exactly 2s+nε. Since deadlines of all jobs
are 0, the maximum lateness of this feasible schedule is equal
to its makespan. So the makespan of this feasible schedule is
also 2s+nε. Since the sum of the processing loads of all jobs
is 4s+ 2nε, this feasible schedule is also an optimal schedule
and no idle time is allowed on either machine. By Proposition
3.3, without loss of generality, we letφ be an optimal schedule
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of Instance II with maximum lateness Lmax = 2s+ nε where
task A0 of the first job J0 is processed on MachineM2 and the
task An+1 of the last job Jn+1 is processed on Machine M1.
We let V1 be the job subset {ji |Ai is processed on M1 inφ }
and V2 be the job subset {ji |Ai is processed on M2inφ }.
According the sum of the processing loads of all jobs is
4s + 2nε and the maximum lateness is 2s + nε, we have
the loads of two machines are all 2s + nε, i.e., the load of
Machine M1

∑
Ji∈V1 ai = 2s + nε and the load of Machine

M2
∑

Jj∈V2 aj+
n+1∑
t=0

bt = 2s+nε. Since Jn+1 ∈ V1 and an+1 =

s + nε,
∑

Ji∈V1−{Jn+1} ai = (2s + nε) − (s + nε) = s. And
since J0 ∈ V2, a0 = s− ε, bi = ε(0 ≤ i ≤ n) and bn+1 = 0,∑

Jj∈V2−{J0} aj = (2s+ nε)− (s− ε)− (n+ 1)ε = s. Now let
S1 = {si |Ji ∈ V1 − {Jn+1} } and S2 =

{
sj
∣∣Jj ∈ V2 − {J0}}.

Obviously, we have
∑

si∈S1 si =
∑

Ji∈V1−{Jn+1} ai = s,∑
si∈S2 si =

∑
Jj∈V2−{J0} aj = s and S = S1∪S2, S1∩S2 = ∅.

So we have (S1, S2) is a solution of Instance I.
Since Partition Problem is a known NP-hard problem and

reduction process is polynomial time.We have problem FSFL
is NP-hard.
Corollary 3.5: Problem FSFL is NP-hard even if

bi = 0, i = 1, 2, · · · , n.
Only need to let ε = 0 in the proof of Theorem 3.4,

we have problem FSFL is also NP-hard even if bi = 0,
i = 1, 2, · · · , n.
Theorem 3.6: Problem FSFT and FSFU are all NP-hard.
Proof: We create an instance of FSFT denoted as

Instance III and an instance of FSFU denoted as Instance IV
from Instance I.

Instance III: The assumption of the job set V =

{J0, J1, J2, · · · Jn, Jn+1} is the same as that in the proof of
Theorem 3.4. But let the deadline di = 2s+nε and the weight
wi = 1 for i = 0, 1, 2, · · · , n, n+ 1. If all jobs are processed
in the order of subscription, is there a schedule that makes the
total weighted tardiness

∑
wiTi = 0?

Instance IV: Replace
∑
wiTi = 0 in the Instance III with∑

wiUi = 0.
By using techniques similar to the proof in Theorem 3.4,

it can be proved that the solutions of Instance I and Instance
III (Instance IV) can be derived from each other. So FSFT and
FSFU are all NP-hard.

Since we will give pseudo-polynomial time algorithms for
these problems in the following sections, FSFL, FSFT and
FSFU are all NP-hard in ordinary sense.

IV. A DYNAMIC PROGRAMMING ALGORITHM FOR FSFL
According to the structure of the optimal schedule obtained
by Property 3.1 and Property 3.2, we have the optimal sched-
ule is composed of several continuous blocks and the idle time
between them as shown in Fig. 1. So the DPA we designed
includes two stages: the first stage is to construct the optimal
continuous block, and the second stage is to arrange the
optimal continuous blocks into the optimal schedule of the
problem through idle time periods.

A. CONSTRUCT THE OPTIMAL CONTINUOUS BLOCK
Firstly, a strict definition of continuous block of FSFL is given
as following.
Definition 4.1: A subschedule named five-element Con-

tinuous Block in state (m, i, j, h, l) as a subschedule for
jobs Ji, Ji+1, · · · , Jj satisfying the following conditions (see
Fig. 3):

FIGURE 3. The structure of Continuous Block (1, i, j, h, l ).

(1) There is no idle time between any two consecutive tasks
on both machine M1 and M2;

(2) The flexible task of the first job JiAi is processed on
machine Mm where m ∈ {1, 2};

(3) The load of jobs Ji, Ji+1, · · · , Jj on machine M1 is
exactly h;

(4) The gap between the complete time of jobs
Ji, Ji+1, · · · , Jj on machine M1 and M2 is exactly l.

Obviously, continuous block (m, i, j, h, l) can be con-
structed by continuous block (m, i, j − 1, h′, l ′) in two ways
(see Fig. 4).

FIGURE 4. Processing diagram from (1, i, j − 1, h′, l ′) to (1, i, j, h, l ).

One way is to obtain continuous block (m, i, j, h, l) by
adding job Jj ∈ V1 to continuous block (m, i, j − 1, h′, l ′)
(see Fig. 4a). The other way is to obtain continuous block
(m, i, j, h, l) by adding job Jj ∈ V2 to continuous block
(m, i, j − 1, h′, l ′) (see Fig. 4b). Let f (m, i, j, h, l) be the
maximum lateness of the optimal continuous block composed
of the jobs Ji, Ji+1, · · · , Jj. For ease of description, define the
following function:

σ (m) =

{
0, if m = 1;
1, if m = 2;

m ∈ {1, 2} .

89968 VOLUME 8, 2020



Q. Wei, Y. Wu: DPAs for Two-Machine Hybrid Flow-Shop Scheduling

For i < j, according to the definition of continuous block
(m, i, j, h, l), the following formula was clearly established:

aiσ (m)+
j∑
t=i

bt −
j∑

t=i+1

at ≤ l (1)

l ≤ aiσ (m)+
j∑
t=i

bt +
j∑

t=i+1

at (2)

l ≥ bj (3)

Let l = max

{
bj, aiσ (m)+

j∑
t=i

bt −
j∑

t=i+1
at

}
, l = aiσ (m)+

j∑
t=i

bt +
j∑

t=i+1
at , we have the value interval of the gap l is[

l, l̄
]
. The range of other parameters is obvious: m ∈ {1, 2},

1 ≤ i < j ≤ n and 0 ≤ h ≤
∑j

t=i at . Now we present the
DPA of f (m, i, j, h, l) as following.
DPA CB(L)
Initial conditions:

f (m, i, j, h, l)

=


ai+bi−di, if m = 1, i = j, h = ai, l = bi, or

m = 2, i = j, h = 0, l = ai + bi;
+∞, otherwise.

Recursions:
For each m, i, j, h, l satisfying m ∈ {1, 2}, 1 ≤ i < j ≤ n,

0 ≤ h ≤
∑j

t=i at , l ≤ l ≤ l,
Case 1: Aj is processed on M1 as shown in Fig. 4a.

f1=max
{
f (m, i, j− 1, h− aj, l + aj − bj), h+l − dj

}
(4)

Case 2: Aj is processed on M2 as shown in Fig. 4b.

f2 =


max

{
f (m, i, j− 1, h, l − aj − bj), h+ l − dj

}
if l ≥ aj + bj;

+∞ otherwise.

(5)

f (m, i, j, h, l) = min
{
f1, f2

}
.

The initial conditions in DPA CB (L) are obviously valid.
The recursions are analysed as following. For a feasible
combination ofm, i, j, h, l, the derivation of f (m, i, j, h, l) can
be given by considering two ways regarding the assignment
of the flexible task of the last job Jj. In Case 1, task Aj is
processed on machine M1 as shown in Fig. 4a. We have
h′ + aj = h and l ′ + bj − aj = l. Thus, it can be shown
that h′ = h− aj and l ′ = l+ aj− bj, as given in Equation (4),
subject to the condition l ′ ≥ aj, i.e. l ≥ bj, which is satisfied
anyway according to the value range of l. In Case 2, task Aj is
processed onmachineM2 as shown in Fig. 4b.We have h = h′

and l = l ′ + aj + bj, i.e. h′ = h and l ′ = l − aj − bj, as given
in Equation (5), subject to the condition l ′ = l − aj− bj ≥ 0,
i.e. l ≥ aj + bj.

B. COMPLETE DYNAMIC PROGRAMMING ALGORITHM
After the continuous block construction, a complete sched-
ule can be generated with a concatenation of appropriate
optimal continuous blocks in backward recursion. According
to Properties 3.1 and 3.2, we note that every two adjacent
optimal continuous blocks are separated by an idle time
period on machine M2. Let’s first define partial schedule set
(m, i) which represents the set of all partial schedules of job
subset {Ji, Ji+1, · · · , Jn} where the first job Ji is processed
by machine Mm. Denote by g(m, i) the minimum maximum
lateness among all the partial schedules in set (m, i). A DPA
for calculating g(m, i) is given as following. For easy narra-
tion, we set up a dummy job Jn+1 with an+1 = bn+1 = +∞
beforehand.

DPA Sch(L)
Initial conditions:

g(m, n+ 1) = −∞, m = 1, 2;

Recursions (Aj+1 can only be processed on M1 as shown in
Fig. 5):

FIGURE 5. (m, i ) is constructed from (m, j + 1) and (m, i, j, h, l ).

For each m, i satisfying m ∈ {1, 2}, 1 ≤ i ≤ n,

g =


max

{
f (m, i, j, h, l), h+ g(1, j+ 1)

}
if l < aj+1;

+∞ otherwise.

g(m, i) = min
i≤j≤n

0≤h≤
∑j

t=i at
l≤l≤l̄

{g} ; (6)

Goal: minLmax = minm∈{1,2} {g(m, 1)}.
The initial conditions and the goal are apparently true.

The recursions are analysed as following. In recursions of
Sch(L), when the optimal continuous block (m, i, j, h, l) is
given, partial schedule (m, i) can be structured by (m, j +
1) and (m, i, j, h, l). Since there is an idle time period
between (m, j + 1) and (m, i, j, h, l), according to Property
3.2 we have m = 1 in (m, j + 1), i.e. task Aj+1 is pro-
cessed on M1 (see Fig. 5). It is easy to see that g(m, i) =
minmax

{
f (m, i, j, h, l), h+ g(1, j+ 1)

}
. Since there is an

idle time period between job Jj and Jj+1, there must be l <
aj+1. So we have that Equation (6) holds.

Next, we will give the time complexity of DPA Sch(L).
Theorem 4.2:ProblemFSFL is solvable inO(n2(

∑n
i=1 ai)

2)
time. So problem FSFL is NP-hard in ordinary sense.
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FIGURE 6. Processing diagram from (1, i, j − 1, h′, l ′, s′) to (1, i, j, h, l, s).

Proof: To calculate the optimal continuous block,
we need to search variable l from l to l̄, variables i, j from
1 to n, variable h from 0 to

∑n
i=1 ai and variable m from 1 to

2. So we have that it takes O(n2(
∑n

i=1 ai)
2) time to calculate

all optimal continuous blocks. When all optimal continuous
blocks are given, to calculate the optimal schedule, there are
O(n) states, each of which takes at most O(n2(

∑n
i=1 ai)) time

due to the loops over all possible subscripts of the min oper-
ator. So the run time for calculating the optimal schedule is
also O(n2(

∑n
i=1 ai)

2). We have problem FSFL can be solved
in O(n2(

∑n
i=1 ai)

2) time. So problem FSFL is NP-hard in
ordinary sense.

V. DYNAMIC PROGRAMMING ALGORITHMS FOR
PROBLEM FSFT AND FSFU
Next, we will use techniques similar to Section IV to design
DPAs for problem FSFT and FSFU. The tardiness of the jobs
within the continuous blocks and partial schedules created via
the procedures for themaximum lateness cannot be fathomed.
We therefore instead determine the optimal objective value
for the total weighted tardiness or the weighted number of
tardy jobs within the continuous blocks and partial schedules
subject to the condition that the first job starts at a specified
time point. We introduce an extra parameter S in the contin-
uous blocks and partial schedules, which is the start time of
the continuous block or partial schedule, i.e. the interval from
time 0 to the start time of the first task of the continuous block
or partial schedule.
Definition 5.1: A six-element Continuous Block in state

(m, i, j, h, l, s) as a subschedule for jobs Ji, Ji+1, · · · , Jj sat-
isfying the following conditions (see Fig. 6):

(1) There is no idle time between any two consecutive tasks
on both machine M1 and M2;

(2) The flexible task of the first job JiAi is processed on
machine Mm where m ∈ {1, 2};

(3) The load of jobs Ji, Ji+1, · · · , Jj on machine M1 is
exactly h;

(4) The gap between the complete time of jobs
Ji, Ji+1, · · · , Jj on machine M1 and M2 is exactly l.

(5) The start time of job Ji is exactly s.

One way is to obtain continuous block (m, i, j, h, l, s) by
adding job Jj ∈ V1 to continuous block (m, i, j − 1, h′, l ′, s′)
(see Fig. 6a). The other way is to obtain continuous block
(m, i, j, h, l, s) by adding job Jj ∈ V2 to continuous block
(m, i, j − 1, h′, l ′, s′) (see Fig. 6b). Let f (m, i, j, h, l, s) be
the total weighted tardiness of the optimal continuous block
composed of the jobs Ji, Ji+1, · · · , Jj. To facilitate notation,
we denote the tardiness of job Ji completing at timeC in some
continuous block by

Ti(C) = max
{
0, C − di

}
. (7)

For easy narration, we set up a dummy job J0 with
a0 = b0 = 0 for the following procedures as shown below.
DPA CB(T)
Initial conditions: For any s ∈

[
0,
∑i−1

t=0 at
]
,

f (m, i, j, h, l, s) =



wiTi(s+ ai + bi),
if m = 1, i = j, h = ai, l = bi
or m = 2, i = j, h = 0, l = ai + bi;
+∞,

otherwise.

(8)

Recursions:
For eachm, i, j, h, l, s satisfyingm ∈ {1, 2}, 1 ≤ i < j ≤ n,

0 ≤ h ≤
∑j

t=i at , l ≤ l ≤ l, 0 ≤ s ≤
∑i−1

t=0 at ,
Case 1: Aj is processed on M1 as shown in Fig. 6a.

f1 = f (m, i, j−1, h−aj, l+aj−bj, s)+wjTj(s+h+l) (9)

Case 2: Aj is processed on M2 as shown in Fig. 6b.

f2 =


f (m, i, j− 1, h, l − aj − bj, s)
+wjTj(s+ h+ l), if l ≥ aj + bj;
+∞ otherwise.

f (m, i, j, h, l, s) = min
{
f1, f2

}
. (10)

Next, we use techniques similar to Section IV to construct
the optimal partial schedule for problem FSFT. Let’s first
define partial schedule set (m, i, s) which represents the set of
all partial schedules of job subset {Ji, Ji+1, · · · , Jn}where the
first job Ji is processed at time s by machine Mm. Denote by
g(m, i, s) the minimum total weighted tardiness among all the
partial schedules in set (m, i, s). For easy narration, we also set
up a dummy job Jn+1 with an+1 = bn+1 = +∞ beforehand.
A DPA for calculating g(m, i, s) is given as following.

DPA Sch(T)
Initial conditions: For any m = 1, 2 and s ∈

[
0,
∑n

i=1 ai
]

g(m, n+ 1, s) = 0.

Recursions (Aj+1 can only be processed on M1 as shown in
Fig. 7):

For each m, i, s satisfying m ∈ {1, 2}, 1 ≤ i ≤ n and 0 ≤
s ≤

∑i−1
t=0 at

g =


f (m, i, j, h, l, s)+ g(1, j+ 1, h+ s)

if l < aj+1;
+∞ otherwise.
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FIGURE 7. (m, i, s) is constructed from (m, j + 1, h+ s) and
(m, i, j, h, l, s).

TABLE 2. The detailed results of the three scheduling problems.

g(m, i, s) = min
i≤j≤n

0≤h≤
∑j

t=i at
l≤l≤l̄

{g} ;

Goal: min
∑
wiTi = minm∈{1,2} {g(m, 1, 0)}.

About the time complexity of DPA Sch(T), through an
analysis similar to Section IV, it’s easy for us to get the
following theorem.
Theorem 5.2:ProblemFSFT is solvable inO(n2(

∑n
i=1 ai)

3)
time. So it is also NP-hard in ordinary sense.

The above two procedures for problem FSFT can be easily
adapted for problem FSFU with the same time complexity
by replacing function Ti(C) with Ui(C) in Equation (8), (9)
and (10) in DPA CB(T) where Ui(C) is defined as following:

Ui(C) =

{
1, if C > di;
0, if C ≤ di.

Theorem 5.3: Problem FSFU is also solvable in
O(n2(

∑n
i=1 ai)

3) time and NP-hard in ordinary sense.

VI. COMPUTATIONAL EXPERIMENTS
A. TIME COMPLEXITY ANALYSIS OF OUR ALGORITHM
In Section III-V, we present the computational complexity of
the three scheduling problems considered in this paper, their
DPAs and the theoretical time complexity of algorithms. The
detailed results are provided in Table 2.

To demonstrate the practical performance of the PDAs,
we conducted computational experiments for the problem
FSFT whose objective is minimize the total weighted tardi-
ness. The computational experiments were implemented in
MATLABR2017b on a notebook computer equipped with an
Intel Core i7 5500U CPU, 8GB RAM andWindows 10 64-bit
operating system. The specific experimental environment
was as follows: the weight of each job wi, the processing time

FIGURE 8. When n = 20, 100, 200, the running time changes with∑n
i=1 ai .

of the second task of each job bi and the deadline of each job
di were generated as uniformly distributed random numbers
within the interval [0, 1], [0, 10] and [0, 1000] respectively;
the processing times of the flexible tasks were produced by
a random partition of a given amount

∑n
i=1 ai into n values

such that ai ≥ 0 (1 ≤ i ≤ n). The computational experiments
were performed for 20 ≤ n ≤ 200 with an interval of 20 and
100 ≤

∑n
i=1 ai ≤ 1000 with an interval of 100. We gen-

erated 30 random test instances for each combination of n
and

∑n
i=1 ai. The average running times for all combinations

are given in Table 3 where the leftmost column represents
the number of jobs n and the top row represents the sum of
processing times of all flexible tasks

∑n
i=1 ai.

FromTable 3, we can get even if the number of jobs reaches
200 and

∑n
i=1 ai reaches 500, the average running time only

needs to be less than 138s. When
∑n

i=1 ai reaches 1000,
the running time needs to be less than 567s. It shows that
the actual running time of DPA is acceptable even when the
parameters are large.

Next, according to the data in Table 3, we first analyze the
change of running time with

∑n
i=1 ai under different number

of jobs.When
∑n

i=1 ai is equal to 20, 100, and 200, the change
of running time is shown in Fig. 8. Obviously, we can get that
when the number of jobs is larger, the greater the slope of the
curve, i.e., the growth rate of running time will be accelerated
with the increase of

∑n
i=1 ai.

Then, according to the data in Table 3, we consider the
change of running time with the number of jobs n under
different

∑n
i=1 ai. When

∑n
i=1 ai is equal to 100, 500 and

1000, the change of running time is shown in Fig. 9. We have
that when

∑n
i=1 ai is larger, the growth rate of running time

will be accelerated with the increase of the number of jobs.

B. COMPARISON WITH TRADITIONAL ALGORITHMS
Because other algorithms specifically for this problem have
not been reported, we mainly analyze the effect of this DPA
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TABLE 3. Average running times (in seconds) for 20 ≤ n ≤ 200 and 100 ≤
∑n

i=1 ai ≤ 1000.

FIGURE 9. When
∑n

i=1 ai = 100, 500, 1000, the running time changes
with n.

by comparing it with other common algorithms with good
effect for similar hybrid flow-shop problem.

In the existing research, there are two main kinds of algo-
rithms used to solve similar hybrid flow-shop problems con-
sidered in this paper: one kind is the exact algorithm whose
time complexity is exponential, such as enumeration method,
branch-and-bound algorithm; the other kind is the heuristic
algorithm which gives approximate solution in polynomial
time, such as ant colony algorithm, greedy algorithm [19].
By retrieving the research results, branch-and-bound algo-
rithm is a commonly used and effective method in getting the
exact solution of hybrid flow-shop problem [10], [20]–[22].
And, in the aspect of heuristic algorithm, there are many
effective algorithms based on iterated greedy idea for hybrid
flow-shop problem [23]–[25]. Next, we also take the problem
FSFT as an example to compare the effects of DPA (given in

this paper), branch-and-bound algorithm (denoted as B&B,
based on Lee and Kim [22]) and iterated greedy algorithm
(denoted as IG, based on Wang and Wang [24]) on the
two-machine hybrid flow-shop problem considered in this
paper. The time complexity of above three algorithms in the
worst-case for problem FSFT is as follows: DPA is an exact
pseudo polynomial time algorithm whose time complexity
is O(n2(

∑n
i=1 ai)

3); B&B is an exact exponential algorithm
whose time complexity is O(n2n) [22]; IG is a polynomial
time approximation algorithm whose time complexity is
O(n2) [24]. IG has advantages in terms of time complexity in
the worst-case. B&B looks terrible, and the time complexity
of DPA is between IG and B&B. However, considering the
accuracy of the solution and the actual running time, the effect
analysis of the three algorithms still needs to be verified by
following computational experiments.

The software and hardware environment of computational
experiments were the same as the previous subsection. Con-
sidering that the computational time complexity of B&B and
IG is independent of

∑n
i=1 ai, in order to make a comparison

in the same standard, the computational experiments in this
subsection were no longer classified according to

∑n
i=1 ai

as in the previous subsection. We only grouped experiments
according to the number of jobs. The specific experimental
environment was as follows: the weight wi, the processing
time of the first task ai, the processing time of the second task
bi and the deadline di were generated as uniformly distributed
random numbers within the interval [0, 1], [0, 10], [0, 10] and
[0, 1000] respectively; the first experiment was concerned
with small-scale instances where 10 ≤ n ≤ 50 with an
interval of 5 and the second experiment was concerned with
large-scale instances where 100 ≤ n ≤ 250 with an interval
of 50. We generated 20 random test instances for each n.
Table 4 shows the test results of two kinds of experiments.

From Table 4, we can get even if the number of jobs is
only 50 (not large) most of the instances processed by B&B
algorithm can’t be completed in 1200 seconds. It is easy to see
that B&B algorithm is only suitable for small-scale instances.
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TABLE 4. Average running times (in seconds) of DPA, B&B and IG for small-scale instances and large-scale instances.

FIGURE 10. The average running times of DPA, B&B and IG for small-scale
instances.

For large-scale instances, the B&B algorithm takes too much
time to complete the experiment.

For small-scale instances, the average running times of
DPA, B&B and IG are shown in Fig.10. It is easy to see that
the running time of B&B increases with the number of jobs n
much faster than the other two algorithms. When the number
of jobs exceeds 45, B&B algorithm runs too long to solve
this problem. The difference between DPA and IG in terms
of running time is not obvious for small-scale instances.

For large-scale instances, the average running times of
DPA, and IG are shown in Fig.11. Compared with IG, the dis-
advantage of DPA in running time is obvious and it gradually
expands with the increase of the number of jobs n. But the
average running times of DPA are still within the acceptable
range for large-scale instances.

Although IG has advantages in running time, it can only get
approximate solution rather than exact solution which can be
given by DPA and B&B. The Average Relative Percentage
Deviations [26] (denoted as ARPD) is usually used to com-
pare the approximate effect of heuristic algorithm. Since we
can get optimal solution by B&B and DPA, we let ARPD =
CA−C∗
C∗ × 100%, where CA is the solution of algorithm A and

C∗ is the optimal solution of the problem. We use ARPD to
measure the approximation degree of IG, that is, the closer
ARPD of IG is to 0, the better the approximation effect of
IG is. Using the results of the small-scale experiment and
the large-scale experiment, we get the ARPD of IG listed
in Table 5.

FIGURE 11. The average running times of DPA and IG for large-scale
instances.

FIGURE 12. The average relative percentage deviations of IG change with
the number of jobs for small-scale and large-scale instances.

The ARPD of IG for all instances is shown in Fig.12.
We have that ARPD of IG is basically stable between 0.3 and
0.6 when the number of jobs exceeds 25 and it decreases
slightly with the increase of the number of jobs.

C. SUMMARY OF ALGORITHM COMPARISON
Considering the running time and the accuracy of the calcu-
lation results, we have:

(1) When the number of jobs is less than 15, the difference
of the three algorithms in running time has little effect
on the actual situation. The DPA and B& B can get
exact solution, so they have greater advantages in the
accuracy of calculation results.
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TABLE 5. Average relative percentage deviations of DPA, B&B and IG for small-scale instances and large-scale instances.

(2) For small-scale instances with more than 15 jobs, com-
pared with B&B, DPA has obvious advantages in run-
ning time. And compared with IG, DPA has obvious
advantages in the accuracy of calculation results, while
the difference in running time is not obvious.

(3) For large-scale instances, although DPA is not as good
as IG in running time, it is still within the acceptable
range (average running time less than 350 seconds),
and has more than 30% advantages in the accuracy
of calculation results. However, B&B needs too long
running time to be used in practice.

VII. CONCLUSIONS
This paper discusses a two-stage two-machine hybrid flow-
shop problem, which is widely used in shared manufacturing,
cloud manufacturing and bar-coding operations in inventory
or stock control systems. We mainly consider three objective
functions with respect to deadline: minimizing the maximum
lateness (Lmax), the total weighted tardiness (

∑
wiTi) and the

weighted number of tardy jobs (
∑
wiUi). Firstly, we prove

that they are all NP-hard in ordinary sense. Then, the pseudo-
polynomial time DPA is designed respectively, and the time
complexity of the algorithm is analysed. Finally, through
computational experiments, we get that when the number
of jobs is larger the growth rate of running time will be
accelerated with the increase of

∑n
i=1 ai and when

∑n
i=1 ai is

larger the growth rate of running time will be accelerated with
the increase of n. The results of computational experiments
also show that DPA has obvious advantages in running time
compared with B&B and has more than 30% advantages in
the accuracy of calculation results compared with IG.

For future research, we could consider designing efficient
polynomial time approximation algorithms for these prob-
lems. The efficiency and effectiveness of the approximation
algorithms and the DPAs in this paper will be compared.
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